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Abstract: The effect of multiwall carbon nanotubes (MWCNTs) and magnesium oxide (MgO) on the
thermal conductivity of MWCNTs and MgO-reinforced silicone rubber was studied. The increment
of thermal conductivity was found to be linear with respect to increased loading of MgO. In order to
improve the thermal transportation of phonons 0.3 wt % and 0.5 wt % of MWCNTs were added as
filler to MgO-reinforced silicone rubber. The MWCNTs were functionalized by hydrogen peroxide
(H2O2) to activate organic groups onto the surface of MWCNTs. These functional groups improved
the compatibility and adhesion and act as bridging agents between MWCNTs and silicone elastomer,
resulting in the formation of active conductive pathways between MgO and MWCNTs in the silicone
elastomer. The surface functionalization was confirmed with XRD and FTIR spectroscopy. Raman
spectroscopy confirms the pristine structure of MWCNTs after oxidation with H2O2. The thermal
conductivity is improved to 1 W/m·K with the addition of 20 vol% with 0.5 wt % of MWCNTs, which
is an ~8-fold increment in comparison to neat elastomer. Improved thermal conductive properties
of MgO-MWCNTs elastomer composite will be a potential replacement for conventional thermal
interface materials.

Keywords: thermal conductivity; silicone elastomer; multi-wall carbon nanotubes

1. Introduction

Due to their light weight, high dimensional accuracy, and adequate properties, poly-
meric materials have gained significant importance in recent times. Use of polymeric
materials has exponentially increased and polymers can extensively be used in fabrication
of composite materials. Due to their promising insulating qualities, good thermal stability,
high strength, sufficient mechanical properties, biocompatibility, and simplicity in fabrica-
tion, elastomers are the second most widely used thermoset polymers after polyester [1–9].
Besides these properties, there are few properties like thermal conductivity that are quite
low and do not meet the requirements of many applications. It is important to address these
issues to deal with the demand for thermal management applications. The miniaturizing
in electronic components makes the heat dissipation problem more significant and drastic.
A fractional rise in temperature has consequent effects on the reliability and lifespan of
electronic components [10,11]. Thermal interface materials are employed to occupy air
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gaps between the assembly when solid parts are joined together. Increase in transportation
of phonons by reducing the contact resistance. The reliability and performance of modern
electronic devices greatly depend on high thermal conductivity of the thermal interface
materials [12].

Polymer nanocomposites are alternatives to conventional thermal interface materials.
Thermal grease is often used for thermal interface materials, but it is associated with the
‘pump-out’ problem; furthermore, the thickness constraint in phase change materials limits
its use for heat dissipation applications. Recently, polymer-based thermally conductive
composites are typically made by directly combining a polymer matrix with extremely
thermally conductive fillers such as carbon black [13], graphene [14,15], boron niride [16],
and alumina [17]; however, the random distribution of fillers in bulk composites typically
results in high interfacial thermal resistance and limits the through-plane thermal con-
ductivity in between 1–5 Wm−1K−1. Modification of filler is one of the probable ways
to augment the distribution and interconnective networks among matrix and fillers, thus
improving thermal attributes of the composites. The resistance in phonon transportation
is curtailed by the formation of strong interfacial connection with filler and matrix by
employing functionalization of filler or matrix. Common inorganic fillers—such as alu-
mina, aluminum nitride, and boron nitride—are being employed as thermal conductors for
incorporation in polymeric materials [18–20].

Magnesium oxide (MgO) is another filler with attractive characteristics. Bulk thermal
conductivity of MgO is far better in comparison to other inorganic fillers. MgO is also
widely used in polymer molding as a dielectric powder filler. MgO also possesses a low
hardness value compared to other inorganic fillers. The deformation behavior of MgO is
similar to metals because of its low hardness [21]. The use of MgO as an effective filler
for enhancement of thermal properties of the high viscous elastomers is not extensively
studied. Thermal conductivity of MgO/polymer composites has focused on matrices with
fewer viscosities like epoxy [22]. However, a higher quantity of MgO filler is essential to
enhance thermal properties, since this higher quantity deteriorates mechanical properties.
Furthermore, it leads towards the non-homogeneous dispersion of filler which causes
interstitial gaps between filler matrix which is an important reason for low conductivity
even with a high proportion of MgO filler [23]. As a result, thermally conductive films with
relatively low filler loading are preferred. A sufficient thermal conductivity value can even
be achieved with low filler loading with good thermal contact. Good interference between
particle and matrix decreases the thermal resistance and increases heat dissipation [24].

