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Objective: Many antimicrobial resistance (AMR) studies in both human and veterinary

medicine use traditional statistical methods that consider one bacteria and one antibiotic

match at a time. A more robust analysis of AMR patterns in groups of animals is

needed to improve on traditional methods examining antibiotic resistance profiles, the

associations between the patterns of resistance or reduced susceptibility for all isolates in

an investigation. The use of Bayesian network analysis can identify associations between

distributions; this investigation seeks to add to the growing body of AMR pattern research

by using Bayesian networks to identify relationships between susceptibility patterns in

Escherichia coli (E. coli) isolates obtained from weaned dairy heifers in California.

Methods: A retrospective data analysis was performed using data from rectal swab

samples collected from 341 weaned dairy heifers on six farms in California and selectively

cultured for E. coli. Antibiotic susceptibility tests for 281 isolates against 15 antibiotics

were included. Bayesian networks were used to identify joint patterns of reduced

susceptibility, defined as an increasing trend in the minimum inhibitory concentration

(MIC) values. The analysis involved learning the network structure, identifying the best

fitting graphical mode, and learning the parameters in the final model to quantify

joint probabilities.

Results: The graph identified that as susceptibility to one antibiotic decreases, so does

susceptibility to other antibiotics in the same or similar class. The following antibiotics

were connected in the final graphical model: ampicillin was connected to ceftiofur;

spectinomycin was connected with trimethoprim-sulfamethoxazole, and this association

was mediated by farm; florfenicol was connected with tetracycline.

Conclusions: Bayesian network analysis can elucidate complex relationships between

MIC patterns. MIC valuesmay be associated within and between drug classes, and some

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.771841
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.771841&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:blmorgan@ucdavis.edu
https://doi.org/10.3389/fvets.2022.771841
https://www.frontiersin.org/articles/10.3389/fvets.2022.771841/full


Morgan et al. Bayesian Network Analysis E. coli MICs

associations may be correlated with farm of sample origin. Treating MICs as discretized

variables and testing for joint associations in trends may overcome common research

problems surrounding the lack of clinical breakpoints.

Keywords: bovine, weaned, enteric, Bayesian network analysis, Bayesian, minimum inhibitory concentration,

antibiotics

INTRODUCTION

Antimicrobial resistance (AMR) is a complex phenomenon and
one of the biggest public health challenges of our time (1). AMR
is a naturally occurring process, but is accelerated when the
presence of evolutionary pressures, such as antibiotics, pressure
bacteria to adapt (2). Such evolutionary pressures are present
in hospitals, communities, farms, and the natural environment,
making AMR an issue that spans multiple sectors that truly
requires a One Health approach (3, 4). Many efforts are made
to understand risk factors for AMR in human and animal
medicine. However, to accurately identify risk factors and areas
for intervention, the outcome needs to be carefully considered.
Bacteria often exhibit complex patterns of resistance to different
antibiotic drugs. This complexity makes risk factor analyses for
AMR potentially challenging (5).

Multiple resistance patterns are common and develop from a
complex system comprised of both biological and evolutionary
mechanisms (6). These mechanisms are interconnected with
many of the normal processes existing in the livestock production
sector, such as antibiotic use, biosecurity and farm hygiene,
farm husbandry practices, and livestock flow between farms.
To identify risk factors for resistance and explore the potential
reservoirs of plasmid-associated resistance genes of public health
significance on farms, we must improve our understanding of
the current state of AMR in livestock animals. However, many
efforts made toward identifying and understanding AMR in
the agricultural sector (7–9) consider only one bacteria and
one antibiotic match at a time. While this is suitable for some
investigations, it is arguably an oversimplification and fails to
describe antibiotic resistant profiles, or the associations between
the patterns of resistance or reduced susceptibility for all isolates
in an investigation. Increasingly, studies are exploring resistance
profiles by grouping several antibiotics and using whether a
bacteria is simultaneously resistant to the grouped antibiotics
as the outcome of interest. Bayesian networks can build on the
efforts by describing the complex web of resistance profiles and
identify associations between individual patterns.

