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Abstract: Even though people worldwide tend to consume probiotic products for their beneficial
health effects on a daily basis, recently, concerns were outlined regarding the uptake and poten-
tial intestinal colonisation of the bacteria that they carry. These bacteria are capable of executing
horizontal gene transfer (HGT) which facilitates the movement of various genes, including antimi-
crobial resistance genes (ARGs), among the donor and recipient bacterial populations. Within our
study, 47 shotgun sequencing datasets deriving from various probiotic samples (isolated strains
and metagenomes) were bioinformatically analysed. We detected more than 70 ARGs, out of which
rpoB mutants conferring resistance to rifampicin, tet(W/N/W) and potentially extended-spectrum
beta-lactamase (ESBL) coding TEM-116 were the most common. Numerous ARGs were associated
with integrated mobile genetic elements, plasmids or phages promoting the HGT. Our findings raise
clinical and public health concerns as the consumption of probiotic products may lead to the transfer
of ARGs to human gut bacteria.

Keywords: antimicrobial resistance; bacteriome; resistome; mobilome; probiotics

1. Introduction

Probiotics and probiotic products have gained a worldwide reputation and popularity
in our everyday lives irrespective of cultural background, geographic location or social
standards. Beneficial health effects assigned to probiotics have been reported in several
studies [1]. What these studies have in common is that they state that microbes carried
in probiotics must remain present in the intestinal tract for a shorter or longer period
of time to exert the expected beneficial effects. Nevertheless, the success of colonisation
depends on several factors, thus the certainty of its realisation varies from individual to
individual [2]. Recently, however, the possibility of some unfavourable or sometimes even
adverse effects of probiotic consumption have also been raised [3]. Several publications
indicate that bacterial strains included in probiotic compounds, powders and capsules may
contain antimicrobial resistance genes (ARGs) [4–7]. Recognising that ARGs may enter into
the human body by food (e.g., probiotic products), studies on the genetic characteristics of
microorganisms (including bacteria) used in the food chain have been recommended by
European Food Safety Authority (EFSA) in recent years [8,9].

Genes, including ARGs of the probiotic bacteria, can be transmitted to bacteria within
the intestinal tract of the consumers by horizontal gene transfer (HGT). If such ARGs are
received by pathogenic bacteria, the efficacy of antibiotic therapy prescribed as medical
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intervention for the diseases they cause may lessen. HGT can take place by transformation,
conjugation or transduction. All these processes have one important property in common,
namely, a DNA fragment getting introduced to a recipient cell. Apart from transformation,
by which any gene can be taken up by the bacterium from its environment, the routes of
HGT require special active delivery processes. By conjugation, cell-to-cell contact provides
the opportunity for a copy of a plasmid to translocate to a recipient bacterium [10]. In
contrast, transduction negates the necessity for cell-to-cell contact, as in this case bacterio-
phages act as a conduit for shuttling genes among bacteria [11]. The genetic environment
of the genes, possibly ARGs, involved in the transfer has a significant influence on the
efficacy of the latter two HGT processes, i.e., on the genes’ mobility. The transferability of
ARGs is facilitated by the presence of mobility genes in their tight genetic environment.
If the genes harbour on plasmids or prophages, the chance of their transfer increases. By
probiotics with supposedly mobile ARGs, the likelihood of gene transmission to other
bacteria in the intestinal tract increases. In our work, we aimed to gain insight into the
mobility of ARGs in probiotics for human consumption using freely available samples
sequenced by other research groups or by ourselves. Currently, the few accessible data
on probiotic ARG mobility originate from studies with diverse methodologies [6,12–16].
Therefore, we intended to analyse the next-generation sequencing datasets of different
probiotics and probiotic isolated bacterial strains with a unified bioinformatics approach.

2. Materials and Methods

In this study, we followed the FAO/WHO definition of probiotics, i.e., live mi-
croorganisms, which confer a health benefit on the host when administered in adequate
amounts [17].

2.1. Data

For the study, we selected freely available samples from the sequencing of probiotic
products for human consumption or from bacterial strains isolated from such products.
The details of analysed samples are listed in Table 1. One probiotic capsule was shotgun
sequenced (PRJNA644361) by the authors. All further short read datasets were obtained
from NCBI SRA repository.

Table 1. The list of analysed samples obtained from NCBI SRA. In the unified names of the samples the first character
corresponds to the type of the sample (s and m, isolate and metagenome, respectively), the second tag is a sequence number.
Except the signed (*) all samples were paired end sequenced. The last column shows the available information about
the biosamples.

