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ABSTRACT
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur
developmental, physiological and molecular adaptations as the salinity changes.
The molecular regulation for salinity adaptation in chum salmon is currently not
well defined. In this study, 1-g salmon were cultured under 0 (control group, D0),
8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-
ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then
decreased in response to higher salinity environments where D8 exhibited the highest
Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest.
Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups
relative to controls, while no significant difference in acid phosphatase (ACP) activity
was observed across treatment groups. De novo transcriptome sequencing in the
D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of
which 2,143 were differentially expressed in response to environmental salinity (71
up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide
polymorphisms (SNPs) were also identified. The growth, development,
osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas)
expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and
igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR.
The lowest expression of all these genes occurred in the low salinity environments
(D8 or D16), while their highest expression occurred in the high salinity
environments (D24). These results provide preliminary insight into salinity
adaptation in chum salmon and a foundation for the development of marker-assisted
breeding for this species.
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INTRODUCTION
Salinity, as one of the most important environmental factors in bodies of water, can
directly affect the osmotic adjustment, metabolism and energy budget of aquatic
organisms, and affect their growth and survival (Silva & Perera, 1976; Galat et al., 1985).
The gill plays an important role in osmoregulation and ion regulation under salinity stress.
ATPase, including Na+/K+-ATPase and Ca2+/Mg2+-ATPase, is an important
membrane-bound protease that performs an ion regulation function in gills, providing
both a carrier and driving force for ion transport. The liver is an important organ of
energy-related metabolic and antioxidative response under salinity stress (Liang et al.,
2021; Chang et al., 2021). A variety of physiological stress responses change and produce
excessive amounts of reactive oxygen species (ROS) under salinity stress. Fish can use their
antioxidant defense systems, such as the superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GSH-PX), acid phosphatase (ACP) and alkaline phosphatase
(AKP) (Prieto et al., 2007; Zheng et al., 2019), to reduce oxidative stress and protect their
tissues from injury (Pungpung, 2007; Tseng & Hwang, 2008).

Salinity-related candidate genes were identified to elucidate the molecular basis and
important factors underlying this physiological process. Transcriptome sequencing
refers to the technology that detects the transcription reactions of any species under
different conditions and provides effective and comprehensive transcriptome information
through high-throughput sequencing technology (Ji et al., 2012; Thanh et al., 2014;Nguyen
et al., 2016). The transcript expression profile during salinity adaptation is available
for many teleost species including: nile tilapia (Oreochromis niloticus) (Ronkin et al., 2015),
medaka (Oryzias melastigma) (Lai et al., 2015), striped catfish (Pangasianodon
hypophthalmus) (Thanh et al., 2014; Nguyen et al., 2016), hybrid tilapia (O. mossambicus
female × O. urolepishornorum male) (Su et al., 2020) and Asian seabass (Lates calcarifer)
(Xia et al., 2013).

Two teleost genes, insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps),
are important factors in teleost growth, development, osmoregulation and maturation
(Wood, Duan & Bern, 2005; Hiroyasu et al., 2008; Reinecke, 2010). These genes are used
to determine the growth of biochemical markers in fish (Taniyama et al., 2016). Serum igf-
1 and liver igfbp-1a and igfbp-1b are correlated with growth rates in chum salmon
(Oncorhynchus keta) (Taniyama et al., 2016). The exact mechanism of salmon returning
behavior is unclear, but it is known that adult salmon utilize olfaction and vision to
navigate salinity and rheotaxis changes during homing (Dittman & Quinn, 1996; Putman
et al., 2014). Teleosts have a developed olfactory sense that they use for finding food
and partners and for communicating with others (Hara, 2010; Sorensen et al., 1995).
N-methyl-D-aspartate receptors (nmdas) are glutamate receptors expressed in memory
formation (Sison & Gerlain, 2011), which are composed of nmda1 and four nmda2s
(nmda2a-d) (Cox, Kucenas & Voigt, 2005; Kinoshita et al., 2005), and have been the focus
of many olfactory memory studies.