One of the most widely used approaches in epidemiological
analyses, and the current standard in AMR centered research,
remains multivariable regression modeling (10). While this
method identifies statistical associations, it assumes the
predictors, or independent variables, are not correlated with
each other. However, antibiotic drugs may be multicollinear
if they are in the same drug class, spectrum, or target bacteria
in similar ways. Multidrug resistance in bacteria is more
akin to observing multivariate observations, where there are
correlations between the individual resistance patterns (11).
Implementing multivariate analyses in AMR studies offers

a richer modeling framework and can provide a greater
understanding of disease process (10). Bayesian networks are
graphical models of the relationships among a set of random
variables (12, 13). Using this form of statistical modeling,
we can infer a probabilistic model which describes a joint
probability structure (11). Previous studies have used Bayesian
network analysis to elucidate complex, statistical dependent
relationships (14–17), including some specifically looking at
AMR patterns in the agriculture sector (11, 18, 19). However,
there is limited evidence for using Bayesian network analysis to
analyze minimum inhibitory concentrations (MIC) in ways not
requiring a qualitative interpretation.

Interpretive standards for MIC classification of “resistant”
or “susceptible” require breakpoints, which are the MIC
value that delineates antimicrobial susceptibility categories
(resistant vs. susceptible) for a specific bacterium and antibiotic
combination. These breakpoints are established by the Clinical
and Laboratory Standards Institute (CLSI) (20) and use
knowledge of pharmacokinetic data for the drug in question
in reference to the site of infection, are specific for the
species in which the infection exists, and are thus designed
to describe specific host/pathogen/antibiotic relationships to
predict likelihood of a bacteriologic cure within that described
relationship. Because these CLSI breakpoints apply to specific
host/pathogen/antibiotic relationships, applicable breakpoints
are not available for every scenario in which an MIC may
be investigated. There are no CLSI breakpoints for the
interpretation of enteric bacterial MICs isolated from the feces
of cattle. This leads clinicians or researchers to either extrapolate
from related host/pathogen/antibiotic breakpoints or use wild-
type epidemiological cut-off values (21). Reporting and analyzing
quantitative MIC data, rather than dichotomizing the results and
analyzing qualitative data, provides a mechanism to detect shifts
in MIC trends over time, facilitate early detection of reducing
susceptibility (22), compare data, and more thoroughly explore
relationships between antibiotics. Further, these methods are not
subject to changes in clinical breakpoints.

Using Bayesian network analysis to model the joint patterns
of reduced susceptibility from within the livestock production
environment permits a more complete understanding of the
epidemiology of AMR. The present study seeks to add to
this growing body of research by evaluating whether there are
patterns of reduced susceptibility in Escherichia coli (E. coli)
across different antibiotics. Using an observational retrospective
study design, we conducted a Bayesian network analysis to
identify patterns using MIC values for 15 antibiotics for E.
coli isolates obtained from weaned dairy heifer fecal samples
in California. We hypothesized MIC values for antibiotics
belonging to the same class would be jointly associated. As
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this hypothesis is well-established, seeing linkages between these
drugs will provide evidence supporting our proposed method for
testing joint associations without interpretive breakpoints.

MATERIALS AND METHODS

Data Source and Sampling Protocol
This study was conducted as a secondary analysis using existing
culture and sensitivity data from a previous investigation of
respiratory and enteric bacterial MICs in weaned dairy heifers
<6 months of age in California (23). These data represent a total
of 341 weaned dairy heifers, sampled from mixed weaned pens
from six California calf rearing operations, and include samples
from calves both with and without signs of bovine respiratory
disease (BRD) based on a validated scoring system for weaned
heifers (24). Sampling was conducted at two different seasonal
time points (spring/summer and fall/winter) for each of the six
facilities. Rectal swabs were collected from weaned dairy heifers
in group pens and <6 months of age. Swabs were refrigerated
at four degrees Celsius for no more than 2 days until a batch
could be shipped to the study laboratory at the California Animal
Health and Food Safety laboratory located in Davis, CA for
selective culture and sensitivity. The data analysis reported herein
used only existing culture and sensitivity data from a previous
study conducted with IACUC approval; no additional animals
were used for this secondary analysis.