Sample ID BioProject Run Description

Isolates

s01 PRJEB14693 ERR1554589 Lactiplantibacillus plantarum
s02 PRJEB14693 ERR1554590 Lactiplantibacillus plantarum
s03 PRJEB14693 ERR1554591 Lactiplantibacillus plantarum
s04 PRJEB38007 ERR4421718 Pseudomonas sp. RGM2144
s05 PRJNA312743 SRR3205957 Limosilactobacillus fermentum
s06 PRJNA347617 SRR4417252 Limosilactobacillus fermentum
s07 PRJNA635872 SRR11966381 Lactiplantibacillus plantarum
s08 PRJNA639653 SRR12037315 Lactobacillus delbrueckii subsp. bulgaricus
s09 PRJNA639653 SRR12037316 Lactobacillus delbrueckii subsp. bulgaricus
s10 PRJNA639653 SRR12037890 Streptococcus thermophilus
s11 PRJNA649814 SRR12375795 Enterococcus faecalis
s12 PRJNA649814 SRR12375796 Enterococcus faecalis
s13 PRJNA649814 SRR12375797 Enterococcus faecalis
s14 PRJNA650131 SRR12376423 Escherichia coli
s15 PRJNA650131 SRR12376425 Escherichia coli
s16 PRJNA650131 SRR12376427 Escherichia coli
s17 PRJNA650131 SRR12376429 Escherichia coli
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Table 1. Cont

Sample ID BioProject Run Description

s18 PRJNA650131 SRR12376431 Escherichia coli
s19 PRJNA650131 SRR12376433 Escherichia coli
s20 PRJNA639653 SRR12412204 Lacticaseibacillus rhamnosus

Microbiota

m01 PRJNA474998 SRR8132838 probiotic powder (FC13678)
m02 PRJNA475000 SRR8138827 probiotic powder (FC13669)
m03 PRJNA474989 SRR8140233 probiotic powder (FC13655)
m04 PRJNA474995 SRR8140386 probiotic powder (FC13628)

m05 * PRJNA508569 SRR8289759 probiotic product (2)
m06 PRJNA508569 SRR8289760 probiotic product (1)

m07 * PRJNA508569 SRR8289761 probiotic product (4)
m08 * PRJNA508569 SRR8289762 probiotic product (3)
m09 * PRJNA508569 SRR8289763 probiotic product (6)
m10 * PRJNA508569 SRR8289764 probiotic product (5)
m11 PRJNA542229 SRR9040978 dietary supplement (PB4)
m12 PRJNA542229 SRR9040979 dietary supplement (PB10)
m13 PRJNA542229 SRR9040980 dietary supplement (PB11)
m14 PRJNA542229 SRR9040981 dietary supplement (PB2)
m15 PRJNA542229 SRR9040982 dietary supplement (PB14)
m16 PRJNA542229 SRR9040983 dietary supplement (PB13)
m17 PRJNA542229 SRR9040984 dietary supplement (PB16)
m18 PRJNA542229 SRR9040986 dietary supplement (PB18)
m19 PRJNA542229 SRR9040987 dietary supplement (PB17)
m20 PRJNA542229 SRR9040988 dietary supplement (PB8)
m21 PRJNA542229 SRR9040989 dietary supplement (PB19)
m22 PRJNA542229 SRR9040990 dietary supplement (PB12)
m23 PRJNA542229 SRR9040991 dietary supplement (PB9)
m24 PRJNA542229 SRR9040992 dietary supplement (PB6)
m25 PRJNA542229 SRR9040993 dietary supplement (PB5)
m26 PRJNA542229 SRR9040994 dietary supplement (PB7)
m27 PRJNA644361 SRR12153424 probiotic capsule

2.2. DNA Extraction and Metagenomics Library Preparation for PRJNA644361

Total metagenome DNA of the probiotic capsule sample was extracted using the
UltraClean Microbial DNA Isolation kit from MoBio Laboratories. The quality of the
isolated total metagenome DNA was checked using an Agilent Tapestation 2200 instrument.
The DNA sample was used for in vitro fragment library preparation. In vitro fragment
library way prepared using the NEBNext Ultra II DNA Library Prep Kit for Illumina.
Paired-end fragment reads were generated on an Illumina NextSeq sequencer using TG
NextSeq 500/550 High Output Kit v2 (300 cycles). Primary data analysis (base-calling) was
carried out with Bbcl2fastq software (v2.17.1.14, Illumina).

