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Abstract

One of the greatest obstacles to clinical translation of bone tissue engineering is the inability

to effectively and efficiently vascularize scaffolds. The goal of this work was to explore sys-

tematically whether architecture, at a scale of hundreds of microns, can be used to direct the

growth of microcapillary-like structures into the core of scaffolds. Biphasic bioceramic pat-

terned architectures were produced using silicone molds of 3D printed parts. Grooves and

ridges were designed to have widths of 330 μm and 660 μm, with periodicities respectively of

1240 μm and 630 μm. Groove depth was varied between 150 μm and 585 μm. Co-cultures of

human dermal microvascular endothelial cells (HDMECs) and human osteoblasts (hOBs)

were used to grow microcapillary-like structures on substrates. Bioceramic architecture was

found to significantly affect microcapillary-like structure location and orientation. Microcapil-

lary-like structures were found to form predominantly in grooves or between convexities. For

all patterned samples, the CD31 (endothelial cell marker) signal was at least 2.5 times higher

along grooves versus perpendicular to grooves. In addition, the average signal was at least

two times higher within grooves than outside grooves for all samples. Grooves with a width of

330 μm and a depth of 300 μm resulted in the formation of individual, highly aligned microca-

pillary-like structures with lengths around 5 mm. Extensive literature has focused on the role

of nano- and micro-topography (on the scale below tens of microns) on cellular response.

However, the idea that architecture at a scale much larger than a cell could be used to modu-

late angiogenesis has not been systematically investigated. This work shows the crucial influ-

ence of architecture on microcapillary-like structure self-assembly at the scale of hundreds of

microns. Elucidating the precise correspondence between architecture and microcapillary-

like structure organization will ultimately allow the engineering of microvasculature by tuning

local scaffold design to achieve desirable microvessel properties.

Introduction

Architecture across a wide range of length-scales has a crucial role in modulating biological

response to scaffolds by affecting properties such as degradation behavior [1], nutrient perfu-

sion [2], cell invasion [3], cell attachment [4] and differentiation [5]. Studies have recently
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focused on the crucial role played by macro-architecture at the hundred micron scale in mod-

ulating biological response by use of controlled bioceramic geometries. Specifically, Rumpler

et al. [6] have demonstrated tissue growth is curvature-driven by analyzing the growth of cell

layers on hydroxyapatite plates containing pores with different geometries in vitro. Gamsjäger

et al. [7] have extended this model to account for surface stress, showing that tissue growth is

higher on concave surfaces than on convex ones using hydroxyapatite substrates. Studies have

translated these findings into computational models that have been shown to accurately pre-

dict the growth of tissue on complex, three-dimensional geometries [8].

Currently, one of the greatest challenges faced by tissue engineering is the inability to effi-

ciently vascularize tissue engineering constructs [9]. The failure to extensively vascularize bio-

materials following implantation results in limited nutrient and waste exchange to cells within

the implant, which can ultimately result in necrotic core formation and implant failure [10].

This challenge of vascularization has limited the size of defects that can currently be repaired

using bioceramic scaffolds, restricting the prospect of bone tissue engineering as a means to

replace large bone defects. Several approaches have been taken to tackle this issue, such as

embedding or functionalizing scaffolds with pro-angiogenic factors such as vascular endothe-

lial growth factor (VEGF) [11] or basic fibroblast growth factor (bFGF) [12].

Co-cultures of endothelial cells and osteoblasts, or osteoblast-like cells, have been shown to

result in the self-assembly of endothelial cells into microvessel-like tubular structures in vitro,

which could act as functional vasculature, as demonstrated by the presence of a lumen [13].

These structures have been shown to successfully anastomose with host vasculature following

implantation [14]. This method of in vitro vascularization has been proposed to be both a use-

ful model for in vivo vascularization and a clinically useful tool for pre-vascularizing biomate-

rial constructs prior to implantation using patient-derived cells [15]. Multiple studies have

mentioned the effect of architecture on angiogenesis or neovascularization in vivo [16, 17].

However, none of these studies have compared architectures in a systematic way by indepen-

dently varying individual architectural parameters. Further, none of these studies involve self-

assembly of microcapillary-like structures using co-cultures, a distinct process from sprouting

angiogenesis in vivo with promising prospects for clinical use.