One possible route to escalate the interference in the filler and matrix is by the addition
of functional moieties that generate an effective thermal conductive path between the
filler particles and the polymer matrix [2,25,26]. Surface modification helps to generate
good interfacial bonds and create an effective thermal bridge for the transportation of
phonons [27]. Recently, many reports published that the importance of surface modification
is evident in the enhancement of thermal conductivity [2,28–31]. The high aspect ratio
and good interface through surface modification are usually key to improve thermal
conductivity. Previous reports claim the use of hybrid fillers are effective to enhance
thermal conductivity of the composites. [32]. CNTs are intensively used to improve the
thermal properties of the composites. The surface modification of CNT with COOH is
reported high thermal conductivity [33]. The functional moieties enhance the phonon
transportation and thermal conductivity of carbon nanotube fluid as heat transmission
channel. The functionalization of CNTs improve the dispersion of the filler in the polymer
matrix that counter the agglomeration problem and provide highly thermal conductive
path [34]. Another report suggested that the surface modification of graphene with O-
phenylenediamine (OPD) aids in augmenting the thermal conductivity of the composite.
An increment of 13-fold in in-plane and 4-fold in through-plane thermal conductivity
was recorded after the functionalization of graphene [35]. However, the use of a single
thermal conductive filler is not that effective and requires a large proportion to achieve
adequate thermal conductive characteristics. The use of multi-structured hybrid filler
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is advantageous to utilize the properties of various fillers which are not possible in the
case of single thermal conductive filler [36]. Hetero-structured fillers have highly thermal
conductive networks that provide resistance-free transportation of phonons and synergistic
improvement in thermal properties [37,38].

Herein, we report a novel approach by incorporating MgO and MWCNT in the
matrix of silicon rubber (KE-12). The surface oxidation of MWCNT incorporates oxygen-
containing functional groups onto the graphitic surface of CNTs enhances interfacial
adhesion as well as establishing a bond with MgO. Furthermore, the high aspect ratio
of CNTs helps in generation efficient thermal conductive networks in hybrid structure
that decreases the Kapitza resistance and improves pho-non transportation, resulting in
improved thermal conductivity of the composite that can be used as potential thermal
interface materials (TIMs).

2. Experimental Methods
2.1. Materials

MWCNTs of high purity were acquired from NanoTech Co. Ltd., Jeonju, South Korea
with external diameters of 8–15 nm, inside diameters of 3–5 nm, and lengths of 10–50 µm.
Sodium hydroxide (NaOH) and magnesium chloride (MgCl2·6H2O) were bought from
Samchun chemicals Co. Ltd., Jeonju, South Korea. Urea and Ethanol were obtained from
DaeJung Chemicals, Jeonju, South Korea. 30% H2O2 was purchased from Junsei Chemical
Co. Ltd., Japan. The RTV silicon rubber KE-12 and its hardener were obtained from
Shin-Etsu, Japan. All chemical reagents used in this experiment were of analytical grade
and used as received.

2.2. Synthesis of MgO

Synthesis of nanoscale MgO was done by mixing 8 g of NaOH with 25 mL of deionized
water. Besides, MgCl2 solution of (4.0 M) was further added within span of 10 min.
Later prepared mixture of solution was stirred using a mechanical stirrer at 60 ◦C for 1 h.
Obtained solution was subsequently aged for 10 h at 60 ◦C. Synthesized percipitates of
MgO were rinsed in ethanol and vacuum dried at 60 ◦C, with subsequent calcination at
150 ◦C for 2 h.

2.3. Preparation of H2O2 Surface Modified MWCNTs

0.5 g in 30% H2O2 of 10 mL MWCNTs were oxidized through stirring for 24 h at
the temperature of 65 ◦C as reported [39]. The oxidized MWCNTs were washed with
de-ionized water, using filter paper of 0.45 µm Millipore membrane. The filtrate was dried
overnight at the temperature of 110 ◦C, later vacuum-dried for 6 h at the temperature of
150 ◦C to expel adsorbed H2O2 and coupled peroxide functional groups from the surface
of the MWCNTs.