Antimicrobial Susceptibility Analyses
Samples obtained via rectal swabs were selectively cultured
for E. coli. Isolates were tested for antimicrobial susceptibility
using broth microdilution (Trek Sensititre, Trek Diagnostic
Systems, Thermo Fisher Scientific, Waltham, MA) according
to CLSI guidelines (25) to determine the MIC of the 19
antimicrobial drugs contained on the Sensititre Bovine
BOPO7F Vet AST plate (Thermo Scientific, Remel
Inc., Lenexa, KS, USA). The microbroth dilution plates
contained the following antimicrobials: ceftiofur (CEF),
penicillin (PEN), ampicillin (AMP), tiamulin (TIA),
tylosin (TYL), tulathromycin (TUL), tilmicosin (TILM),
clindamycin (CLN), tildipirosin (TILD), tetracycline (TET),
gentamicin (GEN), neomycin (NEO), gamithromycin (GAM),
florfenicol (FLR), danofloxacin (DAN), enrofloxacin (ENR)
sulphadimethoxine (SUL), trimethoprim-sulfamethoxazole
(SXT), and spectinomycin (SPC).

Bayesian Network Analysis
One farm was removed from the study analysis due to missing
animal records data. This left a total of five farms and 281 E.
coli samples in the analysis, one isolate per animal included.
Minimum inhibitory concentration values were categorized to
guarantee at least 10 observations per category. If an MIC
value had <10 observations, it was regrouped with the lower
MIC value to be conservative. If the lowest MIC value had
<10 observations, it was grouped with the next higher value.
MIC values were treated as discretized variables and used to
identify joint patterns of reduced susceptibility using Bayesian
network analysis. Reduced susceptibility was defined as a trend

of increasing MIC value (26). The antibiotics PEN, CLN, TILM,
and TYL were excluded from the analysis due to all cultured
bacteria having the maximum MIC value tested. The remaining
15 antibiotic MICs were maintained for analysis.

Non-MIC variables collected across farms and without
missing data were also incorporated in the analysis. These
included the season the sample was collected, the age of the
heifer in days, categorized by quartile, and the farm from which
the sample was taken to account for clustering. There are three
distinct parts to our network analysis, as previously described:
(27) (i) learn the network structure -i.e., the relationship,
connections or arcs between the nodes- and identify the best
fitting model; (ii) learn the parameters included in the final
selected model; and (iii) bootstrap analysis. All analyses were
conducted in R using the Bayesian network learning package
“bnlearn” (28).

We used a purely data-driven, exploratory approach to model
the relationships between our set of variables. We did not
make prior assumptions of causal relationships (i.e., forcing
paths) or restrict paths between variables. The constraint-based
PC algorithm identifies the optimal directed acyclic graph, a
single graph that best captures the joint dependencies between
the variables in the data set (29). Constraint-based algorithms
identify conditional independence with statistical tests and link
nodes (variables) that are found to be non-independent (30).
We chose the constraint-based PC algorithm because constraint-
based algorithms are more accurate than score-based algorithms
for small sample sizes (30). Further, constraint-based algorithms
allowed us to incorporate a statistical test capable of evaluating
independence for non-binary variables.

Choosing the conditional independence test to use depends
on the distribution of variables in the network. For discrete
networks, log-likelihood ratio tests are the most commonly
used, Gaussian mutual information for Gaussian networks,
and Fisher’s Z test and exact t-test are often used for partial
correlation (30). Due to a lack of breakpoints, we were unable
to categorize the MIC values to an interpretation of resistant
or susceptible. Further, MICs are not continuous variables as
they can be both left- and right-censored. MIC values cannot
be treated as discretized variables because there is an innate
ordering between the intervals. The inability to categorize the
MICs, as well as the observed censoring, limits our choice of
statistical test. The Jonckheere-Terpstra (JT) test provides a non-
parametric alternative to evaluate joint associations between
ordered variables. The JT test is a rank-based test used to
determine if there are upward or downward monotonic trends
in the data (29). We chose this test to explore resistance, or in
this case MIC, profiles when lacking clinical breakpoints.