The purpose of this study is to explore the effect of macro-architecture on microcapillary-

like structure formation and organization on architecturally controlled biphasic (hydroxyapa-

tite/α-tricalcium phosphate) bioceramic substrates using co-cultures. Modulating the forma-

tion of self-assembled microcapillary-like structures using macro-architecture would benefit

the production of pre-vascularized biomaterials for clinical use. We show that concavities

allow the patterning of angiogenesis by controlling the position and direction of microcapil-

lary-like structures on bioceramic surfaces.

Materials and methods

Fabrication of negative molds using curable silicone

Desired architectures were designed using freely available computer aided design (CAD) soft-

ware SketchUp (Trimble Navigation, USA). An overview of the chosen architectures can be

seen in Fig 1. Architectural designs were inspired by previous studies on biological response to

architecture [6, 7, 18]. The combination of architectures was selected to allow systematically

testing the effect of concave versus convex features as well as the effects of radius of curvature

and depth of concavities. Flat samples were used as controls. All surfaces were designed on 6.8

mm x 8 mm rectangles. Parts were 3D printed and mail delivered by Shapeways (NL) in the

material Frosted Extreme Detail Plastic. This material was printed at a very high resolution

using Multi-Jet Modeling (MJM) process, allowing for a 16 μm layer height. Negative molds of
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the resulting plastic architectures were cast using Polycraft GP-3481-F Silicone Rubber (MB

Fibreglass, UK) using a 1:10 ratio of curing agent to liquid silicone, as indicated by the manu-

facturer’s instructions, and cured overnight.

Bioceramic surface fabrication

Hydroxyapatite powder with a 10 μm particle size was purchased from Sigma Aldrich (UK).

The original hydroxyapatite powder used was phase-pure but was found to decompose into α-

TCP upon heat treatment. The powder was calcined at 900˚C for one hour with a heating rate

of 5˚C /min and a cooling rate of 4˚C /min. Calcination was performed in humidified argon

atmosphere.

The particle size distribution of the suspension was analyzed using a MasterSizer (Malvern

Instruments Ltd., UK). A slurry was made by adding gelatin from bovine skin (Sigma Aldrich,

UK) to a 50 weight% hydroxyapatite suspension in water. The gelatin was added as a binder to

the hydroxyapatite suspension at a concentration of 0.03 g/mL and dissolved by briefly heating

the slurry at 70˚C and carefully mixing. The resulting slurry was used to cast the silicone

molds, dried overnight and sintered at 1200˚C for one hour with a heating rate of 5˚C /min

and a cooling rate of 4˚C /min in humidified argon atmosphere.

Characterization of hydroxyapatite powders and surface architectures

For scanning electron microscopy (SEM) imaging, hydroxyapatite powders and sintered sam-

ples were gold-coated and imaged using a 5800LV scanning electron microscope (JEOL, USA)

at a 10 kV operating voltage. X-ray diffraction (XRD) was performed on calcined powders and

final sintered samples. XRD was performed using a Philips PW1820 Theta/2-Theta diffractom-

eter with Bragg-Brentano para-focusing geometry.

Co-culture experiments

Human dermal microvascular endothelial cells (HDMEC) and human osteoblasts (hOBs)

were purchased from PromoCell GmbH (Germany). HDMECs were cultured in Endothelial

Basal Medium MV (PromoCell) supplemented with 15% FBS (Sigma Aldrich, UK), 10 μg/mL

heparin sodium salt from porcine mucosa (Sigma Aldrich, UK), 2.5 ng/mL human recombi-

nant bFGF (Gibco, UK) and penicillin/streptomycin (Sigma Aldrich, UK) according to the

protocol of Unger et al. [13]. hOBs were cultured in complete Osteoblast Growth Medium

(PromoCell GmbH, Germany). Cells were passaged at high confluence (> 90%) and split to

low ratios (generally 1:3) to avoid loss of phenotype.