The chum salmon is a long-distance migratory fish and one of the six Pacific salmon
species (Li et al., 2017). They can be found in the Heilongjiang River, Wusuli River, Suifen
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Current and Tumen River in China. Chum salmon hatch in a freshwater environment
weighing approximately 1 g. They then grow, gradually adapt and migrate to seawater
(Taniyama et al., 2016). The spawning groups migrate to the river in autumn, reproduce
only once, and then die. Previous chum salmon research has mostly focused on growth
aspects, olfactory hormones (Ueda et al., 2016), environmental DNA (Minegishi et al.,
2019) and gene expression in different tissues (Kim et al., 2015; Taniyama et al., 2016;
Takashi & Hideaki, 2019).

In this study, chum salmon were placed in different salinities for 42 days. The ATPase
and antioxidant enzymes were investigated and the whole fish were sequenced by
RNA-seq. The transcriptomic data was compared and analyzed to identify salinity-related
genes and pathways, and different SNPs positions were found. The results of this study
will help to illustrate the mechanism of euryhaline fish adaptation under different salinity
environments.

MATERIALS AND METHODS
Animals and disposal
The fish used in this study came from the Tangyuan breeding base of the Heilongjiang
River Fisheries Research Institute, Chinese Academy of Fishery Sciences. The chum
salmon, weighing 1.01 ± 0.135 g, were bred in fully automatic temperature-controlled
aquariums (80 cm × 60 cm × 50 cm) with a portable filter system in the aquaculture
workshop of the Heilongjiang Fisheries Research Institute. Our study was designed with
four groups: 0 saline (the control group, D0), 8‰ saline (D8), 16‰ saline (D16), and
24‰ saline (D24), and three replicates were set up in each group. The water used in the
experiment was prepared with underground water and sea salt (Haike Ocean, Qingdao,
China), and the salinity was calibrated using a salinity meter (HQ4300; HACH, Loveland,
CO, USA). Salinity domestication was carried out in a step-by-step method. Salinity
was increased 4‰ every day in each test group until it reached the target salinity. There
were 360 healthy fish included in this experiment, randomly assigned to different groups.
The experimental fish were fed twice a day using special pellet feed for salmon (Salmofood,
Los Lagos, Chile). The water temperature was controlled at 14 ± 0.5 �C, pH 8.0 ± 0.5,
and the dissolved oxygen content in water was above 9 mg/L. The water was changed every
3 days, and the test period was 42 days. The sample fish were not fed for 24 h before
sampling and then anesthetized using MS-222 at a concentration of 90 mg/L. In this
study, 30 fish were randomly collected from each group. The gills and livers of some fish
were dissected immediately to determine enzyme activity. The remaining fish were
immersed in liquid nitrogen immediately after removing their tails for transcriptome
sequencing and qRT-PCR. All samples were then stored at −80 �C for the next experiment.
After the completion of all experiments, the surviving test fish were transported to
Tangwang River for release. All animal experiments were conducted in accordance
with the guidelines and approval of the Animal Research and Ethics Committees of
Heilongjiang River Fisheries Research Institute, and the approval number was
HSY20180311.
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Enzyme activity assays
The Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity levels in the gills were measured
according to the methods outlined by Quabius, Balm & Bonga (1997) and Zhou, Liang &
Zhang (2012). The activity levels of superoxide dismutase (SOD), glutathione peroxidase
(GSH-PX), catalase (CAT), acid phosphatase (ACP) and alkaline phosphatase (AKP) in
the liver were measured according to various enzyme assay kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). The analysis of covariance (ANCOVA) was
used to test the experimental data using the SPASS 19.0 software, and a P-value < 0.05
indicated a significant difference.

RNA extraction, transcriptome library preparation and lllumina
sequencing
The total RNA in the whole fish without the tail was extracted from the chum salmon using
TRIzol� Reagent (TransGen Biotech, Beijing, China). The RNA concentration and quality
was analyzed using a Nano Drop 2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA), and the integrity of the total RNA were confirmed with 1% agrose gel
electrophoresis and the Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, USA),
respectively. The RNA of an OD260/280 ≥1.8 and a concentration ≥100 ng/mL was selected
for the experiments. The cDNA was synthesized using cDNA Synthesis SuperMix
according to the manufacturer’s instructions (TransGen Biotech, Beijing, China) for qRT-
PCR.