Bootstrap Analyses
To identify which arcs were most consistent and strongest, a
bootstrapping approach was used (27). This method uses the
optimal model from the constraint-based PC search described in
the previous section, 3.1.3, to generate 10,000 bootstrap samples
using the boot.strength function. For each bootstrap sample, the
previous steps are repeated, and a separate network is learned
using the constraint-based PC learning algorithm and the JT test.
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FIGURE 1 | Distributions of minimum inhibitory concentrations (MIC) for Escherichia coli (E. coli) isolates. MIC distribution for E. coli isolates, collected from five farms

for 15 antibiotics, analyzed in Bayesian network analysis.
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The boot.strength function returns the strength of connection
for each pair of nodes (i.e., how frequently the connection is
observed). This information is used to build a consensus network,
defined as a network containing arcs having a strength >50%
(11, 31, 32). Arcs observed in more than 50% of the bootstrapped
samples are included in an averaged, consensus network using
the averaged.network function (27). This averaged, consensus
model then incorporates the information on the strength of
the connections by weighting the arcs. The averaged, consensus
model is then visually compared to the optimal model identified
in Bayesian Network Analysis.

Parameter Learning
After identifying the averaged, consensus model, we used the
bn.fit function to model the parameters. Parameter learning
estimates the conditional probabilities between connected nodes
from the previously identified network and the observed sample
data (33). We used the Bayesian method for parameter learning
because we had no missing data. Also, this method uses the
expected values of the parameters’ posterior distribution arising
from a flat prior and is less prone to overfitting in Bayesian
parameter estimation than maximum likelihood estimation.
Using cpquery we were able to perform conditional probability
queries and estimate the probability of an association between
two nodes or events. The objective of this study was to identify the
statistical dependencies between observed E. coli susceptibility,
measured as MIC, to several antibiotics. Additionally, given the
cross-sectional nature of the data, arc direction was not relevant
and we present the graphical model with undirected connections
for simplicity of interpretation (2).

RESULTS

Descriptive Statistics
Data from two-hundred and eighty-one calves were included in
the study. Of those, 98 were Jersey, 179 were Holstein, and 4 were
a Jersey/Holstein crossbreed. The average age of heifer was 132
days (95% CI: 129, 134). Fifty-six (±3) isolates were collected and
tested from each farm. MIC value distributions for antibiotics
included in the analysis can be seen in Figure 1. Most E. coli
isolates were inhibited at low concentrations of CEF, GEN, NEO,
SXT, and TUL. MIC values were highest for FLR, SUL, TET,
and TIA. Descriptive statistics for all variables in the dataset are
represented in Table 1.

Model Results
The results of the optimal network is presented graphically.
Figure 2 shows the resulting graph, which contained 18 nodes
and 18 arcs. The following antibiotic characteristics are linked
together: susceptibility to AMP is positively associated with
susceptibility to CEF, indicating as MIC values for one antibiotic
increase, MIC values for the other also increase. SPC is
positively associated with GAM. The probability an isolate has
the maximum MIC value for SPC (>64µg/mL), given it has
the maximum MIC value for GAM (>8µg/mL) is 76%. The
association is also positive in the reverse order GAM—SPC,
however it is not as strong (43%). FLR—TET are inversely

TABLE 1 | Descriptive statistics of isolates included in sample.

Descriptive No. isolates (%)

Sampled farm

1 53 (18.9)

2 59 (21.0)

3 54 (19.2)

4 58 (20.6)

5 57 (20.3)

Season sampled

Summer 139 (49.5)

Winter 142 (50.5)

Sampled breed

Jersey 98 (34.9)

Holstein 179 (63.7)

Jersey/Holstein 4 (1.4)

Age of calf sampled (days)

Mean, 95% CI 132 (129, 134)

Summary of isolates obtained fromweaned heifers sampled across five farms in California.

associated, indicating MIC values for one antibiotic increase
as they decrease for the other. Other connections indicating
joint associations in MIC trend include SXT—SUL, TET—SUL,
SUL—FLR, SPC—SXT, TIA—TILD, TIA—GAM, TILD—TUL,
TILD—GAM, TUL—GAM, DAN—ENR, GEN—NEO.