All samples were used in triplicate and all co-cultures were grown in HDMEC media. Sam-

ples were sterilized by heating at 200˚C, placed in low adhesion 24-well plates and washed

once with PBS (Gibco, UK). Samples were pre-incubated in endothelial media before seeding

to avoid cell localization being affected by capillarity. 71,250 of each HDMECs and hOBs at

passage 6 were seeded in each well and allowed to attach overnight. Total cell densities were

chosen based on the co-culture protocol by Unger et al. (2007). A 1:1 cell ratio was established

to be optimal with the specific cells being used in previous optimization experiments. Higher

passage numbers were avoided to prevent phenotype loss. Samples were subsequently moved

to fresh wells after which media was changed every 2–3 days.

Fig 1. Designs of 3D printed architectures used to explore the effects of concavities and convexities on microcapillary-like structure self-assembly. Designs

can be divided into large radii of curvature of 400 μm (A, C and E) and small radii of curvature of 200 μm (B, D and F). For each radius of curvature there is a

standard concavity sample (A and B), a deep concavity sample (C and D) and a convex equivalent sample (E and F). Deep concavities had a cross section in which

the semi-circular concavity had an additional depth equivalent to the radius of curvature.

https://doi.org/10.1371/journal.pone.0210390.g001
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Immunofluorescence and imaging

At day 7, samples were washed once with PBS and fixed using 4% paraformaldehyde solution

in PBS (Affymetrix, UK) for 10 minutes at room temperature. Samples were washed three

times with PBS. Samples were blocked in 1% BSA (Sigma Aldrich, UK) for one hour and

stained using anti-human CD31 pre-conjugated Alexa 488 antibody (BioLegend, UK) at a

1:100 dilution for one hour and DAPI (Sigma Aldrich, UK) at a 1:5000 dilution. Samples were

washed with PBS and immobilized on 24 well plate wells using Vectashield antifade mounting

medium (Vector Laboratories Ltd, UK).

All imaging was performed using an Opera PhenixTM High-Content Screening System

(Perkin-Elmer, USA) using a 5x objective. This imaging system allows for high throughput

imaging of entire 24-well plates.

Image analysis of directionality

Image stacks were reconstructed using Wagner (https://github.com/gurdon-institute/Wagner/

releases/tag/v1.0). Whole sample fluorescent image stacks were analyzed to quantify microca-

pillary-like structure alignment using the ImageJ Directionality plugin.

Stacks were rotated so that the groove direction corresponded to 0˚, and cropped to a size of

5740 μm x 5023 μm (2400 x 2100 pixels) to exclude sample edges. The background signal was sub-

tracted from maximum intensity projections using a rolling ball radius of 50 pixels. For alignment

quantification, Directionality plugin (Tinevez, release 2.0.2) results using Fourier component anal-

ysis were compared with groove orientation. The degree of alignment (DOA) was defined as the

ratio of the signal along the grooves (0˚) to the signal perpendicular to the grooves (90˚).

Image analysis of endothelial structure localization

Rotated stacks were cropped to a size of 5740 μm x 5023 μm (2400 x 2100 pixels) to exclude

sample edges and the background signal was subtracted from maximum intensity projections

using a rolling ball radius of 50 pixels. The image thresholds were adjusted by auto-contrasting

before converting them to 8-bit grayscale. Phansalkar thresholding was applied using a radius

of 5 pixels. Finally, all particles with sizes below 400 μm2 were removed. Images rotated to

have vertical grooves were analyzed to produce vertically averaged pixel intensity data across

the sample length.

In order to detect grooves, we developed the image plugin GrooveJ (https://github.com/

gurdon-institute/GrooveJ/releases/tag/v1.1.0). A line width for depth profiles of 300 μm, a cur-

vature of 0.4, a rolling Z window of 100 μm, a Z threshold of 0.5, a slope factor of 0.35, and a

depth weighting of 0.01 were used. Lines for groove detection were drawn across the sample in

the central region of the cropped sample stacks. Groove detection data and vertically averaged

pixel intensity data were imported and analysed using Matlab (MathWorks, Inc., Natick, MA,

United States). The degree of containment (DOC) was defined as the ratio of the average signal

intensity in grooves (total signal in grooves normalized to the total cross-sectional length of

grooves) to the average signal intensity outside of grooves (total signal outside of grooves nor-

malized to the total cross-sectional length of regions outside grooves). For convex ridges,

grooves were considered as the regions between convexities.