2.3. Bioinformatic Analysis

Quality based filtering and trimming of the raw short reads was performed by Trim-
Galore (v.0.6.6, https://github.com/FelixKrueger/TrimGalore, accessed on 22 Match 2021),
setting 20 as a quality threshold. Only reads longer than 50 bp were retained and taxo-
nomically classified using Kraken2 (v2.1.1) [18] and a database created (24 March 2021)
from the NCBI RefSeq complete archaeal, bacterial and viral genomes. For this taxon
assignment, the –confidence 0.5 parameter was used to obtain more precise species level
hits. The taxon classification data was managed in R [19] using functions of the packages
phyloseq [20] and microbiome [21]. The preprocessed reads were assembled to contigs by
MEGAHIT (v1.2.9) [22] using default settings. The contigs were also classified taxonom-
ically by Kraken2 with the same database as above. From the contigs having more than
500 bp, all possible open reading frames (ORFs) were gathered by Prodigal (v2.6.3) [23].

https://github.com/FelixKrueger/TrimGalore
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The protein translated ORFs were aligned to the ARG sequences of the Comprehensive
Antibiotic Resistance Database (CARD, v.3.1.1) [24,25] by Resistance Gene Identifier (RGI,
v5.1.1) with Diamond [26] The ORFs classified as perfect or strict were further filtered
with 90% identity and 90% coverage. All nudged hits were excluded. The integrative
mobile genetic element (iMGE) content of the ARG harbouring contigs was analysed by
MobileElementFinder (v1.0.3) [27]. Following the distance concept of Johansson et al. [27]
for each bacterial species, those with a distance threshold defined within iMGEs and ARGs
were considered associated. In the MobileElementFinder database (v1.0.2) for Escherichia
coli, the longest composite transposon (cTn) was the Tn1681. In the case of this species,
its length (24,488 bp) was taken as the cut-off value. For Lactococcus lactis, this threshold
was the length of the Tn5721 transposon, 11,256 bp. For Enterococci, the database contained
cTn, the Tn6246 (5147 bp) transposon, in E. faecium only. The same threshold was used for
E. faecalis contigs. As the database neither contains species-level, nor genus-level cTn data
for Bacillus, Bifidobacterium and Streptomyces species, a general cut-off value was chosen for
the contigs of these species. This value was declared as the median of the longest cTns per
species in the database (10,098 bp). The average nucleotide identity (ANI) was calculated
for the region of iMGE and associated ARGs by FastANI (v1.32) [28]. The plasmid origin
probability of the contigs was estimated by PlasFlow (v.1.1) [29]. The phage content of the
assembled contigs was predicted by VirSorter2 (v2.2.1) [30]. The findings were filtered for
dsDNAphages and ssDNAs. All data management procedures, analyses and plottings
were performed in R environment (v4.0.4) [19].

3. Results

The analysis of the sequencing data from 20 isolates and 27 metagenomic (multi-
microorganism) samples (Table 1) is summarised in three sections. Following the presen-
tation of the bacteriome and the identified AGRs (resistome), predictions regarding the
mobility potential of ARGs were also summarized based on genetic characteristics that may
play a significant role in HGT. If integrated mobile genetic elements (iMGE) are identified
in the sequence context of an ARG, its greater mobility can be assumed. The case is the
same if the contig harbouring an ARG are derived as plasmid or phage originated. In the
mobilome section, we summarise these results.

3.1. Bacteriome

By taxon classification, the number of reads aligning to bacterial genomes differed in the
various samples. The median bacterial read count of the metagenomic samples was 8.2 × 106

(IQR: 4.4 × 106). The median sequencing depth of the isolated strains was 220 (IQR: 94.8).
The taxonomic origin of the short reads generated from isolates is shown in Table 1. The
relative abundances of genera that achieved more than 1% of the bacterial hits in any of the
metagenomic samples is shown in Figure 1. These dominant genera (with mean prevalence)
in descending order were Lactobacillus (40%), Enterococcus (35%), Bifidobacterium (34%), Limosi-
lactobacillus (34%), Lactococcus (32%), Lacticaseibacillus (31%), Bacillus (26%), Weizmannia (22%),
Ligilactobacillus (19%), Streptococcus (18%), Lactiplantibacillus (12%) and Sphingobacterium (2%).

3.2. Resistome

The median length of the filtered contigs harbouring ARGs constructed by de novo
assembly was 102,711 bp (IQR: 105,696). The number of ARGs found on the contigs ranged
from 1 to 12. Besides 182 perfect ARG matches, a further 225 hits were classified strict (RGI)
and met the criteria of having 90% coverage and 90% sequential identity.

ARGs were detected in all metagenomic samples and in few isolates (Figure 2). The
majority of isolates (s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s20) contained no ARG.
The highest number of ARGs was found in samples s14–s19, obtained from sequencing six
Escherichia coli strains isolated from the same probiotic product. It is important to highlight
that we also found the H-NS gene in these samples which is not indicated in the figure, as its
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effect is anti-AMR. The most common ARGs were the rpoB mutants conferring resistance to
rifampicin, TEM-116 and tet(W/N/W) genes, detected in 18, 15 and 13 samples, respectively.
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Figure 1. Bacteriome of samples. The relative abundances of genera that achieved more than 1% of the bacterial hits in any
of the metagenomic samples. The dominant genera (with mean prevalence) in descending order were Lactobacillus (40%),
Enterococcus (35%), Bifidobacterium (34%), Limosilactobacillus (34%), Lactococcus (32%), Lacticaseibacillus (31%), Bacillus (26%),
Weizmannia (22%), Ligilactobacillus (19%), Streptococcus (18%), Lactiplantibacillus (12%) and Sphingobacterium (2%). Sample
accession numbers for the Sample IDs are listed in Table 1.