A total of 1 mg RNA per sample was used for the RNA sample preparations. Sequencing
libraries were generated using the NEBNext�UltraTM RNA Library Prep Kit for Illumina�
(NEB, Ipswich, MA, USA) following the manufacturer’s recommendations and index
codes were added to attribute sequences to each sample. PCR products were purified
(AMPure XP system) and the library quality was assessed on the Agilent Bioanalyzer 2100
system.

Basic analysis of sequencing data, functional annotation and
expression analyses
Clean reads were obtained by removing low-quality reads and reads containing adapter
sequences or poly-N from the raw reads, Q30. The GC-content and sequence duplication
level of the clean data were then calculated, and the clean reads were analyzed in the D0
and D24 groups using Trinity with default parameters. RNASeqPower (https://doi.org/doi:
10.18129/B9.bioc.RNASeqPower) was used to make the power analysis calculation and
edgeR (Robinson, McCarthy & Smyth, 2010) was used to find the read depth in this study.

The NCBI non-redundant protein sequences (nr) and non-redundant nucleotide
sequences (nt) were searched to annotate the assembled unigenes of chum salmon
using local the BLASTX and BLASTN programs with a 1 × 10−5 E-value (Altschul et al.,
1997). All unigenes were further annotated on the protein family (pfam), Clusters of
Orthologous Groups of proteins (KOG/COG), Swiss-Prot (A manually annotated and
reviewed protein sequence database), Gene Ontology (GO), EC (Enzyme Code) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) (https://www.genome.jp/kegg/kegg3.html)
databases using Blast2GO (Conesa et al., 2005).

The expression levels of different genes were calculated with FPKM (fragments per
kilobase per million fragments mapped) (Mortazavi et al., 2008) and a differential
expression analysis of the D0 and D24 groups was performed by the DESeq2 R package
with the false discovery rate correction set at FDR < 0.05 and the absolute value of |log2FC|
(fold change) > 2 as the threshold to judge significance (Benjamini & Yekutieli, 2001).
The Venny online software (http://bioinfogp.cnb.csic.es/tools/venny/) was used to
combine the analyses of differentially expressed genes. A Gene Set Enrichment Analysis
(GSEA) was also used to detect the expression changes of the whole gene set.

Growth-related and memory-related gene validation
The growth-related genes, igf-1, igfbp-1a and the igfbp-1b primers used for qRT-PCR were
the same as those used by Kawaguchi et al. (2013). The gene-specific qRT-PCR primers
of memory-related genes nmda1, nmda2b and nmda2c and β-actin (AB032464) were
used as outlined by Kim et al. (2015) and shown in Table 1. The qRT-PCR was performed
using TransStart Top Green qPCR SuperMix (TransGen Biotech, Beijing, China)
according to the manufacturer’s instructions in an ABI 7300 Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). One denaturation cycle was performed at
95 �C for 5 min, and the qRT-PCR cycle was as follows: 95 �C/30 s, followed by 40 cycles of
95 �C for 5 s, and 60 �C (igf-1, igfbp-1a and igfbp-1) or 55 �C (nmda1, nmda2b and
nmda2c) for 30 s. The gene expression levels of β-actin and the control group genes were
used as the internal control and the reference, respectively. All samples were run in
triplicate. The analysis of covariance (ANCOVA) was used to test the experimental data
using the SPASS 19.0 software, and the averages of the three relative quantities of the
biological replications were subjected to a two-tailed Student’s t test with a 95% confidence
level (P < 0.05) to determine the gene expression significance.

Single-nucleotide polymorphism (SNPs) analysis
The chum salmon SNPs were found in the transcriptome sequences. SAMtools 0.1.19 (Li
et al., 2009) was used to sort, remove duplicated reads and merge the bam alignment
results of each sample. GATK 2.8-1 (Mckenna et al., 2010) was used to perform SNPs.
Raw vcf files were filtered with the GATK standard filter method and other parameters

Table 1 The primer sequences of growth-related and memory-related genes for qRT-PCR.