2.4. Fabrication of Filler/Silicone Elastomer Composites

The same procedure was followed in the fabrication of filler/silicone elastomer com-
posites of MgO and MgO-MWCNTS composites. In MgO/silicone elastomer composites,
the filler loading into the elastomer matrix varied from 10 to 40 vol% while in MgO-
MWCNTs hybrid/silicone elastomer composite, the MgO loading was maintained at
20 vol% and the amount MWCNTs added were 0.3 and 0.5 vol% to each loading of MgO.
In a typical procedure, after the contents were measured in the required amount, they were
mixed with the measured amount of silicone resins using a high-speed Thinky mixer at
the speed of 1500 RPM for 15 min. Later, hardener was added to the mixture, which was
subsequently casted into furnished molds, followed by curing at ambient temperature
for 48 h.
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3. Results and Discussion
3.1. Macroscopic and Structural Evolution MgO Nanoparticles

The surface topography of the prepared Mg (OH)2 and MgO nanoparticles was done
through FE-SEM and TEM as shown in Figure 1a–d. It is evident from SEM and TEM that
the particle size of Mg (OH)2 and MgO nanoparticles lies in the range of 50–70 nm before
and after calcination as shown in Figure 1. It is observed from the surface morphology of
MgO nanoparticles that the basic hexagonal crystalline template of MgO is almost retained
after calcination. This insignificant contrast demonstrates that calcination has little effect
on the morphology of the nanoparticles. The agglomeration in the particles is due to the
presence of the surfactant that was already reported elsewhere [40].

Figure 1. FE-SEM images of (a) Mg(OH)2 and (b) MgO; HR-TEM images of urea assisted (planet-like)
(c) Mg(OH)2 and (d) MgO, morphology of MWCNTs; FESEM image of (e) controlled MWCNTs;
(f) H2O2 treated MWCNTs, FE-SEM images of cross-section of MgO-MWCNT/silicone resins com-
posites; (g) 20 vol%–0.5 vol% H2O2-MWCNTs MWCNTs; (h) 30 vol%–0.5 vol% H2O2-MWCNTs.
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The crystallinity of Mg(OH)2 and MgO was characterized using the XRD spectroscopy
as in Figure 2. In Figure 2a, the diffraction lines confirm with the JCPDS card analyzer
for Mg(OH)2. The XRD spectra of MgO calcinied at 450 ◦C. The presence of peaks at 2θ
values of 36.9◦, 42.9◦, 62.3◦, and 74.6◦ and 78.6◦ can be indexed to the (1 1 1), (2 0 0), (2 2 0),
(3 1 1), and (2 2 2) planes of the face-centered cubic (FCC) structured MgO nanoparticle.
The absence of other peaks in the XRD spectra confirms the high crystallinity and purity of
MgO nanoparticles (JCPDS file no. 98-17-0905) as shown in (Figure 2b). Average crystallite
size was obtained in range of 60 nm, that was calculated using Scherrer’s Equation.

D =
K λ

β cos Θ

• D = Mean size of the ordered (crystalline) domains;
• K = Constant;
• λ = X-ray wavelength;
• β = Line broadening at half the maximum intensity (FWHM);
• Θ = Peak position

Figure 2. XRD patterns of (a) Mg(OH)2 and (b) MgO.

3.2. Surface Treatment of Multi-Walled Carbon Nanotubes (MWCNTs)

The surface modification of MWCNT was studied by FTIR spectroscopy. In the
pristine MWCNTs spectrum (Figure 3a), pristine MWCNT samples show strong peak
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around 1632 cm−1 attributed to C=C stretching mode. The peak at 1037 cm−1 is due to
stretching mode of C-O (COH). The peak at 2919 cm−1 is due to the asymmetric C–Hn and
symmetric C–Hn stretching mode. The peak at around 3446 cm−1 corresponding to OH
peak is related to absorbed water molecules on the carbon in the MWCNTs. The results
are in good agreement with previously reported literature [41]. H2O2-treated MWCNTs
at 12 h showed the same effect on band peaks as the pristine MWCNTs showed and no
oxidation was observed within 12 h of treatment (Figure 3b). However, as the oxidation
time is increased, the spectrum (Figure 3c,d) of the oxidized sample shows, the –COOH,
–C=O, and –OH band peaks prominently declined. A new peak at 1727 cm−1 is appeared
due to C=O stretching frequency, that shows the presence of carboxylic group, formed
during the oxidation of MWCNTs. After 48 h, the intensity of C=O implies more number
of carboxylic groups attached to MWCNTs due to further oxidation. Furthermore, two
new peaks are also observed at around 2936 and 2847 cm−1 belonging to CH2 group on
the surface of H2O2-MWCNT-48 CH shows the higher stability of oxidized MWCNTs in
comparison to pristine MWCNTs [42].