The proportion of resistance mechanisms was calculated based on the ARG diversity.
The dominant mechanism of identified ARGs was the antibiotic efflux (58.33%), antibiotic
inactivation (11.11%), antibiotic target alteration (11.11%), antibiotic target protection
(9.72%), antibiotic target alteration and antibiotic efflux (4.17%), antibiotic efflux and
reduced permeability to antibiotic (1.39%), antibiotic target alteration and antibiotic efflux
and reduced permeability to antibiotic (1.39%), antibiotic target alteration and antibiotic
target replacement (1.39%) and antibiotic target replacement (1.39%).

There was no detectable ARG in the studied samples originating from Lacticaseibacillus
rhamnosus, Lactiplantibacillus plantarum, Lactobacillus delbrueckii subsp. bulgaricus, Limosilacto-
bacillus fermentum, Pseudomonas sp. RGM2144 or Streptococcus thermophilus species.

The identified ARGs associated with bacteria by species are as follows. Bacillus subtilis:
aadK, B. subtilis mprF, B. subtilis pgsA with mutation conferring resistance to daptomycin,
bmr, lmrB, mphK, vmlR, ykkC, ykkD. Bifidobacterium animalis: B. adolescentis rpoB mutants
conferring resistance to rifampicin, tet(W/N/W). B. bifidum: B. adolescentis rpoB mutants
conferring resistance to rifampicin, B. bifidum ileS conferring resistance to mupirocin,
tet(W/N/W). B. breve: B. adolescentis rpoB mutants conferring resistance to rifampicin, tetW.
B. longum: B. adolescentis rpoB mutants conferring resistance to rifampicin, tet(W/N/W).
Enterococcus faecalis: dfrE, efrA, efrB, emeA, lsaA, tetM. E. faecium: AAC(6’)-Ii, eatAv, msrC. Es-
cherichia coli: acrB, acrD, acrE, acrF, acrS, bacA, baeR, baeS, cpxA, CRP, emrA, emrB, emrK, emrR,
emrY, eptA, E. coli acrA, E. coli acrR with mutation conferring multidrug antibiotic resistance,
E. coli ampC beta-lactamase, E. coli ampC1 beta-lactamase, E. coli ampH beta-lactamase,
E. coli emrE, E. coli GlpT with mutation conferring resistance to fosfomycin, E. coli marR
mutant conferring antibiotic resistance, E. coli mdfA, E. coli soxR with mutation conferring
antibiotic resistance, E. coli soxS with mutation conferring antibiotic resistance, evgA, evgS,
gadW, gadX, kdpE, marA, mdtA, mdtB, mdtC, mdtE, mdtF, mdtG, mdtH, mdtM, mdtN, mdtO,
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mdtP, msbA, PmrF, TEM-116, TolC, ugd, YojI. Lactococcus lactis: lmrD. Streptomyces albulus:
AAC(3)-IV.
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Figure 2. Identifed antimicrobial resistance genes (ARGs) by samples. For each sample–ARG combination, only the best
finding is plotted. The size and the colour of the dots correspond to the coverage and the sequence identity of hits on
reference genes, respectively. In samples s01–s10 and s20, there was no identifiable ARG. The gene names that are too long
have been abbreviated (acrA: Escherichia coli acrA; acrR: E. coli acrR with mutation conferring multidrug antibiotic resistance;
ampC: E. coli ampC beta-lactamase; ampC1: E. coli ampC1 beta-lactamase; ampH: E. coli ampH beta-lactamase; emrE: E. coli emrE;
GlpT: E. coli GlpT with mutation conferring resistance to fosfomycin; ileS: Bifidobacterium bifidum ileS conferring resistance to
mupirocin; marR: E. coli marR mutant conferring antibiotic resistance; mdfA: E. coli mdfA; mprF: Bacillus subtilis mprF; pgsA: B.
subtilis pgsA with mutation conferring resistance to daptomycin; rpoB: Bifidobacterium adolescentis rpoB mutants conferring
resistance to rifampicin; soxR: E. coli soxR with mutation conferring antibiotic resistance; soxS: E. coli soxS with mutation
conferring antibiotic resistance).
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The ARGs belonging to the genome of Bacillus subtilis may play a role in the ap-
pearance of resistance against aminoglycosides, lincosamides, macrolides, oxazolidinones,
peptides, phenicols, pleuromutilins, streptogramins, tetracyclines; Bifidobacterium animalis:
rifamycins, tetracyclines; Bifidobacterium bifidum: mupirocins, rifamycins, tetracyclines; Bifi-
dobacterium breve: rifamycins, tetracyclines; Bifidobacterium longum: rifamycins, tetracyclines;
Enterococcus faecalis: acridine dye, diaminopyrimidines, fluoroquinolones, lincosamides,
macrolides, oxazolidinones, phenicols, pleuromutilins, rifamycins, streptogramins, tetracy-
clines; Enterococcus faecium: aminoglycosides, lincosamides, macrolides, oxazolidinones,
phenicols, pleuromutilins, streptogramins, tetracyclines; Escherichia coli: acridine dye,
aminocoumarins, aminoglycosides, benzalkonium chlorides, carbapenems, cephalosporins,
cephamycins, fluoroquinolones, fosfomycins, glycylcyclines, lincosamides, macrolides,
monobactams, nitroimidazoles, nucleosides, penams, penems, peptides, phenicols, rho-
damines, rifamycins, tetracyclines, triclosans; Lactococcus lactis: lincosamides; Streptomyces
albulus: aminoglycosides.