Annotation Forward primer (5′-3′) Reverse primer (5′-3′)

igf-1 TCTCCAAAACGAGCCTGCG CACAGCACATCGCACTCTTGA

igfbp-1a AAGGAGCGGCGGACAATG CTGTGGCCGTGGAGATAGAG

igfbp-1b GACAAGGGACAAGAGGTAGTAGAAT GCTCTCCTGATTCCCCTCAT

nmda1 CAGGCGAACCAGATATACG AGGATGACTCACGAGGATG

nmda2b CATCCTCATGCTGTTCGG TGTAGAAGACACCTGCCAT

nmda2c GGAAGCACAGAGAGGAACA GCACAGCAGCGTCATAGA
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(cluster Window Size: 10; MQ0 ≥= 4 and (MQ0/(1.0 � DP)) > 0.1; QUAL < 10;
QUAL < 30.0 or QD < 5.0 or HRun > 5), and only SNPs with a distance >5 were retained.

RESULTS
Enzyme activity
Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gills of the chum salmon tended
to first increase and then decrease as salinity increased; the D8 and D24 salinity groups had
the highest and lowest activity, respectively (Fig. 1).

The antioxidant and hydrolase activities of SOD, GSH–PX, CAT, ACP and AKP in
the liver were investigated, and the results are shown in Figs. 2A and 2B. The highest
SOD activity and AKP activity were found in the D16 group, and the lowest SOD activity
and AKP activity were seen in the D0 group; the highest GSH–PX activity and CAT
activity were seen in the D8 group, and the lowest GSH–PX activity and CAT activity
were found in the D0 group. The AKP activity in the D0 group was significantly lower than
that in the other groups, and there was no significant difference in ACP activity between
these groups.

Transcriptome analysis
Ambiguous nucleotides, low-quality and short sequences were removed from the results of
the transcriptome analysis (Table S1). There was an average length of 606 bp in 187,836
unigenes, and N50 lengths of 998 bp were found. Approximately 50% of the unigenes
ranged from 200 to 500 bp (Fig. S1), 25,859 (13.77%) unigenes exceeded 1,000 bp, and
11,195 (5.96%) exceeded 2,000 bp. The transcriptome functional annotation was searched
using the NCBI nr, Swiss-Prot, KEGG, COG, KOG, GO and Pfam databases. The raw data
has been submitted to NCBI (https://www.ncbi.nlm.nih.gov/), and freely downloaded
from the SRA database with the name: “Transcriptome of juvenile chum salmon in
different salinity” and the accession number was PRJNA778360. A power analysis was
calculated in the D0 and D24 groups (Figs. S2 and S3).

Figure 1 Activity assay of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in chum salmon gills under
different salinities. The units for the activity assay are U/mg protein, and the values are the
means ± SD, n = 6. Different letters denote significant differences (P < 0.05) between salinity groups.

Full-size DOI: 10.7717/peerj.13585/fig-1

Li et al. (2022), PeerJ, DOI 10.7717/peerj.13585 6/22

http://dx.doi.org/10.7717/peerj.13585/supp-7
http://dx.doi.org/10.7717/peerj.13585/supp-2
https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA778360
http://dx.doi.org/10.7717/peerj.13585/supp-3
http://dx.doi.org/10.7717/peerj.13585/supp-4
http://dx.doi.org/10.7717/peerj.13585/fig-1
http://dx.doi.org/10.7717/peerj.13585
https://peerj.com/


The functions of the unigenes were predicted and classified against the GO database,
which were annotated in three major GO categories: 68,326 (41.36%) genes in the
biological process (BP) category, 63,791 (38.61%) genes the cell component (CC) category,
and 33,642 (20.03%) genes in the molecular function (MF) category (Fig. 3). In the BP
category, most unigenes were related to cellular process (13,936 unigenes, GO:0009987),
metabolic process (10,787 unigenes, GO:0008152), and the single-organism process
(11,165 unigenes, GO:0044699). The 12,119 unigenes (GO:0005623) in the CC categories
were involved in the cell, cell part (11,981 unigenes, GO:0044464), and the membrane
(10,451 unigenes, GO:0016020). In the MF category, the unigenes were predicted for
binding (15,556 unigenes, GO:0005488), catalytic activity (104,233 unigenes,
GO:0003824), and transporter activity (1,775 unigenes, GO:0005215).

