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Simple Summary: Breast cancer treatment has improved substantially over the last decade. Still,
the failure of treatment and therapy resistance are urgent problems. Here, we assessed cellular
signaling within primary cancer tissue to evaluate the possibility of developing strategies that lead to
better patient stratification and the development of personalized treatment options. By employing
DigiWest technology, the expression and activation of the regulators of key signaling pathways in
breast cancer tissue were monitored. A positive correlation between immune cell infiltration and
event-free survival was detected. PPARγ activation showed a negative correlation with immune cell
infiltration, suggesting a novel immune evasion mechanism.

Abstract: In cancer, the complex interplay between tumor cells and the tumor microenvironment
results in the modulation of signaling processes. By assessing the expression of a multitude of proteins
and protein variants in cancer tissue, wide-ranging information on signaling pathway activation and
the status of the immunological landscape is obtainable and may provide viable information on the
treatment response. Archived breast cancer tissues from a cohort of 84 patients (no adjuvant therapy)
were analyzed by high-throughput Western blotting, and the expression of 150 proteins covering
central cancer pathways and immune cell markers was examined. By assessing CD8α, CD11c, CD16
and CD68 expression, immune cell infiltration was determined and revealed a strong correlation
between event-free patient survival and the infiltration of immune cells. The presence of tumor-
infiltrating lymphocytes was linked to the pronounced activation of the Jak/Stat signaling pathway
and apoptotic processes. The elevated phosphorylation of PPARγ (pS112) in non-immune-infiltrated
tumors suggests a novel immune evasion mechanism in breast cancer characterized by increased
PPARγ phosphorylation. Multiplexed immune cell marker assessment and the protein profiling of
tumor tissue provide functional signaling data facilitating breast cancer patient stratification.
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1. Introduction

Breast cancer is the fifth most common cause of cancer-related deaths worldwide,
with 2.2 million new cases and around 685,000 deaths in 2020 [1]. A variety of therapeutic
options, including surgery, chemo-, hormone, and biological therapies, are available, and
survival rates have increased substantially over the years [2]. Nevertheless, current cancer
therapies lack a more personalized approach, and long-term therapy resistance has become
a focus of current research [3,4]. Novel insights into the establishment, interaction and
control of the tumor immune microenvironment (TIME) have drawn a more comprehensive
picture of factors that might account for treatment failure or severe side effects [3,5]. The
detection of tumor-infiltrating lymphocytes (TIL) is seen as a major prognostic factor in
different carcinomas and has been suggested as a routine pathological evaluation [6,7]. In
general, infiltrating immune cells can be categorized as either (i) pro-tumoral or (ii) anti-
tumoral [6]. Some leukocytes, such as type 2 macrophages and regulatory T-cells (Tregs),
are associated with pro-tumoral effects [8,9], whereas type 1 macrophages, effector T-cells,
natural killer (NK) cells and dendritic cells (DC) are linked to anti-tumoral effects [10,11].
However, the complex interplay among different simultaneous immune responses and the
way that cancer cells can modulate them are not yet fully understood. Large investiga-
tions on the bulk gene expression of infiltrating immune cells have been performed that
associated different immune cell types with the risk of relapse [12,13]. Higher infiltration
of immune cells has been linked to patient outcomes and treatment responses in several
studies [8,14–16]. For example, the presence of cytotoxic T-cells (CD8+) has been associated
with better survival in estrogen receptor (ER)-negative and ER-positive/human epidermal
growth factor receptor 2 (Her2)-positive breast cancer subtypes [14]. Additionally, the cate-
gorization of tumors into immunological inflamed (hot) and non-inflamed (cold) cancers
has been advocated for certain tumor entities [17,18]. Most studies focus on the evaluation
of single immune cell markers or solely investigate the degree of TIL infiltration, most
commonly using imaging methods (H&E/IHC/IF staining) for immune cell assessment
and subsequent scoring [19,20]. Yet, recent studies have shown that classification based
on one marker may be an oversimplification and does not entirely represent the complex
nature of the immune response against cancer [21,22]. In the present study, we established
the multiplexed assessment of several immune cell markers by DigiWest [23], a multiplexed
bead-based Western blot, in fresh-frozen tissue samples.

The semi-quantitative protein expression analysis of primary breast cancer tissue
allowed for the detection of infiltrating immune cells and the concomitant monitoring of
the activation state of central signaling pathways. The activation of immune cell signaling
and the induction of apoptotic processes were observed in highly immune-cell-infiltrated
tumor tissue, whereas the activation of PPAR gamma signaling was found in tumors with
low-level immune cell infiltration.

2. Materials and Methods
2.1. Patient Cohort

A retrospective cohort of primary unilateral invasive mamma carcinomas from patients
who underwent a primary resection was utilized (snap-frozen, n = 159, tumor bank University
Hospital Tuebingen). Inclusion criteria were hormone-receptor- and/or human epidermal
growth factor receptor (Her2)-negative or -positive carcinomas, determined by immunohis-
tochemistry at the Institute of Pathology, University of Tuebingen, Germany, at the time of
surgery. Samples were further classified by the occurrence of distant metastases or local relapse
within 10 years (poor responder) versus no occurrence of distant metastases, or a local relapse
within 10 years or contralateral carcinoma within 5 years of the primary diagnosis (good
responder). In general, the exclusion criteria were the occurrence of contralateral mamma
carcinomas before the occurrence of distant metastases in the poor-responder subgroup and
within 5 years in the good-responder subgroup, as well as the presence of bilateral mamma
carcinomas or other malignancies (Figure S1). All patients enrolled neither received any
neo-adjuvant treatment nor had any known metastases before surgery.
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2.2. Sample Preparation and Assessment of Tumor Content

