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Maf1 is a nutrient- and stress-sensitive

global repressor of transcription by RNA

polymerase (pol) III [1,2]. Its primary

function in this context is to limit the

synthesis of highly abundant 5S rRNA and

tRNAs in response to nutrient availability

and cellular stress [3]. Thus, Maf1 ensures

the efficient use of metabolic resources

while balancing the need for protein

synthetic components during cell growth,

proliferation, differentiation, and quies-

cence. Less abundant products of pol III

transcription (such as the spliceosomal U6

snRNA and the 7SL RNA component of

signal recognition particle) are also re-

pressed by Maf1, since its mechanism of

action involves direct inhibitory interac-

tions with proteins required for transcrip-

tion by all pol III genes (i.e., the TFIIB-

related initiation factors Brf1 or Brf2 and

the polymerase) [4–7]. In the previous

issue of PLOS Genetics, Palian et al.

describe new insights into the regulation

of Maf1 and its function in mammalian

systems [8].

Studies on Maf1 regulation up until

now have focused on posttranslational

mechanisms, notably phosphorylation,

which controls Maf1 localization (in yeast)

and its interaction with the polymerase (in

yeast and humans) [2,3]. The new work

from Palian and colleagues shows that the

steady-state level of the Maf1 protein is

also regulated. This is achieved through

PI3K/AKT/FoxO1 signaling (Fig. 1). To

reach this conclusion, tissue-specific PTEN

knockout mice and a human PTEN null

mutant cell line with inducible PTEN

expression were used to perturb PI3K/

AKT/FoxO1 signaling and show that

Maf1 expression can be varied in both

directions. Other manipulations of signal-

ing through the pathway yielded consistent

results. Importantly, mouse embryo fibro-

blasts in which the AKT substrate FoxO1

was knocked down or constitutively active

showed reduced and elevated Maf1 pro-

tein levels, respectively, with correspond-

ing reciprocal effects on the levels of

precursor tRNAs (reflecting pol III tran-

scription). Finally, the physiological rele-

vance of the regulation was demonstrated

by feeding mice a diet high in carbohy-

drates, which activates the pathway, and

finding that Maf1 expression was de-

creased. One intriguing aspect of the work

is that changes in PI3K/AKT/FoxO1

signaling affected Maf1 protein levels but

had little influence on Maf1 mRNA.

Additional studies are needed to determine

how FoxO1, an insulin-sensitive DNA-

binding transcription factor, alters the

synthesis or stability of the Maf1 protein.

In addition to its regulation by nutrients

and stress, pol III transcription is inhibited

by tumor suppressors, increased by onco-

genic activation and cell transformation,

regulated during the cell cycle, and

targeted by viruses and other pathogens

[9–13]. The extent to which Maf1 is

involved in these transcriptional changes

is either not well understood or has not

been examined. However, the potential

for Maf1 to impact cancer-related pheno-

types is suggested by several observations

including (i) its control by conserved

oncogenic signaling pathways, e.g., the

Ras/PKA pathway as demonstrated in

yeast and the TOR pathway as shown in

yeast, flies and mammalian cells [3,14–

16]; (ii) the requirement for elevated levels

of pol III transcripts for Myc-driven cell

transformation and tumorigenesis [17]; (iii)

the increased growth of cells with elevated

levels of initiator methionine tRNA

[16,18,19]; and (iv) the ability of Maf1

overexpression to suppress anchorage-in-

dependent growth of PTEN-deficient hu-

man glioblastoma cells [20]. Expanding on

this, Palian et al., report that Maf1 levels

are reduced in PTEN-negative human

prostate and liver cancers compared to

matched normal tissue. Moreover, they

show that hepatoma cells engineered to

overexpress Maf1 exhibit less anchorage-

independent growth and delayed onset of

tumorigenesis when the cells are injected

into mice (Fig. 1). These new experiments

add to the growing importance of the pol

III system in cancer biology and highlight

its potential as a target for cancer

therapeutics. One surprising aspect of

these experiments is the low level of

Maf1 overexpression that was apparently

needed to affect a change in function. In

future studies, it will be interesting to

benchmark the phenotypic changes

against specific cellular quantities of Maf1.

Beyond its role in the pol III system,

previous work by Johnson et al. [20] found

that knockdown and overexpression of

Maf1 in human cell lines affected pol II

transcription of the TBP and Egr1 genes.

Maf1 is not known to be a DNA-binding

protein. However, its effect on transcrip-

tion at the human TBP promoter is

thought to be direct since it was delimited

to a promoter proximal region that cross-

linked to Maf1 in chromatin immunopre-

cipitations (ChIPs). Since this initial re-

port, few details have emerged on the

scope of Maf1 in pol II gene regulation.

One recent exception is the finding that

deletion of MAF1 in yeast affects the

expression of gluconeogenic genes [21].

The work from Palian et al., provides new

knowledge in this regard, showing that

genes encoding key lipogenic enzymes,

acetyl CoA carboxylase (ACC1) and fatty

acid synthase (FASN), are repressed by

Maf1 (Fig. 1). As with the effect on pol III

transcription, increasing or decreasing

Maf1 expression had reciprocal effects on

the expression of both enzymes. Moreover,
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these changes impacted the accumulation

of lipid droplets in mammalian cell lines

and triglyceride levels in mouse liver. Given

the effect of Maf1 on pol III transcription

and TBP expression, it is possible for Maf1

to affect the expression of additional genes

by indirect mechanisms. A striking example

of this capacity is the cell non-autonomous

phenotype of a Maf1 knockdown in the fat

body of Drosophila. In this case, increased

organismal growth and accelerated larval

development resulted from a diffusible

signal, generated in the fat body, that

affected systemic signaling by insulin-like

peptides synthesized in the brain [16].

Arguing against an indirect effect of Maf1

in lipogenesis in mammalian cells is the fact

that the protein ChIPs to the Fasn
promoter. Clearly, genome-wide transcrip-

tional profiling in cells with altered Maf1

expression is necessary to better appreciate

the function of this global regulator.

Altogether, the new study identifies an

important mechanism of Maf1 regulation

along with new Maf1-regulated protein-

coding genes that impact a novel biolog-

ical function. Since research on Maf1

has only just scratched the surface for a

limited number of model organisms, it

seems certain that additional regulatory

targets and biological functions have yet

to be discovered in your favorite eu-

karyote.
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Fig. 1. PI3K signaling via FoxO1 regulates Maf1 abundance and downstream processes. FoxO1 signaling to Maf1 and the biological
processes that are sensitive to this regulation are shown in red. The larval development phenotype in Drosophila is primarily due to increased pol III
transcription and elevated initiator tRNAMet. Maf1-regulation of tumorigenesis, previously thought to result from changes in pol III transcription, may
also include direct effects of Maf1 on pol II transcription.
doi:10.1371/journal.pgen.1004896.g001
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