TET—SUL—FLR and TIA—TILD—GAM—TUL form joint
motifs of susceptibility. That is, arcs jointly connect these nodes
and indicate a complex relationship between these antibiotics.
The probability an isolate has anMIC value for SUL>256µg/mL
given the MIC value for TET was >8µg/mL is 89%. Conversely,
the probability an isolate has an MIC value for TET >8µg/mL
given the MIC value for SUL is >256µg/mL is 95%. The
probability an isolate has the highest MIC value for SUL given the
highest MIC value for TET is higher when the MIC value for FLR
is >8µg/mL (93%) than when FLR is 1–2µg/mL (<0.01%). The
probability an isolate has the highestMIC value for both TUL and
TILD (TUL—TILD= 58%; TILD—TUL= 47%) differs based on
the MIC for GAM. When GAM is >8µg/mL, the probability
an isolate has the highest MIC values for TUL—TILD is 81%,
compared to <0.01% when GAM is ≤1 to 4µg/mL. The effect
of GAM holds true for TILD—TUL, also. The probability an
isolate has an MIC for TIA >32µg/mL given an MIC for GAM
>8µg/mL is 84% without the influence of TILD. Taking TILD
into account, the probability an isolate has a high MIC for TIA
given it has a high MIC for GAM and TILD (8 to >16µg/mL)
is 98%.

While DAN—ENR and GEN—NEO are connected, their
relationship is completely independent of any other antibiotics
in the analysis as indicated by their separation from the other
nodes in the graph. Further, SXT is the only node with a direct
relationship to farm; the probability that an isolate has the
maximumMIC value for SXT was 49% in one farm. However, for
another farm the probability for this same relationship was 5%.
While potential risk factors were not included in this analysis,
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FIGURE 2 | Optimal Bayesian network model showing relationships among antibiotic MIC trends. Optimal Bayesian network modeling MIC patterns for Escherichia

coli isolates collected from weaned heifers across five farms in California against 15 antibiotics. Antibiotics represented in each node include: CEF, Ceftiofur; AMP,

Ampicillin; TIA, Tiamulin; TUL, Tulathromycin; TILD, Tildipirosin; TET, Tetracycline; GEN, Gentamicin; NEO, Neomycin; GAM, Gamithromycin; FLR, Florfenicol; DAN,

Danofloxacin; ENR, Enrofloxacin; SUL, Sulphadimethoxine; SXT, Trimethoprim-Sulfamethoxazole; SPC, Spectinomycin.

farm level management practices, characteristics of the herd at
each farm, or treatment history could explain the differences
in the probability an isolate has an MIC for SXT >2µg/mL
between farms.

Bootstrap Analyses
Using 10,000 bootstrap samples, we identified MIC relationships
more robustly supported. From the bootstrap searches, we
identified 14 of the 18 arcs met the strength threshold of
50%. These arcs were used to build the averaged, consensus
network which included AMP—CEF, DAN—ENR, TET—FLR,
TET—SUL, TIA—TILD, TIA—GAM, TILD—GAM, TUL—
GAM, GEN—NEO, SPC—SXT, season—age, farm—age. The
connections not maintained in the averaged, consensus network,

and therefore only loosely supported, included CEF—season,
SUL—SXT, SXT—farm, and SPC—GAM. The arcs most
strongly supported are identified by those with the thickest
lines connecting the nodes (Figure 3). These include AMP—
CEF, DAN—ENR, TET—FLR—SUL, TIA—TILD—TUL—GAM,
SPC—SXT, and Farm—Age. Conditional probabilities of the
highest and lowest MIC value for the MIC associations
maintained in the bootstrap analysis are presented in Table 2.