3.3. Mobilome

The frequencies of iMGEs, phages and plasmids associated with ARGs by bacteria of
origin are summarised in Figure 3.
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Figure 3. Mobile antimicrobial resistance gene frequency by bacteria of origin. The size of the dots indicates the occurrence
frequency of the given gene flanked by iMGE, positioned in plasmid or phage.

3.4. Coexistence of ARGs and iMGEs

Based on the distance method proposed by Johansson et al. (2021) [27] iMGE asso-
ciated ARGs were detected in three species (Bifidobacterium animalis, Enterococcus faecalis
and Escherichia coli). In seven metagenomic samples (m01, m02, m03, m07, m16, m17, m24)
we found tet(W/N/W) associated with ISBian1 insertion sequence on contigs classified as
B. animalis originated. In two further samples (m02, m06) on E. faecalis originated contigs,
tetM is linked to the transposon Tn6009. The ARG mdtG in the E. coli sample s14 and the
ARG ugd in s15 are associated with IS3 and IS100, respectively. On two different contigs in
the sample s17, multiple ARGs were detected with iMGE. One of them has the ISKpn24
associated with mdtE and mdtF. The other one has the IS102 linked to emrY, emrK, evgA
and evgS genes. According to the average nucleotide identity (ANI) analysis most of the
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contig region of iMGE and associated ARGs had a high level of conservation (ANI > 97%).
Nevertheless, both contigs classified as E. faecalis originated showed ANIs below 80%.

3.5. Plasmids

In samples m08 and m21, we identified one-one plasmid associated contig with
tet(W/N/W) classified as Bifidobacterium longum and Bifidobacterium animalis originated,
respectively. In the samples m20 and m23 on Enterococcus faecium, classified contigs of
plasmids AAC(6’)-Ii were detected. Further, E. faecium classified contigs of the sample
m23 contained the gene msrC. In the samples m11, m12, m13, m14, m15, m16, m17, m19,
m20, m21, m22, m23, m24, m25 and m26, Escherichia coli originated contigs from plasmids
harboured the gene TEM-116. In the E. coli isolate sample s15, one contig of plasmid had
the marA and marR genes.

3.6. Phages

By phage prediction, only dsDNAphages were detected. One contig, classified as
Bacillus subtilis from the m05 metagenomic sample, contained prophage harbouring gene
aadK. One prophage in predicted Enterococcus faecalis originated contig was found in sample
m04 having gene efrA. The same content was detected in sample m01 on contigs classified
as E. faecalis. All three E. faecalis isolates (s11, s12, s13) contained contigs harbouring the
gene efrA within a prophage. In sample m17, one E. coli classified contig had the gene
TEM-116, while a Lactococcus lactis classified one carried the gene lmrD within a prophage.
All the E. coli isolates contained contigs with prophages harbouring ARG. In the sample
s17 and s19 the mdfA gene is presented within a prophage. The sample s15 contains contigs
harbouring prophage with the gene marA, marR. The sample s16 harbours contigs with
prophage having genes emrK, emrY, evgA. The gene ampC was found in sample s15, while
the gene cpxA in samples s14 and s18 within prophages.

4. Discussion

The results presented demonstrate that the bacteria of probiotics may not only carry
significant amounts of ARGs, but in numerous cases, those genes may also be mobile,
thereby contributing to their spread to other bacteria and having possible consequences on
the antibiotic treatment efficacy.