Layered cuts of each fresh-frozen sample were prepared, and Hematoxylin–Eosin
(H&E) staining was performed according to standard protocols for the first and second
layers. Between layers, 100 µm of tissue was trimmed, collected and stored at −80 ◦C.
Prior to protein expression analysis, the prepared layered cuts were H&E-stained (see
also Figure 1A), and sections 100 µm apart were re-assessed by a pathologist (A.S). The
evaluation of these sections revealed that 2.5% (n = 4) of the samples were normal tissue,
5.0% (n = 8) were ductal carcinoma in situ (DCIS), and 1.9% (n = 3) mostly contained
necrotic tissue. In addition, 90.6% (n = 144) were classified as invasive ductal carcinoma
(IDC) (see also Figure 1B). Yet, 2.5% (n = 4) showed a tumor content of app. 5–10%, and
27.7% (n = 44) showed a tumor content in between 15% and 45%. Of all samples, 60.4%
(n = 96) showed a tumor content of 50% or higher (up to 95%) (see also Figure 1B). Samples
with ≥50% tumor content were selected for further analysis (n = 84), and intermediate
sections from the generated layered cuts were used for protein preparation. In addition,
n = 10 samples classified as normal tissue or with low tumor content (>10%) were assigned
to the baseline control group. Samples were lysed by incubating the collected tissue at
95 ◦C for 10 min in lysis buffer (4% LDS, 50 mM DTT) (Figure S2).
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Figure 1. Pathological examination and quality assessment of selected samples. (A) Representative 
images of H&E-stained breast carcinomas. (Left) App. 20% tumor content. (Right) App. 90% tumor 
content. Scale bar, 200 µm. Black arrows, tumor area. (B) Pathological classification of entire sample 
set (1 circle = 1%). n = 159. (C) Heatmap showing ER, PR and Her2 protein expression in ER/PR− 
Her2− (n = 18), ER/PR+ Her2− (n = 45), ER/PR+/− Her2+ (n = 20) and baseline (n = 10) subgroup; data 
are median-centered and log2-transformed. Yellow indicates higher expression; blue indicates 
lower protein expression. (D) Violin plots of ER, PR and Her2 expression in ER/PR− Her2−, ER/PR+ 
Her2− and ER/PR+/− Her2+ subgroups. 

Figure 1. Pathological examination and quality assessment of selected samples. (A) Representative
images of H&E-stained breast carcinomas. (Left) App. 20% tumor content. (Right) App. 90% tumor
content. Scale bar, 200 µm. Black arrows, tumor area. (B) Pathological classification of entire sample
set (1 circle = 1%). n = 159. (C) Heatmap showing ER, PR and Her2 protein expression in ER/PR−
Her2− (n = 18), ER/PR+ Her2− (n = 45), ER/PR+/− Her2+ (n = 20) and baseline (n = 10) subgroup;
data are median-centered and log2-transformed. Yellow indicates higher expression; blue indicates
lower protein expression. (D) Violin plots of ER, PR and Her2 expression in ER/PR−Her2−, ER/PR+
Her2− and ER/PR+/− Her2+ subgroups.

To confirm the tumor content of the enrolled sample set, the abundances of the
proliferation marker Ki-67 and general carcinoma markers Cytokeratin 8/18, Cytokeratin 8
(pS23) and Cytokeratin 6 were assessed by DigiWest analysis (see below). The expression
of these markers was found to be significantly different between the tumor sample set and
baseline sample sets, revealing a high tumor content in the analysis of the former sample
set (Figure S3A).
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2.3. Compliance of Receptor Status

To review the compliance of the prepared samples with the pathological evaluation,
the expression levels of the hormone receptors estrogen receptor (ER) and progesterone
receptor (PR) and human Her2 were analyzed, and the resulting signals were compared to
the pathological receptor status. A significant difference (p < 0.05, Mann–Whitney U test)
in the signal was found between samples pathologically classified as receptor-positive and
receptor-negative or the baseline group. Samples were categorized into three groups by
referencing the pathological receptor status. In ER/PR− Her2− samples (n = 18), low or
no expression of ER/PR or Her2 was observed. The analysis of ER/PR+ Her2− samples
(n = 45) showed the increased expression of ER and a slight increase in expression in PR but
not in Her2, whereas ER/PR+/− Her2+ samples (n = 20) displayed a significant increase
in Her2 expression compared to the other groups (see also Figure 1C,D; p < 0.05, Mann–
Whitney U test). We concluded that the DigiWest measurement of hormone receptors and
Her2 expression is comparable to the classical pathological assessment of receptor status in
the present cohort.

2.4. Immunohistochemical Staining

Immunohistochemical staining was performed on 5 µm formalin-fixed paraffin-embedded
sections. After de-paraffinization, epitope retrieval was performed at 95 ◦C for 20 min in the
appropriate antigen retrieval buffer. BLOXXALL-Blocking solution (Vector Laboratories,
Burlingame, CA, USA) was added for 10 min. After washing in PBS, the sections were
incubated with blocking buffer (PBS, 0.25% Triton-X-100, 10% goat serum, 4 drops/mL
streptavidin (Vector Laboratories)). Primary antibody diluted in dilution buffer (PBS,
1%BSA, Biotin (Vector Laboratories)) was added and incubated in a humidified chamber.
Rabbit (rb) anti-CD8α (#85336, clone D8A8Y, Cell Signaling Technology (CST), Leiden,
Netherlands, 1:100 dilution), rb anti-CD11c (#45581, clone D3V1E, CST, 1:400 dilution),
rb anti-CD68 (#76437, MultiMab, CST, 1:200 dilution) and rb anti-CD16 (ab24622, clone
EPR14336, Abcam, 1:400 dilution) antibodies were used for staining. The appropriate
biotin-conjugated secondary antibody (Jackson Immuno Research, Cambridge, UK) diluted
in PBS/1%BSA was added for 30 min. After subsequent washing in PBST, slides were incu-
bated with streptavidin-labeled horseradish peroxidase. Peroxidase activity was developed
with Novolink 3,3′-Diaminobenzidine (Leicabiosystems, Nußloch, Germany). Slides were
counterstained with Hematoxylin QS (Vector Laboratories).