DISCUSSION

Not surprisingly, in the graphic model generated through
Bayesian network analysis, antibiotics belonging to the same
classes are linked together. GAM, TIA, TUL, and TILD are
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FIGURE 3 | Averaged, Consensus network model showing results of bootstrapped analysis. Averaged, consensus network developed from the optimal network

showing the relationships among antibiotic MIC trends. The averaged, consensus network depicts the arcs identified from the optimal network that appear in more

than 50% of the 10,000 bootstrapped samples and are most strongly supported by the data. Strength of connection is denoted by arc weight (i.e., the thicker the arc,

the greater strength). Antibiotics represented in each node include: CEF, Ceftiofur; AMP, Ampicillin; TIA, Tiamulin; TUL, Tulathromycin; TILD, Tildipirosin; TET,

Tetracycline; GEN, Gentamicin; NEO, Neomycin; GAM, Gamithromycin; FLR, Florfenicol; DAN, Danofloxacin; ENR, Enrofloxacin; SUL, Sulphadimethoxine; SXT,

Trimethoprim-Sulfamethoxazole; SPC, Spectinomycin.

linked and are all macrolides. Other linkages according to class
include beta-lactams AMP and CEF; sulfonamides SXT and
SUL; aminoglycosides GEN and NEO; and quinolones DAN and
ENR. These connections indicate that the MIC value to one
antibiotic in a class is associated with the MIC value to other
antibiotics in that class. This is not surprising because antibiotics
in the same class have similar mechanisms of action, and thus
bacterial resistance mechanisms are often effective against more
than one antibiotic in a class depending on the mechanism of
resistance (34). However, it is important to note a linkage in
the graph does not denote causality. An antibiotic connected to

another antibiotic implies a systematic dependency in trend for
the observed MIC values (11). For example, TIA, TILD, TUL,
and GAM are all connected in the graphical model indicating
they are mutually dependent and should be investigated jointly
in any risk factor analysis searching for causal determinants
(11). Further, antibiotics of different classes may play a role in
selection pressure on E. coli populations. For instance, ceftiofur
resistance has been found on calf farms despite low ceftiofur use
(35). There is evidence demonstrating florfenicol treatment in
dairy calves drives the coselection of florfenicol- and ceftiofur-
resistance in E.coli (36). While other studies have suggested
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TABLE 2 | Conditional probabilities for MIC associations maintained in the

bootstrapped analysis.