Results

Characterization of hydroxyapatite powders and surface architectures

Particle sizing of calcined powders showed a particle size distribution with a d(0.1) of 3.77 μm,

a d(0.5) of 10.91 μm and a d(0.9) of 33.04 μm. While the original powder was found to be
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phase-pure hydroxyapatite according to XRD analysis, it progressively decomposed into α-

TCP upon heat treatment. The ratio of the highest α-TCP peak and the highest hydroxyapatite

peak, respectively at 2θ values of 30.75˚ and 31.77˚, were used as an estimation of the relative

weight ratio of the two phases [19]. Calcined hydroxyapatite powder was found to have

approximately 2.0% α-TCP content, whereas final sintered structures were found to have

approximately 20.3% α-TCP. Powder particles had smooth spherical surfaces (Fig 2A), which

packed to produce a homogenous surface topography (Fig 2B). The original powder morphol-

ogy is visible in the final sintered structures (Fig 2C).

Fig 3 shows final biphasic bioceramic structures. The use of liquid silicone for the produc-

tion of molds allowed the fabrication of high-resolution architectures with high fidelity to orig-

inal designs. Shrinking resulted in large features (Fig 3A, 3C and 3E) having a diameter of

660 μm and a periodicity of 1240 μm. Large concavities (Fig 3A) and large convexities (Fig 3E)

had a depth/height of 300 μm and large deep concavities (Fig 3C) had a depth of 585 μm.

Small features (Fig 3B, 3D and 3F) had a diameter of 330 μm and a periodicity of 630 μm.

Small concavities (Fig 3B) and small convexities (Fig 3F) had a depth/height of 150 μm and

small deep concavities (Fig 3D) had a depth of 300 μm. The MJM method used for original

plastic parts resulted in a characteristic surface micro-structure due to liquid droplet deposi-

tion observable in ceramic replicates. This characteristic was particularly visible in flat samples

when imaged using SEM (Fig 3G).

Architectural effects on microcapillary-like structure self-assembly

Macro-architecture significantly influenced the location, shape and alignment of self-assem-

bled microcapillary-like structures (Fig 4). For concave samples (Fig 4A, 4B, 4D and 4E),

microcapillary-like structures formed predominantly in concavities. In large concavities (Fig

4A), the microcapillary-like structures formed highly branched networks predominantly

located inside grooves. Microcapillary-like structures were also found to form in flat areas of

these samples, with a higher alignment with groove direction. Small grooves (Fig 4D) also

resulted in endothelial cell structures predominantly located within the grooves. However,

these structures were less defined and were present in smaller areas of the samples. Wider con-

cavities (Fig 4A and 4B) were found to produce microcapillary-like structures with more lat-

eral branching than narrower concavities (Fig 4D and 4E).

Deep concavities resulted in more contained microcapillary-like structures (Fig 4B and 4E)

compared with shallower concavities (Fig 4A and 4D). Large deep concavities often resulted in

the formation of endothelial cell structures larger than individual microcapillary-like

Fig 2. SEM micrographs of ceramic materials. Images show original hydroxyapatite powder particles (A) and final sintered structures (B and C). Scalebars are (A) 10 μm,

(B) 50 μm and (C) 3 μm.

https://doi.org/10.1371/journal.pone.0210390.g002
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structures (Fig 4B). Small deep concavities resulted in individual, highly aligned, microcapil-

lary-like structures almost exclusively inside concavities (Fig 4E).

For both large and small convexities (Fig 4C and 4F), microcapillary-like structures formed

between convexities. The tops of concavities almost completely inhibited microcapillary-like

structure network continuity. Flat control samples displayed fewer, disorganized microcapil-

lary-like structures (Fig 4G). Whole sample images can be found in Supplementary Material

(S1 Fig). The striated micro-structure resulting from the MJM process particularly evident in

flat samples (Fig 3G) was not found to result in any observable effects on cell behavior.