The KEGG analysis could help to identify the key pathways associated with salinity
changing. In this study, 14,591 unigenes were clustered in six major categories: cellular
processes, environmental information processing, genetic information processing, human
diseases, metabolic and organismal systems (Fig. 4). For KEGG groups, the metabolic
pathway annotations were “oxidative phosphorylation” (407 unigenes, KO00190) and the
“MAPK signaling pathway” (724 unigenes, KO04020); the “mTOR signaling pathway”
(486 unigenes, KO04150) was associated with environmental information. The “Insulin
signaling pathway” was the most enriched group in the organismal system (471 unigenes,

Figure 2 Activity assay of antioxidases and hydrolases. (A) The superoxide dismutase (SOD),
glutathione peroxidase (GSH–PX) and catalase (CAT) activity in chum salmon liver under different
salinities. (B) The acid phosphatase (ACP) and alkaline phosphatase (AKP) activity in chum salmon
liver under different salinities. The units for the activity assay are U/mg protein, and the values are
the mean ± SD, n = 6. Different letters denote significant differences (P < 0.05) between salinity groups.

Full-size DOI: 10.7717/peerj.13585/fig-2
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KO04910). In the human disease group, “Herpes simplex infection” (491 unigenes,
KO05618) was enriched in a high proportion of the unigenes.

Different expression genes analysis
A total of 23,528 genes co-expressed in the D0 and D24 groups (Fig. S4) and the FPKM
values of genes in every group were calculated. A total of 2,143 genes were significantly and
differentially expressed in the chum salmon transcriptome (Fig. 5), and 71 up-regulated
genes and 2,072 down-regulated genes were identified.

The DEGs GO enrichment analysis was selected to annotate the differentially
expressed genes. These results showed that differentially expressed genes were divided
into three categories: molecular function, biological process and cellular component.
The salinity-related genes were further selected in GO function terms, which showed that
the 56 salinity genes were only found in biological processes, and associated with the
following responses: hyperosmotic salinity response (32 genes), cellular hypotonic salinity
response (six genes) and hypotonic salinity response (18 genes); these genes were all
down-regulated in our analysis.

We used the DEGs KEGG enrichment analysis to annotate the differentially expressed
genes. The up-regulated genes were found in the MAPK signaling pathway, the calcium
signaling pathway, the environmental information processing cluster and oxidative
phosphorylation in the metabolism cluster (Fig. S5A). The down-regulated genes were
expressed mainly in the Wnt signaling pathway, the MAPK signaling pathway and the

Figure 3 GO annotation of the chum salmon transcriptome. Unigenes were annotated by Gene
Ontology (GO) terms that belong to three categories: biological process, cellular component and
molecular function. Full-size DOI: 10.7717/peerj.13585/fig-3
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Figure 4 KEGG pathways were grouped into six main clusters: cellular processes, environmental
information processing, genetic information processing, human diseases, metabolism and
organismal systems. Full-size DOI: 10.7717/peerj.13585/fig-4
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Figure 5 Differential gene expression pattern analysis. FPKM is the number of fragments per kilobase
length of a certain gene per million fragments. D0 was the control group, D24 was the salinity group.

Full-size DOI: 10.7717/peerj.13585/fig-5
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mTOR signaling pathway in the environmental information processing cluster, the
oxidative phosphorylation in the metabolism cluster, the AGE-RAGE signaling pathway in
diabetic complications and Salmonella infection in the human disease cluster (Fig. S5B).

The expression of growth-related genes and memory-related genes
The growth-related genes and memory-related gene expression was investigated and
annotated to the transcriptome database in this study (Figs. 6A and 6B). The expression
of growth-related gene igfbp-1a (ON804215) was less affected by changes in salinity levels,
but the expression levels of the igf-1 (ON804216) and igfbp-1b (ON804217) genes were
more affected by salinity changes. The gene expression of igf-1 was lowest in the D16 group
and highest in the D24 group. The gene expression of igfbp-1b was lowest in the D8 group
and highest in the D24 group. The expression of memory-related genes was more strongly
affected by changes in salinity: the lowest expression of nmda1 (ON804218) and nmda2b
(ON804219) were in the D16 group, and the expression of nmda2c (ON804220) was
lowest in the D8 group, and these genes showed the highest expression in the D24 group.
The expression trend of these genes was similar to the transcriptome analysis results.
Overall, the results showed that the relative expression of growth-related genes and
memory-related genes was lowest in the D8 or D16 group, and highest in the D24 group.