Bacterial genera identified in the metagenomic samples also appear in many probi-
otic related articles of the current international literature. Various species of Bacilli, Bifi-
dobacteria, Enterococci, Lacticaseibacilli, Lactiplantibacilli, Lactobacilli, Lactococci, Ligilactobacilli,
Limosilactobacilli and Streptococci are the core members of commercial probiotic bacterial
communities [31–40]. Two identified bacterial genera (Sphingobacterium, Weizmannia) in
the various samples are less frequent probiotic components. The possibility of exploiting
Sphingobacteria in probiotic foods was previously mentioned based on the characterization
of flour and batter samples of sorghum and pearl millet [41]. Members of the genus were
detected by the high-throughput sequence analyses of fermented beverages [42]. Probiotic
Weizmannia species (e.g., former Bacillus coagulans) have recently been reclassified [43], and
have an unquestionable probiotic significance [44]. It is important to note that there may
be notable differences in the gene pool between strains of particular species, so the results
presented do not mean that all strains of a given species contain the genes identified here.

While at least one ARG was found in each metagenomic sample, less than half of
the isolates contained any of them. No ARG was detected in Lacticaseibacillus rhamnosus,
Lactiplantibacillus plantarum, Lactobacillus delbrueckii subsp. bulgaricus, Limosilactobacillus
fermentum, Pseudomonas sp. RGM2144 or Streptococcus thermophilus. Contigs originating
from Bacillus subtilis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve,
Bifidobacterium longum, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Lactococcus
lactis and Streptomyces albulus each contained at least one ARG.

The available literature was screened to evaluate our findings and gain reliable knowl-
edge of the ARGs that could have been attached to bacteria at the species level. All ARGs
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found in Bacillus subtilis (aadK, B. subtilis mprF, B. subtilis pgsA with mutation conferring
resistance to daptomycin, bmr, lmrB, mphK, vmlR, ykkC, ykkD) have previously been identi-
fied in B. subtilis and many of them were even reported to be specific for this species or
the Bacillus genus [45–51]. In the Bifidobacterium genus, ARGs were associated with four
species (B. animalis, B. bifidum, B. breve and B. longum). None of the B. animalis, B. bifidum, B.
breve and B. longum related B. adolescentis rpoB mutants conferring resistance to rifampicin
and tet(W/N/W) are specific for the identified species but both genes have previously been
described in them [6,52–55]. B. bifidum ileS conferring resistance to mupirocin reported
in B. bifidum supposedly cannot be exclusively linked to this species of the genus, but it
had been identified in it before [56]. Out of the Enterococcus faecalis deriving genes, dfrE
was first identified in E. faecalis [57], but according to a recent study it is not exclusive
to this species any more [58]. The genes efrA and efrB have been described in E. faecalis
and E. faecium [59,60]. Gene emeA has only been identified in E. faecalis so far [59]. Apart
from E. faecalis, lsaA has been attached to Streptococcus agalactiae, while tetM appears in
a broad spectrum of bacterial species [61–65]. All three ARGs (AAC(6’)-Ii, eatAv, msrC)
associated with E. faecium have been previously published as appearing in this species,
and the first two are even specific for it [66–69]. All ARGs originating from Escherichia
coli (acrB, acrD, acrE, acrF, acrS, bacA, baeR, baeS, cpxA, CRP, emrA, emrB, emrK, emrR, emrY,
eptA, E. coli acrA, E. coli acrR with mutation conferring multidrug antibiotic resistance, E.
coli ampC beta-lactamase, E. coli ampC1 beta-lactamase, E. coli ampH beta-lactamase, E. coli
emrE, E. coli GlpT with mutation conferring resistance to fosfomycin, E. coli marR mutant
conferring antibiotic resistance, E. coli mdfA, E. coli soxR with mutation conferring antibiotic
resistance, E. coli soxS with mutation conferring antibiotic resistance, evgA, evgS, gadW,
gadX, kdpE, marA, mdtA, mdtB, mdtC, mdtE, mdtF, mdtG, mdtH, mdtM, mdtN, mdtO, mdtP,
msbA, PmrF, TEM-116, TolC, ugd, YojI) have previously been described in this species and
many of them are even specific to it, according to the Comprehensive Antibiotic Resistance
Database (CARD) [24,25]. Gene lmrD, the only ARG deriving from Lactococcus lactis has
been identified in this species along with some others [70,71]. Even though AAC(3)-IV has
been identified in several studies [72,73], according to our knowledge this is the first time
it has been detected in Streptomyces albulus.