Fig 3. SEM micrographs of sintered bioceramic structures. Images show (A) large concavities, (B) small concavities, (C) large

deep concavities, (D) small deep concavities, (E) large convexities, (F) small convexities and (G) flat controls. Scalebars are 600 μm.

https://doi.org/10.1371/journal.pone.0210390.g003

Fig 4. Confocal images of co-cultures stained with DAPI and immunofluorescently stained for CD31 to show self-assembled microcapillary-like structures. Images

display microcapillary-like structures on (A) large concavities, (B) large deep concavities, (C) large convexities, (D) small concavities, (E) small deep concavities, (F) small

convexities and (G) flat controls. Red profiles illustrate substrate architecture. Scalebars are 500 μm.

https://doi.org/10.1371/journal.pone.0210390.g004
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Image analysis for CD31 signal quantification

The results from the degree of alignment (DOA) and the degree of containment (DOC) analy-

sis are shown in Fig 5A and 5B respectively. Flat samples resulted in an average DOA close to

1, as would be expected from random signal alignment. All patterned architectures were found

to align microcapillary-like structures, with the lowest DOA being 2.69 for large convexities.

Low DOAs can be explained as more random vessel alignment or higher degrees of lateral

branching. The Kruskal-Wallace test showed multimodal distributions for both DOA and

DOC (P<0.05). Dunn’s post-hoc test indicated that DOA values for all other architectures

were significantly different from flat controls (P<0.005 in all cases), while values for large,

large deep, large convex and small architectures were similar overall with only large convexities

and small concavities showing a significant difference from each other (P<0.005).The highest

DOA was exhibited by the small deep concavities, in line with imaging result showing the for-

mation of individual, highly aligned microcapillary-like structures in these architectures.

Dunn’s test on the DOC values showed that small deep and small convex architectures had val-

ues larger than other architectures and similar to each other. The significance cutoff used in all

cases was P<0.05.

Details of the image processing procedure, including image binarization and filtering pro-

cedure results, groove detection and signal analysis, can be found in the Supplementary Mate-

rial. The image processing procedure resulted in low background images with no visible loss of

signal (S2 and S3 Figs). Examples of the results of groove detection using GrooveJ and verti-

cally averaged signal profiles for each architecture can be found respectively in S4 and S5 Figs.

DOC measurements displayed similar trends to DOA measurements, with the highest con-

tainment displayed by small convexities and small deep concavities (Fig 5B). Large deep con-

cavities displayed lower DOC scores than expected from the observation that most vessels

Fig 5. DOA and DOC signal analysis measurements. Mean (A) DOA and (B) DOC measurements of CD31 signal of co-cultures grown on bioceramic substrates with

different architectures (n = 3 for each). Error bars indicate standard errors of the means. Measurements were performed on a 5740 μm x 5023 μm area of the maximum

intensity projection of each triplicate. Shading in the DOC structure graphical representations highlights areas that were considered as grooves for signal containment

analysis. Lines at y = 1 indicate random signal alignment for DOA and uniform microcapillary-like structure distribution for DOC. � indicates values found to be

significantly different from other architectures (Kruskal-Wallace with Dunn’s post-hoc test, P<0.05). Mean DOC values for small deep and small convex architectures

are not significantly different from each other.

https://doi.org/10.1371/journal.pone.0210390.g005
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were localized in grooves. This is likely to be the result of vessels growing on groove edges

combined with an overall lower number of vessels, resulting in an underestimation of microca-

pillary-like structures due to a lower signal to noise ratio. This demonstrates some of the limi-

tations in using a signal analysis approach.

Discussion

We show for the first time the effects of systematically varying macro-architecture on microca-

pillary-like structure self-assembly using co-cultures by varying convexity and concavity radius

of curvature and concavity depth. The methods developed can be viewed as a toolkit that can

be extended to other 2.5D architectures and other castable biomaterials to further explore

architectural effects on microcapillary-like structure self-assembly, leading towards a predic-

tive model for architectural optimization for angiogenic control similar to models developed

by Rumpler et al. [6] and Guyot et al. [8] for cell network growth on complex structures.