SNPs
In this study, 32,468 SNPs (19,523 transitions and 12,945 transversions) in the D0 group
and 36,289 SNPs (21,920 transitions and 14,369 transversions) in the D24 group (Fig. 7A)
were identified. More than 50,000 SNPs were identified, some as heterozygotes and
some as homozygotes for different nucleotides in the D0 and D24 groups (Table S2).

Figure 6 Gene expression. (A) Expression of igf-1, igfbp-1a and igfbp-1b in chum salmon under different
salinities; (B) Expression of nmda1, nmda2b, nmda2c in chum salmon under different salinities.
The whole fish were selected for qRT-PCR. Each sample was tested in triplicate. qRT-PCR fold changes
are relative to control samples (D0 group) and are normalized by changes in β-actin values. The averages
of the three relative quantities of the biological replications were subjected to two-tailed Student’s t test
with a 95% confidence level (P < 0.05) to determine the gene expression significance, and the different
letters denote significant differences (P < 0.05) between salinity groups.

Full-size DOI: 10.7717/peerj.13585/fig-6

Li et al. (2022), PeerJ, DOI 10.7717/peerj.13585 11/22

http://dx.doi.org/10.7717/peerj.13585/supp-6
https://www.ncbi.nlm.nih.gov/nuccore/ON804215.1/
https://www.ncbi.nlm.nih.gov/nuccore/ON804216
https://www.ncbi.nlm.nih.gov/nuccore/ON804217
https://www.ncbi.nlm.nih.gov/nuccore/ON804218
https://www.ncbi.nlm.nih.gov/nuccore/ON804219
https://www.ncbi.nlm.nih.gov/nuccore/ON804220
http://dx.doi.org/10.7717/peerj.13585/supp-8
http://dx.doi.org/10.7717/peerj.13585/fig-6
http://dx.doi.org/10.7717/peerj.13585
https://peerj.com/


Among the SNPs, the most abundant types were the AG/GA and CT/TC types, while
the GC/CG types were least abundant compared to the other types (Fig. 7B) and there
were 56,020 SNPs positioned that differed between the two groups.

DISCUSSION
Effects of salinity on the enzyme activity in chum salmon
As chum salmon migrate from freshwater to saltwater, they change in response to the
changes in salinity. In our study, the salinity levels ranged from 0‰ to 24‰ according to
the salinity levels of the migratory stages of chum salmon. Some marine fish spend some

Figure 7 Distribution of SNPs in the chum salmon assembled transcriptome.
Full-size DOI: 10.7717/peerj.13585/fig-7
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metabolic energy in the osmotic-regulatory process in a salinity variation environment
(Marais, 1978;Moser &Miller, 1994). The gill has many important functions in addition to
being the respiratory organ of teleost fish, including: regulating the osmotic pressure
balance of the body, regulating body fluid pH, ion transport and excretion of ammonia
nitrogen (Ern & Esbaugh, 2018). Euryhaline fish have a high salinity survival range, and the
organizational structure and physiological function of gills could have adaptive changes
during the migration from freshwater to saltwater (Shui et al., 2018). This may result in
significant changes in ATPase activity related to osmotic regulation due to salinity
concentration and exposure time (Monserrat et al., 2007). In Nile tilapia, Mg2+-ATPase
activity showed fluctuation trends, Na+/K+-ATPase activity increased and Ca2+-ATPase
activity decreased in different levels of salinity (Kulac, Atli & Canli, 2013). In this study,
Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities showed a trend of first increasing and
then decreasing with the increase of salinity, with the D8 group showing the highest
activity in this study. ATPase activity in the gills of euryhaline teleost fish varied with
different concentrations of ions affinities in the salinity variation environment and the
activity levels of antioxidant enzymes changed with external factors, such as pH and
salinity levels (Hegazi, Attia & Ashour, 2010; Xu et al., 2014). These results indicate that gill
ATPase activity could increase with proper salinity in aquaculture water, but could also
decrease if salinity levels increased beyond a certain range.