Staining for PR, PPARγ and PPARγ–pS112 was performed using a DAKO Autostainer
Link 48 (Dako, Jena, Germany), and antigen retrieval was performed using a DAKO PT
Link (Dako) according to the manufacturer’s recommendations. For staining with mouse
anti-PR antibody (IR06861, clone PgR636, Dako), slides were incubated in FLEX TRS HIGH
pH buffer (K8004, Dako) at 85 ◦C for 20 min, followed by primary antibody incubation for
20 min and incubation with a mouse linker for 30 min. Subsequently, slides were incubated
with a universal secondary antibody (EnVision FLEX/HRP, K8000, Dako) for 15 min. For
staining with rb anti-PPARγ (#2435, clone C26H12, CST, dilution 1:100) and rb anti-PPARγ–
pS112 (orb5574, Biorbyt, dilution 1:400), slides were incubated in FLEX TRS LOW pH buffer
(K8005, Dako) at 85 ◦C for 20 min, followed by primary antibody incubation for 30 min and
universal secondary antibody incubation for 20 min. For detection, the EnVision detection
system (K500711-2, Dako) was used.

Whole-slide images were taken utilizing an Axio Scan Z.1 (Zeiss, Oberkochen, Germany).
For the evaluation of staining intensity, five representative sections of each slide were used,
and the mean intensity of DAB staining in positive pixel2 was calculated utilizing ZenBlue
software 3.1 (Zeiss).

2.5. Multiplex Protein Profiling Via DigiWest

DigiWest was performed as described previously [23]. Briefly, the NuPAGE sys-
tem (Life Technologies, Carlsbad, CA, USA) with a 4–12% Bis-Tris gel was used for gel
electrophoresis and Western blotting onto PVDF membranes. After washing with PBST,
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proteins were biotinylated by adding 50 µM NHS-PEG12-Biotin in PBST for 1 h to the
membrane. After washing in PBST, membranes were dried overnight. Each Western blot
lane was cut into 96 strips of 0.5 mm each. Strips of one Western blot lane were sorted into
a 96-well plate (Greiner Bio-One, Frickenhausen, Germany) according to their molecular
weights. Protein elution was performed using 10 µL of elution buffer (8 M Urea and 1%
Triton-X100 in 100 mM Tris-HCl pH 9.5). Neutravidin-coated MagPlex beads (Luminex,
Austin, TX, USA) of a distinct color ID were added to the proteins of a distinct molecu-
lar weight fraction, and coupling was performed overnight. Leftover binding sites were
blocked by adding 500 µM deactivated NHS-PEG12-Biotin for 1 h. To reconstruct the
original Western blot lane, the beads were pooled, for which the color IDs represent the
molecular weight fraction of the proteins.

For antibody incubation, 5 µL of the DigiWest Bead mixes were added to 50 µL of
assay buffer (Blocking Reagent for ELISA (Roche, Rotkreuz, Switzerland) supplemented
with 0.2% milk powder, 0.05% Tween-20 and 0.02% sodium azide) in a 96-well plate. Assay
buffer was discarded, and 30 µL of primary antibody diluted in assay buffer was added per
well. Primary antibodies were incubated overnight at 15 ◦C on a shaker. Subsequently, they
were washed twice with PBST. After washing, 30 µL of species-specific secondary antibody
diluted in assay buffer labeled with phycoerythrin was added, and incubation took place
for 1 h at 23 ◦C. Before the readout on a Luminex FlexMAP 3D instrument, the beads were
washed twice with PBST.

Analyses and peak integration were performed by utilizing the novel DigiWest-
Analyzer software package [24].

2.6. Statistical Analysis

Statistical comparison was performed by using the Mann–Whitney U test (GraphPad
Prism version 9.2.0, GraphPad Software, San Diego, CA, USA). A Spearman correlation
analysis, hierarchical cluster analysis, Chi-square test, Kaplan–Meier plot and log-rank test
were carried out utilizing the DigiWest-Evaluator software package [24]. p values of <0.05
were considered statistically significant if not stated differently.

2.7. Pathway Enrichment Analysis

Testing for significantly enriched pathways was performed with an over-representation
analysis using Fisher’s exact test with subsequent calculation of Storey’s Q-values for multi-
ple testing correction. The subsets of analytes that were used for this analysis were defined
by applying the Mann–Whitney U test to identify differentially expressed analytes between
the good-responder and poor-responder groups. The pathway enrichment pipeline was
carried out utilizing the DigiWest-Evaluator software package [24].

3. Results
3.1. Sample Quality Control and DigiWest Protein Expression Analysis

After the initial sample assessment (n = 159, Figure 1A,B), samples with a tumor
content >50% and a sufficient protein amount (n = 84), as well as control samples with 10%
or less tumor content (n = 10), were selected for extensive protein expression analysis. To
identify markers relevant for the differentiation of good and poor responders, we measured
150 proteins and protein variants using DigiWest, mainly focusing on functional signal
transduction, i.e., protein phosphorylation (covering 41 phospho-variants). This extensive
expression analysis encompassed cell-cycle-control, apoptosis, Jak/Stat, MAPK, Pi3K/Akt,
Wnt and autophagic signaling pathways, as well as general tumor and immune cell markers.
The DigiWest evaluation of hormone receptor and Her2 receptor expression complied with
the pathologically assessed receptor status, confirming the high quality of the selected
tumor samples (Figure 1C,D).