Our findings on the positive role of concavities are in line with in vivo studies performed by

Scarano et al. [17], who found that vessels concentrate in concavities in threaded titanium

implants in rabbit tibia models. The role of concavities has been previously discussed in the lit-

erature as an inductive geometric cue for bone tissue growth [18, 20]. These studies view con-

cavities as biomimetic signals that mimic trenches left by osteoclasts during the bone

resorption process and promote hemi-osteon formation. In the context of angiogenesis,

grooves, and particularly small grooves, can be seen as biomimetic cues analogous to Haver-

sian canals, which host vasculature in the bone structure.

Mechanistic explanations for observed architectural effects can be divided into biochemical

and biomechanical hypotheses. Concavities and spaces between convexities can provide locally

higher concentrations of pro-angiogenic factors by acting as physical barriers, as suggested by

Chiu et al. [21] in their use of grooves to direct sprouting outgrowths from mouse vascular

explants. Convexities and concavity edges could also be acting as biomechanical inhibitors by

affecting cell network growth, as suggested by Bidan et al. [18] in their “chord model” repre-

sentation of cell layers acting as tensile networks that illustrated the inhibitory effect of convex-

ities on cell growth. Computational models would help further elucidate the degree to which

biochemical and biomechanical effects contribute to the clear influence of architecture on

microcapillary-like structure self-assembly. In the context of biomechanics, a useful starting

model could be provided by the differential adhesion hypothesis (DAH). This hypothesis mod-

els tissues composed of different cell types as liquids with different surface tensions resulting

from differences in intercellular adhesion molecules and has been shown to accurately predict

cell morphogenetic and self-assembly processes such as cell segregation [22]. This approach

could be used to model both cell-substrate interactions, as a wetting problem, and the segrega-

tion of endothelial cells from osteoblasts during self-assembly as the interaction between two

fluids with different surface properties. This would allow the combination of the findings

related to curvature-driven growth by Bidan et al. [18] with the findings of Foty and Steinberg

[22] on cell aggregate surface tension effects on cell segregation and self-assembly.

Combining architectural control with cellular self-assembly allows the production of more

extensive networks in shorter time-scales than achievable through sprouting angiogenesis.

Chiu et al. [21] reported the directed growth of explant outgrowths over distances up to

700 μm in 14 days. Sprouting angiogenesis is a distinct process from microcapillary-like struc-

ture self-assembly used in this study, in that it relies on the gradual growth of a tubule from a

vascular structure “source”. Here, the microcapillary-like structures produced using small

deep concavities, for example, spanned approximately 5 millimeters after only 7 days (S1D

Fig) with no exogenous angiogenic stimuli. Use of in situ cell self-assembly allows the
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production of more extensive microcapillary-like structures by overcoming the higher time-

dependence of sprouting angiogenesis.

We showed that architecture can be used to control both the localization and orientation of

self-assembled microcapillary-like structures. Architecture alone is sufficient to regulate

microcapillary-like structure growth, thus allowing for a more elegant and biologically con-

trolled way of directing vascularization into the core of a scaffold than methods such as bio-

molecule encapsulation. The very promising results here have been obtained by systematically

comparing six architectures. This process can be viewed as a toolkit that can easily be extended

to systematically screen more 2.5D architectures in a high throughput manner by changing the

original 3D printed part design.

Further, this work has important implications for additive manufacturing techniques used

for biomaterial production. Extrusion technology is commonly employed as a way of produc-

ing bioceramic and soft biomaterial constructs. This method inherently produces convex sur-

faces, which would not be favorable for microcapillary-like structure self-assembly. More

importantly, this work has important clinical implications, with architecture allowing more

efficient vascularization by directing vascular structures to the core of biomaterials, thus over-

coming the issue of core degradation in implanted constructs.

Conclusions

Six architectures consisting of concave grooves and convex ridges were used to systematically

screen structural effects at a scale of hundreds of microns on microcapillary-like structure self-

assembly by varying radius of curvature and depth. Architecture at a scale much larger than

individual cells was found to significantly affect microcapillary-like structure self-assembly

down to individual microcapillary-like structure control in small deep grooves. Microcapil-

lary-like structure networks were found to form predominantly in concavities and between

convexities, with convex structures inhibiting network continuity. Both ridges and grooves

were found to affect both CD31 signal localization and directionality.