The oxidative status and cellular production of ROS are influenced by different
environments (Chang et al., 2021). The liver is an important organ involved in the
antioxidative response (Martínez-Álvarez, Morales & Sanz, 2005) and the antioxidant
enzymes of SOD, CAT and GSH-PX in the liver can eliminate ROS in the antioxidative
response. In fact, the physiological processes changed for maintaining balance under the
pressure and energy of the osmotic regulation: ATPase enzyme activity increased to
transport ions under osmotic pressure, digestive enzyme activity increased for food
digestion and absorption, and ROS increased production to attenuate oxidative stress
(Kulac, Atli & Canli, 2013; Martínez-Álvarez, Morales & Sanz, 2005; Liu et al., 2018).
In this study, SOD, GSH-PX, and CAT significantly varied in the different salinity groups.
These results could indicate that ROS scavengers could increase in a low salinity
environment, and decrease in a higher salinity environment. ACP and AKP are part of the
non-specific immune system and promote the hydrolysis of phosphate into inorganic
phosphoric acid and the production of ATP; AKP is also involved in nutrient absorption
and protein synthesis (Wu et al., 2019). In this study, AKP activity in the salinity groups
was significantly higher than in the control group, but there was no significant difference in
activity between the salinity groups. This result indicates that AKP could be a key enzyme
of ATP production in chum salmon during salinity changes.

Transcriptome analysis of chum salmon under salinity stress
Chum salmon have an excellent osmotic plasticity in response to hyperosmotic and
hypoosmotic environments. In previous studies, the gill osmotic regulatory proteins of
chum salmon were selected for a comparative transcriptome, and the fish were exposed to
a salinated environment for 1 day (Lee, Lee & Kim, 2020). The olfactory transcriptome was
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also analyzed in homing chum salmon (Palstra et al., 2015). In our study, chum salmon
were placed in different salinities for 42 days, and the whole fish without tail were analyzed
with RNA-seq in the D0 and D24 groups. The different unigenes of whole chum salmon
without tail were identified and annotated, 2,143 genes were significantly and differentially
transcribed. The differentially expressed genes were annotated using a GO enrichment
analysis, and the results showed that these genes were related to the hyperosmotic and
hypotonic salinity responses. These results suggest that the osmosis-related genes were
regulated to adapt to the salinity change.

Osmotic pressure regulation uses several ion transport channels, which require a large
amount of energy (Tseng & Hwang, 2008). In this study, most DEGs were annotated to
the energy metabolism pathway of oxidative phosphorylation. Oxidative phosphorylation
has been shown to be relevant to osmoregulation in Acipenser baerri in a study which
found that there were 51 DEGs associated with this pathway (Guo et al., 2018). Chum
salmon could also provide the energy needed to adapt to salinity changes using oxidative
phosphorylation. In this study, there were 96 differential genes in the environmental
process, mainly in the MAPK signaling pathway and the mTOR signaling pathway.
The MAPK (mitogen-activated protein kinase) signaling pathway is important in muscle
cell proliferation and differentiation (Jones et al., 2001; Ren, Accili & Semenza, 2010), and
the mTOR (mammalian target of rapamycin) signaling pathway mediates signaling in
response to nutrient availability, cell energy, mitogenic signals and various types of
stressors (Campos et al., 2014). The innate immune response is important in fish (Watts,
Munday & Burke, 2011), and a large number of immune genes were identified using the
RNA-seq analysis in Miichthys miiuy (Che et al., 2014), O. mykiss (Ali et al., 2014) and
Schizothorax prenanti (Luo et al., 2016). It is generally thought that stress depresses
immune functioning in humans (Herbert & Cohen, 1993). This connection between stress
and immune functions is also apparent in vertebrates (Tort, 2011). High-throughput
sequencing could help identify the immune related genes in chum salmon. “Salmonella
infection” and “herpes simplex infection” were found in the immune response cluster,
which could indicate the chum salmon were infected with Salmonella and Herpes simplex
in higher salinity environments. There is a possibility that chum salmon carry out a series
of anti-inflammatory activities by stimulating the immune system in different salinity
environments. For example, to maintain normal bodily functions, a large number of
non-specific immune enzymes are produced to remove oxygen free radicals and catalyze
the hydrolysis of phosphorus containing compounds to remove metabolic waste in the
body. The annotated unigenes could participate in various biological processes that help
explain this result. Transcriptome studies have also been done in Larimichthys crocea,
Gymnocypris przewalskii, and Megalobrama amblycephala (Xiao et al., 2015a; Tran et al.,
2015; Tong et al., 2015). These salinity-regulated unigenes are associated with cellular
processes, environmental alteration, genetic information, the immune system (immune
response in humans), metabolism and organismal systems for salinity adaptation.
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Effects of salinity on growth-related and memory-related genes in
chum salmon
The growth-related genes igf-1 and igfbp were previously investigated in salmon under
salinity changes (Shepherd et al., 2005; Sharif et al., 2015). One study found that the muscle
igf-1 of chum salmon has no effect on seawater transfer processing (Taniyama et al., 2016),
and that gene igf-1 in vertebrates is stimulated in the somatic and skeletal muscle growth
process (Wood, Duan & Bern, 2005). Gene igfbp-1 of juvenile chum salmon liver was
negatively correlated with growth rate in previous studies (Hiroyasu et al., 2008; Pedroso,
Fukada & Masumoto, 2009; Peterson & Waldbieser, 2009; Kawaguchi et al., 2013;
Breves et al., 2014). Muscle igfbp-1a and igfbp-1b responded to fasting, but the igfbp-1b
levels were much lower. Larger zebrafish showed a lower muscle expression of igfbp-1a and
igfbp-1b compared to smaller zebrafish (Amaral & Johnston, 2012).