To examine the connection between cellular signaling and the responder status, PAN-
THER pathway enrichment analysis was conducted for all proteins differentially expressed
between good- and poor-responder samples [25,26]. The highest –log2 Q-value was found
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for the Jak/Stat signaling pathway (Figure 2A). Additionally, members of Jak/Stat signaling
and several immune cell markers displayed significant differences when comparing the pro-
tein expression of good- and poor-responder samples (Mann–Whitney U test, FDR limit 0.1,
Figure 2B). Taken together, these results indicate a connection between immune-cell-related
signaling pathway activity and patient treatment response.
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Figure 2. Responder status depended on differences in signal transduction. (A) –Log2 Q-Values of
PANTHER pathway analysis as bar graphs. (B) Protein expression of selected analytes displaying
significant differences in expression between responder groups. Data shown as box–whisker plots
for good-responder (n = 58), poor-responder (n = 21) and baseline (n = 10) subgroups. *** p < 0.001,
** p < 0.01. Mann–Whitney U test.

3.2. Patient Stratification Based on Immune Cell Infiltration Analysis by DigiWest

The degree and type of tumor infiltration by immune cells have become a novel and
promising stratification factor for evaluating patient outcomes. Therefore, we evaluated the
subset of measured immune cell markers in more detail. A correlation analysis of CD8α,
CD4, CD68, CD11c, CD16, CD56, CD25 and CD163 protein expression was performed.
CD8α, CD68, CD11c and CD16 displayed the highest correlation (Spearman’s r < 0.55,
Figure 3A, Table S1), suggesting the co-occurrence of represented immune cells.

Unsupervised hierarchical cluster linkage analysis of CD8α (a common marker for
cytotoxic T-cells), CD16 (a common marker for cytotoxic natural killer (NK) cells), CD11c
(a marker for dendritic cells) and CD68 (a general marker for macrophages) revealed
two distinct sample groups with different levels of immune marker expression (Euclidean
distance, complete linkage, Figure 3B,C). The group with higher immune cell marker
expression (n = 27) is referred to as “hot tumors”, whereas the group with lower immune
cell marker expression (n = 57) is referred to as “cold tumors”.

Subsequently, CD8α, CD68, CD11c and CD16 were immunohistochemically stained
on matched FFPE sections, when available (Figures 3D and S4). Concomitantly, a significant
difference in mean pixel intensity between hot and cold tumor samples categorized by
DigiWest was detected (Figure 3E; Mann–Whitney U test, p < 0.05).

When comparing various clinical variables, such as the type of surgery, age and, most
notably, the receptor status (ER, PR or Her2), we did not observe any difference between
hot and cold breast carcinomas. Importantly, the responder status was the only clinical
variable significantly enriched within the hot tumor group (Figure 3F; Table 1; p < 0.05,
chi-square test).
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man’s correlation) of immune cell marker expression in the analysis sample set. The highest cor-
relation was found for CD8α, CD11c, CD68 and CD16 (r > 0.55). n = 84. (B) Heatmap showing
protein expression levels of CD8α, CD11c, CD68 and CD16. Hierarchical clustering of analytes and
samples with Euclidean distance and complete linkage. Data are normalized to total protein, centered
on median of all samples and log2-transformed. (C) Representative Western blot mimics of CD8α,
CD11c, CD68 and CD16 (grayscale maps generated from DigiWest data). For graphical representation,
background-subtracted raw data from representative hot and cold samples were used. n = 3. The
uncropped blots are shown in Supplementary File S1. (D) Representative images of CD11c, CD8,
CD68 and CD16 immunohistochemical staining in hot and cold samples. Scale bar, 50 µm. (E) Mean
positive pixel values of 5 representative 10× sections per available FFPE sample for hot and cold
carcinomas classified by DigiWest. CD8α: cold n = 8, hot n = 17; CD68: cold n = 7, hot n = 13; CD16:
cold = 9, hot n = 14; CD11c: cold n = 10, hot n = 17. Mann–Whitney U test, ** p < 0.01; * p < 0.05.
(F) Distributions of responder, ER, PR and Her2 statuses as percentages, stratified by infiltration
status. Chi-square-test, * p < 0.05; ns indicates no significant difference. (G) Kaplan–Meier analyses of
event-free survival in patients stratified by infiltration status. p = 0.0298, log-rank test.
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Table 1. Patient and tumor characteristics of all samples included in the analysis sample set, stratified by responder and immune infiltration status, as indicated by
DigiWest. p: Chi-Square or Wilcoxon rank-sum test between the two groups.

Characteristic
Overall (n = 84) Poor Responder (n = 21) Good Responder (n = 58) Cold (n = 57) Hot (n = 27)

No. of Patients % No. of Patients % No. of Patients % p No. of Patients % No. of Patients % p

Follow-up, years 0.49 0.7
Median (range) 6.1 (0.2–9.9) 6.3 (0.2–9.9) 6.2 (0.3–9.6) 6.3 (0.2–9.9) 6.2 (0.9–9.4)

Age at surgery, years 0.13 0.4
Median (range) 61 (30–85) 66 (41–85) 58 (84–30) 60 (31–85) 62 (30–84)

Tumor size (cm) 0.15 0.3
<2 23 27.4 4 19.0 17 29.3 14 24.6 8 29.6
2–5 55 65.5 13 61.9 39 67.2 37 64.9 19 70.4
>5 6 7.1 4 19.0 2 3.4 6 10.5 0 0

Nodal status 0.4 0.3
Negative 47 56.0 10 47.6 35 60.34 29 50.9 18 66.7
Positive 36 42.9 11 52.4 22 37.93 27 47.4 9 33.3