The work presented constitutes an accessible toolkit that can be employed for the produc-

tion of high-resolution bioceramic architectures and the screening of architectures for their

angiogenic potential. A more comprehensive screen of architectural effects on microcapillary-

like structure self-assembly with systematic parameter variation will allow uncovering the pre-

cise mechanism for architectural effects. Results obtained showing architectural control of

microcapillary-like structure self-assembly can be viewed both as a model for in vivo biomate-

rial vascularization and as a tool to better control in vitro pre-vascularization of constructs for

later implantation. This could lead towards the ability to engineer vasculature by locally opti-

mizing architecture for desirable microcapillary properties.

Supporting information

S1 Fig. Whole sample confocal images of co-cultures stained with DAPI and immunofluor-

escently stained for CD31. Images show self-assembled microcapillary–like structures on (A)

large concavities, (B) small concavities, (C) large deep concavities, (D) small deep concavities,

(E) large convexities, (F) small convexities and (G) flat controls. Scalebars are 1 mm.

(TIF)

S2 Fig. Binarization procedure output examples. Demonstration of the developed binariza-

tion procedure’s ability to detect microcapillary-like structures in two distinct architectures:

large concavities (top) and small deep concavities (bottom). Images are 2.58 mm x 2.58 mm.

(TIF)

Engineering vasculature: Architectural effects on microcapillary-like structure self-assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0210390 January 8, 2019 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210390.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210390.s002
https://doi.org/10.1371/journal.pone.0210390


S3 Fig. Binarization procedure example. Example of the binarization pipeline applied to an

individual tile illustrating the effect of each step on the vertically averaged signal profile. Over-

all signal is maintained with a lowering of baseline background to levels close to zero for

images after particle removal, demonstrating no significant loss of information. Images are

2.58 mm x 2.58 mm.

(TIF)

S4 Fig. Groove detection results by GrooveJ plugin used for signal localization measure-

ments. Images show sample results for (A) large concavities, (B) small concavities, (C) large

deep concavities, (D) small deep concavities, (E) large convexities and (F) small convexities.

(TIF)

S5 Fig. Signal localization analysis used for DOC measurements. Vertically averaged signal

results superimposed to detected grooves in pink for one sample of each (A) large concavities,

(B) small concavities, (C) large deep concavities, (D) small deep concavities, (E) large convexi-

ties and (F) small convexities.

(TIF)
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presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. Jour-

nal of controlled release. 2014 Jun 28; 184:58–66. https://doi.org/10.1016/j.jconrel.2014.04.007 PMID:

24727077

12. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of

three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth

factor microspheres. Journal of Biomedical Materials Research Part A: An Official Journal of The Soci-

ety for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomateri-

als and the Korean Society for Biomaterials. 2003 Jun 15; 65(4):489–97.

13. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, et al. Tissue-like self-assembly in

cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on

three-dimensional porous biomaterials. Biomaterials. 2007 Sep 1; 28(27):3965–76. https://doi.org/10.

1016/j.biomaterials.2007.05.032 PMID: 17582491

14. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, et al. The rapid anastomosis

between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human

microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials. 2010 Sep 1; 31

(27):6959–67. https://doi.org/10.1016/j.biomaterials.2010.05.057 PMID: 20619788

15. Kirkpatrick CJ, Fuchs S, Unger RE. Co-culture systems for vascularization—learning from nature.

Advanced drug delivery reviews. 2011 Apr 30; 63(4–5):291–9. https://doi.org/10.1016/j.addr.2011.01.

009 PMID: 21281686

16. Henry JA, Burugapalli K, Neuenschwander P, Pandit A. Structural variants of biodegradable polyester-

urethane in vivo evoke a cellular and angiogenic response that is dictated by architecture. Acta Bioma-

terialia. 2009 Jan 1; 5(1):29–42. https://doi.org/10.1016/j.actbio.2008.08.020 PMID: 18823827

17. Scarano A, Perrotti V, Artese L, Degidi M, Degidi D, Piattelli A, et al. Blood vessels are concentrated

within the implant surface concavities: a histologic study in rabbit tibia. Odontology. 2014 Jul 1; 102

(2):259–66. https://doi.org/10.1007/s10266-013-0116-3 PMID: 23783569

18. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Bréchet YJ, Fratzl P, et al. How linear
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