Figure 3. FTIR spectra of MWCNTs and H2O2-treated MWCNTs. (a) Pristine MWCNTs; (b) H2O2-
MWCNTs for 12 h; (c) H2O2-MWCNTs for 24 h; and (d) H2O2-MWCNTs for 48 h.

The Raman spectrum was observed from the MWCNTs (CO-based) at ambient tem-
perature as in Figure 4. Raman spectra exhibits two Raman peaks, namely G(graphite)-
and D(disorder)- the band of MWCNTs. The peak at around 1580 cm−1 because of the
Raman-active E2g mode analogous to that of graphite [43,44], and the D-peak is because of
the breathing modes of the sp2 atoms, providing the defects at the first Brillouin zone [45].
The IG/ID ratio of the neat MWCNT specimen was 0.86. It is a common indicator of a
significant number of structural flaws in MWCNT graphitic structure. Such a structure
provides many active sites for more modification as reported [39]. It can also be observed
from (Figure 4a) that the vibrational properties of the MWCNT altered the IG/ID ratio to
0.85, 0.82, and 0.80 for 12-, 24-, and 48-h treatment with H2O2 respectively. This IG/ID ratio
change in the oxidized material has been reported before. It has been associated with the
inception of latest defects, and geometrical alterations in MWCNT [39,46–48]. More similar
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observations include the D-band region upshifts in the oxidized sample. The increment of
the D peak can be observed which confirms the attachment of functional moieties on the
surface of MWCNTs Figure 4b.

Figure 4. (a) Raman spectra of pristine MWCNTs and H2O2 treated MWCNTs, and (b) magnified spectra of D peak.

FESEM images of pristine MWCNTs and the oxidized MWCNTs (24 h) as shown in
Figure 1e,f. The graphitic structure of pristine MWCNTs was very smooth and highly
visible in comparisson to oxidized MWCNTs (Figure 1e). After oxidation, the MWCNTs
bundles appear exfoliated and twisted, it is due to erosion during the oxidation of MWC-
NTs with H2O2 as shown in (Figure 1f). The oxidizing agent causes extreme etching on
graphitic surface of MWCNTs. This observation rhymes well with the afore-mentioned
outcomes of Raman spectroscopy are based on preferential oxidation at defect sites and dis-
integration of nanotubes. Nevertheless, the wall structures of the MWCNTs were partially
eroded by oxidation within 24 h; however, rest of the fragments possessed better graphitic
structure [49].