Unknown 1 1.2 0 0.0 1 1.72 1 1.8 0 0

Hormone receptor status
ER-positive 24 28.6 15 71.4 42 72.4 0.84 44 77.2 16 59.3 0.2
ER-negative 60 71.4 6 28.6 16 27.6 13 22.8 11 40.7
PR-positive 38 45.2 12 57.1 33 56.9 0.81 34 59.6 12 44.4 0.3
PR-negative 46 54.8 9 42.9 25 43.1 23 40.4 15 55.6

HER2 status 0.83 0.5
Positive 20 23.8 4 19.0 14 24.1 11 19.3 8 29.6

Negative 63 75.0 17 81.0 43 74.1 45 78.9 18 66.7
Unknown 1 1.2 0 0.0 1 1.7 1 1.8 1 3.7

Type of surgery 0.27 0.4
BCS 47 56.0 12 57.1 34 58.6 34 59.6 13 48.1
SSM 1 1.2 1 4.8 0 0.0 1 1.8 0 0

Ablatio 16 19.0 3 14.3 10 17.2 5 8.8 5 18.5
Mastectomy 10 11.9 5 23.8 5 8.6 2 3.5 0 0

Quadrantectomy 2 2.4 0 0.0 1 1.7 10 17.5 5 18.5
Segmental resection 1 1.2 0 0.0 1 1.7 0 0 1 3.7

Mastopexy 5 6.0 0 0.0 5 8.6 3 5.3 2 7.4
NSM 1 1.2 0 0.0 1 1.7 1 1.8 0 0

Unknown 1 1.2 0 0.0 1 1.7 1 1.8 0 0

Responder status 0.02
Poor responder 21 25.0 - - - - 19 33.3 2 7
Good responder 58 69.0 - - - - 34 59.6 24 89

Unknown 5 6.0 4 7.0 1 4
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Tumor infiltration with immune cells is generally associated with patient outcomes and
event-free survival (EFS, time from definitive surgery until disease recurrence/metastases
or death from any cause). Therefore, we reviewed the difference in clinical outcomes after
primary surgery in the present cohort. The group classified as “hot tumors” indeed had a
significantly better outcome when evaluating 10-year EFS (Figure 3G; p = 0.03, log-rank
test). By comparing EFS between hot and cold tumor samples in subgroups categorized
through pathological hormone and Her2 receptor statuses, a significant difference was
found in ER+ and PR+ samples; yet, more strongly infiltrated samples displayed a tendency
toward better EFS (Figure S5). Univariate Cox regression confirmed that the immune cell
infiltration status was a prognostic factor of the clinical outcome (p = 0.04).

3.3. Focused Protein Expression Analysis of Hot and Cold Breast Carcinomas

Next, we performed a detailed analysis to identify differential protein expression in
breast carcinomas classified as hot or cold tumors. We allocated the samples to the hot or
cold tumor group by assessing immune cell markers as described above and comparing
protein expression levels. n = 30 analytes displayed a significant difference in expression
(Mann–Whitney U test; Benjamini–Hochberg FDR; corrected p < 0.05) and a log2 fold
change of at least +2/3 or−2/3 (Figure 4A,B,D; see Table 2 for all significantly differentially
expressed proteins; Figure S6).

Table 2. Protein analytes displaying significantly different expression between hot and cold breast
tumor samples (Mann–Whitney U test; Benjamini–Hochberg FDR; corrected p < 0.05).

Analyte Uncorrected p Value Corrected p Value log2 Fold

PR 0.002 0.007 −1.8

SRC-3—pT24 <0.001 0.001 −1

FoxP3 0.001 0.005 −1

E2F-4 0.003 0.011 −0.9

PPAR gamma—pS112 0.009 0.025 −0.9

VE-cadherin 0.005 0.015 −0.8

Cytokeratin 8/18 0.016 0.040 −0.6

Glycogen
Synthase—pS641 0.014 0.036 −0.6

PTEN 0.001 0.003 −0.6

PDK1 0.001 0.003 −0.6

PTEN—pS380 0.017 0.041 −0.6

mTOR 0.016 0.040 −0.5

Dvl2 0.016 0.040 −0.4

MAD2L1 0.001 0.005 0.3

E2F-1 0.006 0.018 0.3

p70 S6 kinase—pT389 0.008 0.024 0.3

Erk1/2 0.011 0.030 0.3

IKK alpha 0.013 0.035 0.3

p38 MAPK—pT180/Y182 0.008 0.023 0.4

PD-L1 0.002 0.007 0.4

A-Raf 0.002 0.007 0.4

TSG101 0.007 0.020 0.4

NF-kB p65—pS468 0.002 0.006 0.4

PD-L1 <0.001 0.001 0.5
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Table 2. Cont.