Gene TEM-116, which is often referred to as a clinically significant extended-spectrum
beta-lactamase (ESBLs), was the most frequently identified finding in our study. ESBLs
are most commonly defined as the members of a ubiquitous enzyme family that is capable
of conferring resistance to penicillins, first-, second- and third-generation cephalosporins
and aztreonam, and of being impeded by beta-lactamase inhibitors such as clavulanic
acid [74]. The 400 TEM variants that have been identified so far, can be disclosed in two
clusters with one deriving from TEM-1 (the first TEM protein to be described) and one
linked to TEM-116 as a progenitor [75]. In line with our findings, gene TEM-116 is reported
to be present worldwide harbouring in the conjugative plasmids of a wide range of Gram-
negative bacteria. Despite its wide geographical dissemination, establishment on multiple
plasmids and centrality in the TEM family network indicating it is a naturally occurring
enzyme with microbiologically proven ESBL characteristics [76,77], some concerns have
arisen about its designation, after the gene was found in non-ESBL producing Klebsiella
pneumoniae strains [78]. Moreover, commercial Taq polymerases used in PCRs may be
contaminated with blaTEM−116 DNA which could lead to the erroneous identification of
the gene in samples that do not actually contain it [79,80]. In our study, each sample in
which this gene was detected originated from the same bioproject (PRJNA542229). As the
samples come from different dietary supplements, one may interpret that this finding is an
artefact or contamination as a consequence of some sample preparation steps. Nevertheless,
as more detailed information on sample preparation is not available, this issue cannot
be resolved.

As seen above, and as described in other publications [81], there is still a great deal of
variation in details which need to be clarified by the interpretation of ARGs. Nevertheless,
the suspicion that the identified ARGs may undermine the efficacy of several antibiotic



Antibiotics 2021, 10, 1287 10 of 16

classes, including acridine dye, aminocoumarins, aminoglycosides, benzalkonium chlo-
ride, carbapenems, cephalosporins, cephamycins, diaminopyrimidines, fluoroquinolones,
fosfomycins, glycylcyclines, lincosamides, macrolides, monobactams, mupirocins, nitroimi-
dazoles, nucleosides, oxazolidinones, penams, penems, peptides, phenicols, pleuromutilins,
rhodamines, rifamycins, streptogramins, tetracyclines and triclosans raises some clinical
considerations. According to the latest CDC report on antimicrobial use in the U.S., amoxi-
cillin (penam), azithromycin (aminoglycoside), amoxicillin and clavunalic acid (penam,
increased activity), cephalexin (cephalosporin) and doxycycline (tetracycline) are the most
commonly administered compounds [82]. Moreover, based on the latest WHO report on
global antimicrobial use, amoxicillin (penam), ciprofloxacin (fluoroquinolon), sulphame-
toxazole and trimethoprim are the most commonly prescribed oral drugs and ceftriaxone
(cephalosporin), gentamicin (aminogylcoside) and benzylpenicillin (penam) are the most
commonly used parenteral compounds in 4 surveyed countries of the African region. In
six countries of the region of the Americas, amoxicillin (penam), cefalexin (cephalosporin)
and doxycycline (tetracycline) are the antibiotics with the highest oral consumption rates
and ceftriaxone (cephalosporin), oxacillin (penam) and gentamicin (aminogylcoside) are
the ones with the highest parenteral use. In the European region, reports were made of 46
countries. Among orally administered antibiotics, amoxicillin (penam), amoxicillin and
beta-lactamase inhibitors (penam, increased activity) and doxycycline (tetracycline) are
the top 3 compounds, while ceftriaxone (cephalosporin), gentamicin (amynoglycoside),
and cefazoline (cephalosporin) are the most common parenteral ones. Amoxicillin (pe-
nam), azithromycin (macrolide) and amoxicillin and beta-lactamase inhibitors (penam,
increased activity) are the most commonly consumed oral antibiotics and ceftriaxone
(cephalosporin), benzathine benzylpenicillin (penam) and procaine benzylpenicillin (pe-
nam) are the top 3 parenterally administered agents in the Eastern Mediterranean region.
In the six surveyed countries of the Western Pacific region amoxicillin (penam), doxycycline
(tetracycline) and amoxicillin and beta-lactamase inhibitors (penam, increased activity) are
the most commonly prescribed oral antibiotics, while cefazolin (cephalosporin), ceftriaxone
(cephalosporin) and cefuroxime (cephalosporin) are the most frequently used parenteral
compounds [83]. Many of the most highly prioritized antibiotics could be affected by the
presence of the detected ARGs. Meanwhile, out of the 15 antibiotic groups mentioned in
the latest WHO report on critically important antimicrobials (CIA) for human medicine,
nine (aminoglycosides, carbapenems and other penems, cephalosporins, glycylcyclines,
macrolides, monobactams, oxazolidinones, penicillins of various cathegories, quinolones)
could possibly be affected by the ARGs identified in the various samples [83].

It is important to underline that all the six E. coli isolates contained the gene H-NS,
which plays a crucial role in the global gene regulation of various bacteria, including this
species. The expression of a wide variety of genes is repressed by H-NS, and its deletion
increases AMR and decreases drug accumulation. Even though this gene is stored in
CARD [24,25], its functional effect is adverse to that produced by ARGs [84].