Memory-related nmda gene expression is more strongly altered with salinity changes.
The increases in nmdas may be due to increased dopamine secretion under the salinity
changes. The increase of nmda1 expression in chum salmon could change the learning and
memory capacities of the fish during the transition from freshwater to seawater (Yu et al.,
2014). Dopamine affects learning ability, the formation of olfactory glomeruli and
long-term storage memory (Hsia, Vincent & Lledo, 1999; Pignatelli et al., 2005). Dopamine
has also been found to influence the migration of cells in European eel (Anguilla anguilla)
and chum salmon (Finn-Arne et al., 2006; Kim et al., 2015). In this study, the relative
expression of growth-related genes and memory-related genes was lowest in the D8 and
D16 groups, and highest in the D24 group. These genes may not exhibit higher expression
in the D8 and D16 groups as the D8 and D16 salinity conditions may represent a more
suitable environment for juvenile chum salmon than higher levels of salinity.

SNPs of chum salmon
SNPs are widely used in genome studies (Xiao et al., 2016), the construction of genetic
maps, and the analysis of population genetics in the transcriptomes of organisms
(Xiao et al., 2015b; Xia et al., 2014). The chum salmon genome has not yet been released
as there are not sufficient SNP markers for genetic analysis in chum salmon. In previous
studies, nearly 26,000 putative SNPs were identified in individual chum salmon
(Seeb et al., 2011). However, salinity-related SNPs of chum salmon were rarely reported
in previous studies. In this study, 32,468 SNPs in the D0 group and 36,289 SNPs in the
D24 group were found with the AG/GA and CT/TC types the most abundant, and the
GC/CG types the least abundant. This variation might cause base structure differences in
the DNA sequence of chum salmon (Ma et al., 2012). A total of 56,020 SNP positions
differed between the two groups in response to salinity changes. The gene structure of the
small variants may be for the chum salmon to survive the migration from freshwater to
saltwater. These SNPs may provide abundant molecular resources on quantitative trait
locus (QTL) studies and molecular marker-assisted selection for population genetic
structures in chum salmon. The SNP markers were designed for validating and testing
chum salmon populations in future studies.
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CONCLUSION
In this study, the ATPase and antioxidant enzymes, gene expression, and SNPs
associated with salinity adaptation in chum salmon were studied using a comparative
transcriptome analysis. The ATPase and antioxidant enzymes varied in the different
salinity environments. A total of 2,143 differentially expressed genes were identified in
RNA-seq, and 56,020 SNP positions differed between the D0 and the D24 groups.
These results could provide valuable genetic resources and molecular marker-assisted
breeding opportunities for chum salmon.
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