Analyte Uncorrected p Value Corrected p Value log2 Fold

NF-kB p105/p50 [50 kDa] 0.001 0.003 0.5

CD25 0.001 0.003 0.5

c-Raf—pS259 0.002 0.006 0.5

PI3-kinase p85 0.003 0.009 0.5

CD56 <0.001 0.001 0.5

p38 MAPK 0.001 0.003 0.5

GSK3 beta 0.001 0.003 0.5

RUNX2 <0.001 0.000 0.5

p53—pS37 0.001 0.003 0.5

STAT 5 alpha <0.001 0.002 0.5

MEK2 <0.001 0.001 0.6

Caspase 3 <0.001 0.001 0.6

Src—pY527 0.008 0.024 0.6

Caspase 9 [47 kDa] <0.001 <0.001 0.6

Histone H3 <0.001 <0.001 0.6

CDK2 0.002 0.007 0.6

Mcl-1 <0.001 0.001 0.7

CD163 0.001 0.005 0.7

Bax <0.001 <0.001 0.7

CDK1 <0.001 0.001 0.7

FoxC1 <0.001 <0.001 0.8

Src <0.001 0.001 0.8

c-Met <0.001 0.002 0.8

CD11c <0.001 <0.001 0.8

Caspase 9 [35 kDa] <0.001 <0.001 0.9

MOB1—pT35 0.001 0.003 0.9

Cyclin B1 <0.001 <0.001 0.9

FLOWER (C9orf7) 0.009 0.025 0.9

PD1 <0.001 <0.001 1

IDH1 <0.001 0.001 1

p53—pS20 <0.001 <0.001 1.2

CD68 <0.001 <0.001 1.2

STAT 1—pT701 <0.001 <0.001 1.4

STAT 4 <0.001 <0.001 1.6

Jak 2 <0.001 <0.001 1.6

CD16 <0.001 <0.001 1.6

STAT 1 <0.001 <0.001 1.7

Histone H3—pS10 0.001 0.004 1.7

Caspase 6 [15 kDa] <0.001 <0.001 1.9

CD8a <0.001 <0.001 2.5
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Figure 4. Immune-cell-infiltration-dependent changes in protein expression. (A) Volcano plot 
(−log10-corrected p-value versus log2 fold change) depicting differences in protein expression be-
tween hot (n = 27) and cold (n = 57) samples. Data from 150 proteins and protein variants were 
analyzed. Wilcoxon rank-sum test with Benjamini–Hochberg multiple testing correction; the hori-
zontal dashed line indicates a p-value of 0.05; the vertical dashed line indicates a log2 fold change 
of at least 2/3. Blue and red dots indicate analytes with at least a 2/3-fold difference in median ex-
pression and a p-value below 0.05. (B) Bar graphs of log2-transformed ratios calculated from the 
mean protein expression in samples with high and low infiltration. Analytes are sorted from the 
largest positive change to the largest negative change. (C) Western blot mimics of selected analytes 
from two representative patients (grayscale maps generated from DigiWest data). For graphical 
representation, background-subtracted raw data were used. The uncropped blots are shown in File 
S1. (D) Heatmap of analytes with significantly different expression between hot and cold samples 
displaying a fold change greater than 2/3. Hierarchical clustering of analytes using Euclidean dis-
tance and complete linkage. 

This data analysis revealed an increase in the expression levels of members of the 
Jak/Stat pathway in the hot tumor subgroup. STAT4, a known mediator of the IL-12 re-
sponse [27], as well as STAT1, known to be essential for interferon-α (IFN-α) and IFN-γ 
responses, and its active phospho-variant (Tyr701) [28] were significantly elevated in hot 
tumors (Figure 4C), indicating the activation of this pathway. Furthermore, Janus tyrosine 
kinase 2 (Jak2), an important cytokine receptor [29], displayed 3.0-fold elevated expres-
sion (log2 fold change of 1.6) in hot tumors. The programmed cell death 1 protein (PD-1), 
which is known to be an important regulator of immune cell activity [30], was also en-
riched in this group. Thus, higher immunosurveillance in the hot carcinoma group is char-
acterized by increased expression levels of additional immune cell markers and important 
members for immune-relevant signaling pathways, supporting the previously established 
tumor groups. 

Figure 4. Immune-cell-infiltration-dependent changes in protein expression. (A) Volcano plot
(−log10-corrected p-value versus log2 fold change) depicting differences in protein expression
between hot (n = 27) and cold (n = 57) samples. Data from 150 proteins and protein variants were
analyzed. Wilcoxon rank-sum test with Benjamini–Hochberg multiple testing correction; the hori-
zontal dashed line indicates a p-value of 0.05; the vertical dashed line indicates a log2 fold change
of at least 2/3. Blue and red dots indicate analytes with at least a 2/3-fold difference in median
expression and a p-value below 0.05. (B) Bar graphs of log2-transformed ratios calculated from the
mean protein expression in samples with high and low infiltration. Analytes are sorted from the
largest positive change to the largest negative change. (C) Western blot mimics of selected analytes
from two representative patients (grayscale maps generated from DigiWest data). For graphical
representation, background-subtracted raw data were used. The uncropped blots are shown in
Supplementary File S1. (D) Heatmap of analytes with significantly different expression between hot
and cold samples displaying a fold change greater than 2/3. Hierarchical clustering of analytes using
Euclidean distance and complete linkage.

This data analysis revealed an increase in the expression levels of members of the
Jak/Stat pathway in the hot tumor subgroup. STAT4, a known mediator of the IL-12
response [27], as well as STAT1, known to be essential for interferon-α (IFN-α) and IFN-γ
responses, and its active phospho-variant (Tyr701) [28] were significantly elevated in hot
tumors (Figure 4C), indicating the activation of this pathway. Furthermore, Janus tyrosine
kinase 2 (Jak2), an important cytokine receptor [29], displayed 3.0-fold elevated expression
(log2 fold change of 1.6) in hot tumors. The programmed cell death 1 protein (PD-1), which
is known to be an important regulator of immune cell activity [30], was also enriched in this
group. Thus, higher immunosurveillance in the hot carcinoma group is characterized by
increased expression levels of additional immune cell markers and important members for
immune-relevant signaling pathways, supporting the previously established tumor groups.
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The expression of CD56, used for the identification of NK cells [31], and IL-2Rα/CD25,
characteristic of regulatory T-cells (Tregs) [32], was also increased in this subgroup. In-
terestingly, the transcription factor Foxp3, which is a common marker for Tregs broadly
linked to immunosuppression and tumor protection [33,34], showed significantly increased
expression in the cold tumor subgroup (Figure 4C). Looking in detail, our data also showed
that CD163, a marker for M2-type tumor-associated macrophages (TAMs), displayed mod-
erately elevated expression levels (0.7-fold log2 increase) in the hot tumor group. While the
presence of M2-type macrophages has been linked to tumor progression [35], we interpret
this detectable increase as a general indication of higher immune cell activity in this group.