3.3. Thermal Conductivity of MgO-Filled Silicone Rubber

Thermal conductivity of elastomer composite was carried out with advance laser
flash operating system (NETZSCH LFA 457 MicroFlash Jeonju, South Korea). Equipped
with an infrared detector on top LFA is a contact-less transient thermal analysis tech-
nique, extensively utilized for a broad variety of materials ranging between 0.01 mm2/s
to 1000 mm2/s. It works with combination of latest technology with state-of-the-art data
analyzing methods, that are completely automated techniques where optimal signal-to-
noise ratio is achieved. Both finite pulse effect and heat loss are taken into consideration for
processing of acquired data in this technique [50]. This LFA technique has a clear advantage
over hot disk method and transient plane-source (TPS) thermal conductivity analyzing
techniques. Having discrepancies between heat transfer process and data analysis used
by idealized models, the hot disk and transient plane-source TPS methods suffer consid-
erable systematic flaws when applied to lower thermal conductivity/thermal insulation
materials [51]. Thermal conductivity is shown in Figure 5 for different loading of MgO
and MgO-MWCNT into silicone elastomer. The thermal conductivity of pristine silicone
elastomer is 0.2 W/m·K whereas, that of MgO/silicone elastomer composites increases
along MgO content loading. The highest total MgO filler content considered in this work
was 30 vol% because higher percentages are known to compromise rheological control [22].
The MgO-incorporated silicone rubber exhibits greater thermal conductivity due to greater
intrinsic thermal conductivity (Figure 5a). Although, at a lower concentration, the stuffed
silicone rubber demonstrates relatively low thermal conductivity as compared to what is
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expected, probably due to the failure of the nanoparticles to develop perfect thermally con-
ductive pathways lower than 10 vol% loading. However, the nanoparticles, the superfine
size, and greater surface energy enable them to become hard to scatter uniformly in silicone
rubber. Consequently, most of the nanoparticles get disintegrated through silicon rubber
and are unable to produce conductive pathways in the matrix. At 20 vol% concentration or
above, nanoparticles started to develop a dense structure inside the matrix, that is more
firm and thicker that provides heat conductive pathways due to huge volume proportion
of nanoparticles at identical mass fraction. It can be seen, from FE-SEM micrographs, that
the nano-sized MgO particles are not distributed uniformly in the elastomer matrix as
in Figure 1g,h. However, with an increase in filler loading, MgO nanoparticles contact
more. The condition of filler diffusion is crucial, filler units must be cohesive to develop
a continuous heat conduction path and increase the thermal properties positively [52].
However, the composite shows greater thermal conductivity. The thermal conductivity
is enhanced 40-fold (1.032 W/m·K) in comparison to neat elastomer with the addition of
30 vol% MgO loading filled with 0.5 vol% H2O2-MWCNTs (Figure 5b). The application
of MWCNTs inter-connective paths between MgO and the matrix. FESEM analysis of
the composites displayed a non-homogenous distribution at higher loading of MWCNTs
Figure 1g,h. On the other hand, the existence of interfacial associations among the nan-
otubes, MgO, and the matrix is important in creating thermal conductive pathways, is
not obvious. The higher increase of thermal conductivity of H2O2-MWCNTs compared to
pristine MWCNTs is due to the functionalization that provides activation of organic groups
at the MWCNTs surface [53]. In the course of processing, carbon nanotubes were properly
distributed in the composite with low MgO percentage loading—i.e., 10 and 20 vol%—but
re-agglomerated after incorporation with higher loading thus being entrapped between
elastomer molecules. Subsequently, a separation between the CNTs and MgO ensues due to
inhomogeneous mixing. This separation inhibits heat flow from particle to particle, leading
to the rapid decrease of thermal conductivity at filler loading with 30 vol% MgO [54]. The
thermal conductivity of 20 vol% hybrid composite with 0.5 vol% H2O2-MWCNTs content
is 1.006 W/m·K which is a 44% increase paralleled to the 31% increase in MgO/pristine
MWCNTs (0.918 W/m·K). Composites with H2O2 treated MWCNTs show higher thermal
conductivity than those with pristine MWCNTs because the MWCNT surfaces are altered;
creating good cohesion between filler and silicone resins matrix in composites will be
signified (Figure 5b). Better adhesion between filler and polymer matrix can decrease the
thermal blockade of the interface of filler and matrix [54].

Figure 5. (a) Thermal conductivity of MgO/P-MWCNTs and MgO/H2O2-MWCNTs/silicone elastomer composites;
(b) Enhancement in thermal conductivity as a function of filler content.
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4. Conclusions

This work presents a simple method to increase the thermal conductivity of silicone
elastomer by using a low amount of high-aspect-ratio MWCNTs in MgO-filled silicone
rubber in an attempt to find a suitable and convenient method for industrial application.
The thermal conductivity is linearly increased with the addition of MgO nanoparticles.
For improving the heat transfer in composites between the matrix and fillers, the high-
aspect-ratio MWCNTs were incorporated in the elastomer matrix after functionalization
with H2O2. Functionalized MWCNTs were used as source material before their incorpora-
tion into the MgO polymer matrix. The functional group residues suggest the effects of
particle dispersion on the nanotubes in the matrix at various MgO loading. The thermal
conductivity is enhanced 40-fold (1.032 W/m·K) in comparison to neat elastomer with the
addition of 30 vol% MgO loading filled with 0.5 vol% H2O2-MWCNTs. The developed
composite with low filler content will be appropriate for heat dissipation applications.
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