If ARGs are transmitted from probiotic bacteria to pathogenic bacteria within the
consumer’s body, they may reduce the effectiveness of antibiotic therapy on the diseases
participating pathogenic bacteria cause. The execution of gene transfer processes is more
likely among bacteria that are in close physical proximity to each other and if the ARGs
are associated to a mobile genetic environment. According to our results a considerable
number of ARGs, such as those which are iMGEs-linked or have resided in plasmids
or prophages.

The co-occurence of tet(W/N/W) and ISBian1 is in line with the findings of Roz-
man et al. [6], according to which all genomes of B. animalis (subspecies lactis or animalis)
(n = 42) available in 2019 contained this gene. Moreover, by the investigation of the mobility
characteristics of tetW, out of the transposases belonging to the family of the insertion se-
quences, ISBian1 seemed to be subspecies dependent in B. animalis subsp. lactis and flanking
tetW in the majority of the strains [6]. Our results of tetM linking to the transposon Tn6009
in E. faecalis is consistent with finding of Zangue et al. in South-African fecal samples [85].
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In two samples, contigs harbouring tet(W/N/W) originating from Bifidobacterium longum
and Bifidobacterium animalis were predicted to belong to plasmids. Several studies reported
a wide prevalence of the tetW gene in Bifidobacteria [6,12,86,87]. While the co-occurrence
of tetW and its flanking transposase is a common genetic feature of B. animalis, previous
reports lack the identification of plasmids in B. animalis, even though the gene was asso-
ciated with plasmids in other bacterial species [88]. Despite AAC(6’)-Ii deriving from E.
faecium being located in the chromosome in previous studies and it being defined as a
chromosome-borne ARG on CARD [24,25,89], our research indicates it may take place in a
plasmid. An E. faecium-associated contig contained gene msrC. According to the available
literature, msrC is a chromosomal-encoded gene that is mentioned as an intrinsic property
of E. faecium strains [24,25,90]. While the expected bacterial species of origin was confirmed,
our finding raises the likelihood of the gene being connected to a plasmid as well. In
15 samples, E. coli-originated contigs harboured the gene TEM-116. Plasmid origin is a
common feature of ESBL genes such as TEM-116 according to several publications and is
often referred to as a feature to facilitate their quick spread [91–93]. In the E. coli isolate
sample s15, one contig had the marA and marR genes. These widespread multiple antibiotic
resistance genes had been identified on plasmids before [94]. The gene efrA harbouring in
contigs with a prediction of phage origins were identified in all publicly available E. faecalis
genome sequences by Panthee and colleges too, along with a large set of phages in the
genomes [95].

As our results derive from in silico data analysis, it is only possible to describe
the features that prove and facilitate presence and mobility of the genes. Whether or
not the identified genes operate in the bacterial strains of a given probiotic cannot be
determined. In order to clarify this, additional functional, e.g., gene expression studies,
should be performed.

An important aspect to take into consideration by the interpretation of the ARG occur-
rence in probiotics is that constituent strains can often naturally be, or rendered multiresis-
tant, so that they can be co-administered with oral antibiotics and reduce gastrointestinal
side effects [96,97]. In our study we could not distinguish whether the examined samples
contained the ARGs for this purpose. Moreover, as ARGs were found in the vast majority
of the samples tested, not a negligible proportion of them, it is possible that the presence
of ARGs in bacteria may also play a role in their probiotic effect. ARGs play a role in
defence against antibiotics and may provide general fitness against specific toxic effects
for bacteria [98,99]. One may make an analogy with earlier practice. In livestock farming,
antibiotics have been widely used as feed supplements for yield enhancement on a purely
empirical basis. By this practice, antibiotics have put pressure on the gut bacteria and
selected for resistant strains. As a result, animal feed efficiency and production indicators
have improved. When probiotics are consumed, the expectation is that the “good” microor-
ganisms, bacteria will colonise the gut. In numerous animal husbandry areas (e.g., broiler
chicken production), the producers try to achieve this by continuous probiotic feeding. If
these probiotics also contain bacterial strains harbouring ARGs, they achieve very similar
results as before with the selective effect of antibiotic utilisation. If it is true that certain
ARGs are essential for the efficacy of probiotic bacteria, then the selection of strains should
be carried out with consideration of the human health consequences. That is, bacterial
strains that contain ARGs having no significant influence on human antimicrobial therapy
efficiency should be used. However, based on our results, it can also be suggested that
bacteria that do not contain ARGs at all can be used as probiotic components. To have a
more detailed insight into this topic, several further studies would be needed. For instance,
they could also focus on reducing the mobility of genes whose presence may be necessary
for the probiotic nature of particular bacteria. Based on the results, we consider it essential
to monitor the ARG content of probiotic preparations and their mobility characteristics in
the fight against antimicrobial resistance.
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