3.4. Hot Tumor Samples Show Increased Proliferative Activity and a More Competitive Phenotype

The expression levels of the proto-oncogene tyrosine kinase Src and the calcium chan-
nel flower homolog (FLOWER) were found to be increased in hot tumor samples. Src plays
a critical role in multiple cellular processes, including proliferation and invasion, and can
be a driver of uncontrolled cell growth [36]. The expression of FLOWER, a cellular fitness
sensor, has been associated with a competitive growth advantage of cancer cells [37,38].
In addition, the hepatocyte growth factor receptor (c-Met), which is instrumental in in-
creased cell growth and associated with aggressive cancer phenotypes [39,40], was highly
expressed in samples with higher immune cell infiltration. Additionally, the transcription
factor forkhead box C1 (FoxC1), which is linked to breast cancer invasiveness [41,42], was
highly expressed in samples assigned to the hot tumor subgroup. The expression of vas-
cular endothelial cadherin (VE-cadherin), which is important for the adhesion of cancer
cells to the endothelium [43], was decreased as compared to the cold tumor group. An
increase in vascular permeability by reducing the amount of VE-cadherin via endocytosis
has been observed in response to inflammatory activity; this mechanism facilitates immune
cell infiltration [44]. Thus, decreased levels of VE-cadherin may be indicative of generally
higher immune cell infiltration. Taken together, these results indicate a more competitive
phenotype in hot tumor samples.

Additionally, significant promotion of the cell cycle was found in the hot tumor
subgroup, as indicated by the higher expression of the important regulatory proteins Cyclin
B1 and cyclin-dependent kinase 1 (CDK1), responsible for G2/M-phase progression [45].
This was accompanied by an increase in the phosphorylation of the mitosis marker Histone
H3 at Serine 10 [46], as well as a significant decrease in the expression of the cell growth
repressor E2F-4 [47].

In conclusion, it is conceivable that the higher expression of proliferative and com-
petitive signaling proteins facilitates the immune recognition of breast cancer cells and
therefore leads to higher rates of immune cell infiltration.

3.5. Elevated Immune Cell Infiltration Induces Expression of Tumor-Suppressive Markers and
Apoptotic Activity

Our data also indicate that hot tumor samples show a significant increase in the
expression of several tumor suppressors. The phosphorylation of the tumor suppressor p53
at Serine 20, which enhances p53 activity, leading to cell-cycle arrest or apoptosis [48], was
detected, and a 1.2-fold increase in phosphorylation was observed. In addition, increased
expression of isocitrate-dehydrogenase 1 (IDH1), another suppressor of tumorigenesis [49],
and of phosphorylated and activated MOB1 (pT35), a member of the Hippo pathway [50],
was observed in hot tumor samples.

Consequently, this subgroup displayed an increase in apoptotic activity, indicated
by the enriched expression of several pro-apoptotic proteins. These include the initiator
cysteine aspartic acid protease 9 (caspase 9), serving as an amplifier of the apoptotic re-
sponse [51], and caspase 6 (one of the major executioner caspases). Both promote apoptosis
in its cleaved and active forms [52]. Crucially, we observed the upregulation of the cleaved
caspase 9 fragment at 35 kDa as well as the cleaved caspase 6 fragment at 15 kDa (Figure 4C),
but not of the full-length proteins in the hot tumor subgroup. Similarly, the expression of
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the pro-apoptotic factor Bax [53] was significantly enriched in samples with higher immune
infiltration. Interestingly, the anti-apoptotic Bcl-2 family member Mcl-1, which antagonizes
pro-apoptotic Bcl-2 proteins [54], showed a similar trend. These results suggest that higher
immune cell infiltration leads to more apoptotic and tumor-suppressive signaling.

3.6. Cold Breast Tumors Show Increased Expression of Immunosuppressive Factors

Our data revealed that the luminal tumor co-marker progesterone receptor (PR), which
is linked to an immunosuppressive tumor microenvironment [55,56], displayed a decrease
in expression at the highest significance as compared to the cold subgroup (Figure 4B,C).
Another contemplated immunomodulation factor is the PPARγ/RXRα pathway, which
regulates cell proliferation and inflammation [57]. It has been implied that the expression
of peroxisome proliferator-activated receptor γ (PPARγ), a key modulator of this pathway,
correlates with suppressed immunosurveillance [58–60]. Interestingly, a positive correlation
was found between phosphorylated PPARγ (pS112) and PR (Figure 5B, Pearson’s r = 0.45,
p < 0.0001), indicating the co-expression of both factors by cold carcinomas.
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(A) Representative images of CD8, PR, PPARγ-pS112 and PPARγ immunohistochemical staining
in hot and cold carcinomas. Scale bar, 20 µm. (B) Scatter plot of log2-transformed DigiWest signal
for PPARγ-pS112 and PR. Pearson correlation, r = 0.45, p < 0.0001. (C) Box plots showing protein
expression for CD8α, PR, PPARγ-pS112 and PPARγ in cold (n = 57), hot (n = 27) and baseline (n = 10)
samples. Mann–Whitney U test, ** p < 0.01, **** p < 0.0001; ns indicates no significant difference.
(D) Distribution of hot and cold statuses in carcinoma samples with PPARγ–pS112 expression higher
or lower than median expression. n = 42. Q0.5 = 7004 AFI. Fisher’s exact test, p = 0.0046.