MIC associations* Probability

P (AMP: >16µg/mL | CEF: >8µg/mL) 99%

P (AMP: >16µg/mL | CEF: ≤0.25µg/mL) 6%

P (AMP: 0.5–1µg/mL | CEF: ≤0.25µg/mL) 99%

P (DAN: >1µg/mL | ENR: >1µg/mL) 99%

P (DAN: >1µg/mL | ENR: ≤0.12µg/mL) <1%

P (DAN: ≤0.12µg/mL | ENR: ≤0.12µg/mL) 99%

P (TET: >8µg/mL | SUL: >256µg/mL) 95%

P (TET: >8µg/mL | SUL: ≤256µg/mL) 46%

P (TET: 1–2µg/mL | SUL: ≤256µg/mL) 57%

P (TET: >8µg/mL | FLR: >8µg/mL) 98%

P (TET: >8µg/mL | FLR: 1–2µg/mL) 7%

P (TET: 1–2µg/mL | FLR: 1–2µg/mL) 93%

P (TIA: >32µg/mL | GAM: >8µg/mL) 84%

P (TIA: >32µg/mL | GAM: ≤1–4µg/mL) 64%

P (TIA: 16–32µg/mL | GAM: ≤1–4µg/mL) 37%

P (TIA: 2 >32µg/mL | TILD: 8 to >16µg/mL) 97%

P (TIA: >32µg/mL | TILD: ≤1 to 2µg/mL) 43%

P (TIA: 16–32µg/mL | TILD: ≤1 to 2µg/mL) 59%

P (TUL: 16–64µg/mL | TILD: 8 to >16µg/mL) 58%

P (TUL: 16–64µg/mL | TILD: ≤1 to 2µg/mL) 10%

P (TUL: ≤8µg/mL | TILD: ≤1 to 2µg/mL) 91%

P (TUL: 16–64µg/mL | GAM: >8µg/mL) 51%

P (TUL: 16–64µg/mL | GAM: ≤1 to 4µg/mL) 3%

P (TUL: ≤8µg/mL | GAM: ≤1 to 4µg/mL) 96%

P (TILD: 8 to >16µg/mL | GAM: >8µg/mL) 26%

P (TILD: 8 to >16µg/mL | GAM: ≤1 to 4µg/mL) 2%

P (TILD: ≤1 to 2µg/mL | GAM: ≤1 to 4µg/mL) 29%

P (GEN: 2 to >16µg/mL | NEO: >32µg/mL) 20%

P (GEN: 2 to >16µg/mL | NEO: ≤4 to 16µg/mL) 3%

P (GEN: ≤1µg/mL | NEO: ≤4 to 16µg/mL) 97%

P (SPC: >64µg/mL | SXT: >2µg/mL) 63%

P (SPC: >64µg/mL | SXT: ≤2µg/mL) 11%

P (SPC: ≤8µg/mL | SXT: ≤2µg/mL) 8%

*Antibiotics: AMP, Ampicillin; CEF, Ceftiofur; DAN, Danofloxacin; ENR, Enrofloxacin;

TET, Tetracycline; SUL, Sulphadimethoxine; FLR, Florfenicol; TIA, Tiamulin; GAM,

Gamithromycin; TILD, Tildipirosin; TUL, Tulathromycin; GEN, Gentamicin; NEO,

Neomycin; SXT, Trimethoprim-Sulfamethoxazole; SPC, Spectinomycin.

Select conditional probabilities for MIC variables from the bootstrapped Bayesian network

model. Associations presented below represent the most consistent associations (i.e.,

strongest) in the optimal model, as identified by the bootstrap analysis. That is, they appear

in more than 50% of the bootstrap replicates. Probability that Escherichia coli MIC for one

antibiotic is true given that the MIC for the corresponding antibiotic is true. MIC values for

each antibiotic chosen as highest categorized value or lowest categorized value.

ceftiofur-resistance is more closely related to the practice of
feeding calves waste milk, potentially due to drug residues (37–
39). We did not observe a relationship between FLR and CEF.
However, we did not test for joint associations in resistance.
Instead, we focused on associations among trends in MIC values.
We were not able to incorporate information regarding waste
milk practices due to all enrolled farms from which these data
were obtained feeding waste milk. We did observe relationships

between other MIC variables from antibiotics of different classes
that could be indicative of coselection.

FLR and TET are connected in the graph; these antibiotics
are part of the different phenicol and tetracycline classes.
A recent study in swine demonstrated that tylosin exposure
reduced susceptibility of Salmonella to both drugs (40). Bacteria
exposure to sub-lethal doses of tylosin acquired resistance
mechanisms to the antibiotic. Exposure to tylosin also resulted
in activation of the efflux system and its global regulators,
which subsequently increased the MICs of FLR and TET
against Salmonella (40). This finding may explain why FLR
and TET are connected in our model, however recent tylosin
exposure was not reported in the study population. The
MIC values for tylosin were not included in our analysis
because all bacteria cultured had the maximum MIC value
for the drug. Because all isolates had reduced susceptibility
to tylosin, it is possible the relationship between FLR, TET,
and tylosin could also hold true for other non-Salmonella
enteric pathogens, such as E. coli. Future studies should
explore the role tylosin treatment has in the coselection of
flurofenicol- and tetracycline-resistance in E. coli populations
among cattle.

Our graph identified an association between TET and
SUL, and this relationship was maintained in the bootstrap
analysis. These antibiotics belong to two different, but important
classes of drugs used in calves. High percentages of TET
and SUL resistance in calves has been reported elsewhere
(41). Sulfanomide, tetracycline, and aminoglycoside is a
common resistance pattern for E. coli in dairy calves (41–
43). Our results loosely support the association between
these antibiotic classes. Arcs are present between SPC,
SXT, SUL, and TET. SXT and SUL are both sulfanomides,
TET is a tetraycline, and SPC is an amiocyclitol, which
is an antibiotic class that shares several similarities with
aminoglycosides. However, it is interesting SXT—SUL was
not an arc retained in the bootstrap analysis, since they
are of the same class, and instead SXT—SPC was separated
from TET—FLR—SUL.