Additionally, our results show that the expression of the phosphorylated variant of
PPARγ (pS112), but not the total protein variant, was significantly upregulated in cold
tumor samples, whereas CD8 expression displayed the opposite trend (Figures 4C and 5C).
Immunohistochemical staining of representative samples verified the predominant ex-
pression of PPARγ (pS112) and PR by cancer cells in cold tumor samples (Figure 5A).
Concomitantly, the percentage of samples classified as cold tumors was found to be sig-
nificantly enriched in samples with an elevated (greater than the median) PPARγ-pS112
signal (Figure 5D, Fisher’s exact test, p = 0.0046). Hence, our data suggest that PPARγ
phosphorylation might be involved in a mechanism governing immune cell repulsion in
breast cancer.
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4. Discussion

Mutational changes in cellular signaling that trigger cell growth are key events in the
transformation process that lead to the formation of tumor cells. The targeted analysis of
central signaling pathways helps to track the effects of such mutations and can be used
to functionally classify tumors by subtype. The DigiWest methodology employed here is
capable of achieving this on a much broader scale compared to classical immunohistological
approaches, and the knowledge generated by characterizing the activity of central signaling
pathways can be utilized to identify novel targets for therapeutic intervention [61].

Here, we used a well-characterized collection of 160 archived breast cancer tissues for
targeted protein profiling and aimed to concomitantly detect (i) signaling proteins and their
activated variants and (ii) immune cell markers that define the tumor microenvironment.
As a result, we were able to screen for aberrations in intra- and extracellular communication
and to assign an immune status to each individual tumor tissue. This cohort was chosen
since patient-specific follow-up data for all samples were available and could be integrated
into the analysis of the correlation between protein expression levels, immune status and
tumor reoccurrence. Yet, a detailed analysis of the prepared tissue sections revealed that
the tumor content in a significant fraction of the archived tissues was lower than 50%
(75/159, corresponding to 47%). Since only samples with more than 50% tumor content
were analyzed, the number of patient samples was reduced to 84. Therefore, some care has
to be taken when interpreting the obtained results.

Immune cell infiltration of breast cancer tissue and stroma is linked to a better prog-
nosis [6]. On the contrary, non-immune-infiltrated tumors show no or a low response to
current immune therapy [17]. To survey for the presence of infiltrating immune cells in
cancer tissue, we measured central immune cell markers (CD8a, CD11c, CD16 and CD68)
simultaneously and categorized the present cohort into highly infiltrated (“hot”) tumor and
lowly infiltrated (“cold”) tumor samples. The assessment of patient outcome data revealed
a significant difference in event-free survival in favor of the highly immune-cell-infiltrated
group. Significantly, higher amounts of PD-1 and additional immune cell markers were
detected in these samples, indicating higher immunosurveillance. Conversely, the specific
Treg cell marker FoxP3, necessary for immune-suppressive activity and immunological
tolerance [62–64], was found to be enriched in cold breast tumors. This indicates that in this
cohort, higher expression of FoxP3+ cells leads to the retention of immune cell infiltration
within the tumor tissue and, consequently, poorer patient outcomes.

At the same time, we show that highly immune-cell-infiltrated tumor samples dis-
play elevated immunological signaling activity, as was indicated by the upregulation of
regulatory proteins Jak2, STAT4 and STAT1, including its activating phosphorylation at
Tyrosine 701. These crucial members of the Jak/Stat pathway are important for the cytokine
response and constitute key regulators of the immune system [65,66].

In a recent study, high apoptotic activity in breast cancer tissue was shown to be
associated with the high infiltration of immune cells. Based on mRNA expression data, the
authors hypothesized that increased apoptosis is associated with immune cell killing [67].
Here, we report that in hot breast cancer tissue, central apoptotic marker proteins such as
the cleaved version of the initiator caspase 9, the cleaved effector caspase 6 and Bax were up-
regulated. Increased levels of p53 phosphorylated at Ser20 and Histone H3 phosphorylated
at Ser10 in these tumors indicate the likely involvement of DNA damage [48].

Phosphorylated PPARγ (pS112) was present in higher amounts in samples with
lower immune cell infiltration. Besides its common function in adipogenesis and lipid
metabolism [68], PPARv has been linked to worse outcomes in breast cancer patients [69,70],
as well as the evasion of immunosurveillance and the impairment of CD8 T-cell infiltration
in muscle-invasive bladder cancer [71]. Our data suggest that higher PPARγ phospho-
rylation impairs immune cell infiltration in breast cancer, ultimately worsening patient
outcomes. Therefore, we hypothesize that PPARγ phosphorylation may be involved in an
immunosurveillance evasion mechanism employed by breast cancer cells. Hence, PPARγ
and its phosphorylated form (pS112) may serve as potential markers for patient stratifica-
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tion or as a target for therapeutic intervention. However, additional research is required to
elucidate this question further.

The application of DigiWest technology enabled us to review the receptor status,
immune cell infiltration and protein expression of approx. 150 proteins and protein variants
in parallel from minimal amounts of fresh-frozen breast cancer biopsies, demonstrating the
unique potential held by this approach.

5. Conclusions

In the present study, we investigated cellular signaling and immune cell infiltration in
a cohort of 84 breast patients not under a neoadjuvant treatment scheme. Tumor resections
were analyzed for the expression of cellular signaling molecules and immune cell markers
by semi-quantitatively measuring more than 150 proteins employing DigiWest technology.
Based on the obtained expression profiles, the primary tumor tissues were categorized
into immunological cold or hot tissues (presence of CD8α, CD11c, CD16 and CD68); the
impact of immune cell infiltration on event-free survival was established. This differential
expression analysis showed that hot tumor samples displayed higher levels of immuno-
logical signaling as well as high apoptotic activity. Elevated immunological signaling was
indicated by the activation of Jak/STAT signaling, which was seen at different points of the
signaling cascade. Notably, the phosphorylation of PPARγ at Serine 112 was found to be
predominant in immunologically cold tumors, indicating its involvement in an immune
surveillance evasion mechanism in breast cancer.

These distinct differences in the tumor microenvironment and in intracellular signaling
in the tumor cells point to the modulation of intracellular signaling only in tumors that
do not show invasion by immune cells. Further knowledge on the underlying mechanism
will be useful for identifying patients that show a high probability of relapse, ultimately
improving diagnosis, treatment and patient outcomes.
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