The farm from which the sample was collected was
directly connected to only SXT and this connection was not
maintained in the bootstrap analysis. Originally, we believed
including the farm variable could represent unmeasured farm-
level risk factors that may be associated with MIC values.
It is possible there was too much variation in an all-
encompassing farm variable to identify systematic associations
between farm characteristics and MIC values. We were unable to
incorporate specific farm-level risk factors that could influence
the joint distributions in MIC values, such as antibiotic
use and route of administration or farm management and
husbandry practices due to the level of missingness in these
measurements. However, these relationships were investigated
in the larger study from which these data were obtained.
Finally, we excluded penicillin, clindamycin, and tilmicosin
from the analysis as all isolates had the maximum MIC value.
This could be due to natural resistance in E. coli to these
substances as other studies have demonstrated 100% resistance
to these drugs (44, 45).
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LIMITATIONS

Our use of MIC values due to the lack of clinically relevant
breakpoints for commensal E. coli in dairy cattle inhibits our
ability to distinguish if an isolate is “resistant” or “susceptible.”
However, using MIC values rather than interpretations allowed
us to make inferences on profiles and relationships without
extrapolating or adapting breakpoints from other organisms or
hosts. The small sample size combined with the geographic
location fromwhich isolates were collected, limits generalizability
of the findings beyond California. However, the methods
employed can be incorporated into future, larger studies seeking
to identify AMR profiles and risk factors for AMR. Additionally,
we did not include farm-level variables in this analysis, which
limits our ability to explore the risk factors or drivers of the
observed associations. This work is being conducted in the
larger, original study from which this data set was obtained.
Finally, there is no known or validated model to compare
our optimal model with. Thus, we expect some of the arcs
represent spurious associations. Our bootstrap analysis retained
14 connections, representing the associations in which we have
a higher degree of confidence are non-spurious. The ability to
link our results to biology and confirm the structure of our
model in the absence of a validated model would strengthen
our findings. This could be done by conducting genomic
analysis and identifying genes coding for resistance that may
better explain the conditional dependencies observed in this
data analysis.

CONCLUSIONS

It is not surprising to observe associations among susceptibility
to antibiotics of the same class because they often have similar
mechanisms of action. However, we identified MIC trends
linked outside of antibiotic class. These findings are clinically
important because they suggest that AMR in enteric organisms
is interrelated and use patterns may convey less easily predicable
patterns of resistance to drugs not recently used on farm.
Thus, changing use patterns, or attempts to decrease AMR in
enteric organisms, will not likely be straight forward; removing
the use of one drug may not decrease AMR to that drug
without also removing the use of other drugs to which that
AMR pattern is associated, or removing other non-antimicrobial
influences on AMR. While the isolates in this study are
commensal fecal E. coli, and do not necessarily represent disease
causing agents, the information is valuable because it elucidates
relationships between isolates, and not just the relationship
between an individual isolate and a single antibiotic. The linkages
demonstrated in this data analysis that are beyond antibiotic class
are hypothesis generating; they suggest investigation into why
certain drugs may be linked is warranted, and that AMR control
efforts should consider the more complicated associations of
conditional susceptibilities between related and unrelated drugs
and animal management factors.

Animal, farm, and environmental level characteristics may
have an impact on antibiotic associations, which is an important
area for future research. Many studies identify associations
between farm variables and resistance, but few describe risk factor

variables and how they affect the relationships among MICs. As
previously mentioned, it is common to evaluate the risk factors
for one bacteria and one antibiotic match at a time (7–9, 46–50).
Considering the relationships between different antibiotics, with
the antibiotic susceptibility profiles, will create a more accurate
model of the interactions that likely affect AMR. Future research
could include similar analyses for additional bacteria species in
the same biologic niches, both individually and in conjunction
with other species, because it is possible that bacteria inhabiting
the same hosts or niches influence each other (51). Further,
work directed at identifying risk factors on the animal, farm, and
environmental level will provide a more thorough understanding
of AMR complexity by explaining the occurrence of susceptibility
or resistance profiles. Finally, conducting genomic analyses and
identifying genetic elements, and variations in expression that
lead to resistance could link our and future modeling results to
biologic outcomes.

Our study adds to the growing body of research exhibiting
how Bayesian network analysis can elucidate complex
relationships between MIC patterns. We demonstrate how
treating MICs as discretized variables and testing for joint
associations in trends in MIC values may overcome common
research problems surrounding the lack of clinical breakpoints.
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