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Abstract

Motivated by small-sample studies in ophthalmology and dermatology, we study the problem of simultaneous inference

for multiple endpoints in the presence of repeated observations. We propose a framework in which a generalized

estimating equation model is fit for each endpoint marginally, taking into account dependencies within the same subject.

The asymptotic joint normality of the stacked vector of marginal estimating equations is used to derive Wald-type

simultaneous confidence intervals and hypothesis tests for multiple linear contrasts of regression coefficients of the

multiple marginal models. The small sample performance of this approach is improved by a bias adjustment to

the estimate of the joint covariance matrix of the regression coefficients from multiple models. As a further small

sample improvement a multivariate t-distribution with appropriate degrees of freedom is specified as reference

distribution. In addition, a generalized score test based on the stacked estimating equations is derived. Simulation

results show strong control of the family-wise type I error rate for these methods even with small sample sizes and

increased power compared to a Bonferroni-Holm multiplicity adjustment. Thus, the proposed methods are suitable to

efficiently use the information from repeated observations of multiple endpoints in small-sample studies.
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1 Introduction

In empirical studies where for each subject multiple endpoints are observed, it is often of interest to identify
predictive factors for several of these endpoints. To this end, regression models for the different endpoints can be
defined to test respective null hypotheses on the model parameters. However, if for each endpoint, one (or more)
hypotheses are tested, a multiple testing problem arises and adjustments for multiplicity are required to control,
for example, the family wise type I error rate (FWER).

In this manuscript, we focus on settings where all or some of the multiple endpoints are measured repeatedly and
derive multiple testing procedures and simultaneous confidence intervals that account for the correlation between the
endpoints as well as the correlation between the repeated measurements of each endpoint. The endpoints may be on
different scales (we particularly consider continuous, binary and count data), and the regression models may differ
across endpoints. The proposed tests improve the Bonferroni test which is typically strictly conservative.

The testing procedures are based on generalized estimating equation (GEE) models1 that are separately fitted
for each endpoint. Thereby each model accounts for the dependencies between repeated observations of the
according endpoint.

We use a representation of stacked estimating equations to show joint multivariate asymptotic normality of the
regression coefficient estimators from different models and to estimate their covariance matrix, such that
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parametric inference methods based on a multivariate normal approximation can be applied. The method
generalizes the approach by Pipper et al.2 who used stacked estimating equations for multiple generalized linear
models and Rochon3 who studied the case of repeated bivariate measurements comprising a continuous and a
binary endpoint. Jensen et al.4 applied a similar representation to multiple linear mixed models for repeatedly
observed continuous endpoints. Also see Verbeke et al.5 for a recent review on the analysis of multivariate
longitudinal data.

While inference based on the multivariate normal approximation can be justified for large sample sizes by
asymptotic arguments,6 it may be inaccurate for smaller samples. In particular, the bias and variability of nuisance
parameter estimates are neglected in purely asymptotic methods, resulting in too liberal inference procedures.
To improve the small sample properties of Wald tests, we generalize bias-adjustment procedures proposed for
covariance matrix estimators in single GEE models,7 to the case of multiple marginal GEE models. Furthermore,
similar to the studies by Hasler and Hothorn8 and Pan and Wall,9 we use multivariate t- and F-distributions to
better control the type I error rate. We further propose a maximum-type generalized score test and show via
simulation that it is a viable small sample alternative to the Wald test.

The paper is structured as follows: In Section 2, multiple marginal GEE models and a bias-adjusted covariance
matrix estimator are introduced. In Section 3, we define Wald and score test statistics to test multiple linear
contrasts and derive corresponding simultaneous confidence intervals. In Section 4, the proposed methods are
applied to a retina disease study. Furthermore, in Section 5, we investigate the small sample properties of the
proposed methods in a simulation study. Finally, in Section 6, we conclude with a discussion.

2 Multiple marginal GEE models

2.1 The statistical model

Assume that multiple endpoints (outcome variables) indexed by m¼ 1,...,M are observed in subjects with index
i¼ 1,...,K. Observations between different subjects are assumed to be independent. However, we allow for repeated
observations, indexed by j ¼ 1, . . . , niðmÞ , of the m-th endpoint within subjects such that Y

ðmÞ
ij denotes the j-th

observation of endpoint m in subject i. Let x
ðmÞ
ij be a row-vector of covariates that is of length pðmÞ and bðmÞ a

vector of regression coefficients.
Each endpoint m¼ 1 ,. . .,M is modeled with a separate generalized linear regression model for the mean

�ðmÞij ¼ EðY
ðmÞ
ij Þ ¼ gðmÞ

�1
ðx
ðmÞ
ij bðmÞÞ with link function gðmÞ, where the variance of Y

ðmÞ
ij is modeled as

varðY
ðmÞ
ij Þ ¼ �ð�

ðmÞ
ij Þ�

ðmÞ, where m is a variance function depending only on �ðmÞij and �ðmÞ is a scale parameter.

In typical applications, the link function and the variance function are derived from the canonical
representation of an exponential family model.10 Throughout the manuscript, we assume that regression
coefficients and nuisance parameters are unique to one model and not shared between any two models. The
models for different endpoints are estimated independently, see Section 7 for a discussion on alternative
approaches of joint estimation.

2.2 Generalized estimating equations

To account for dependencies between repeated observations within the same subject, the regression coefficients
bðmÞ and their covariance matrix are estimated based on the generalized estimating equation approach.1 Thus, the
estimate b̂ðmÞ is given by the solution of the generalized estimating equation

UðmÞðbðmÞÞ ¼
XK
i¼1

U
ðmÞ
i ðb

ðmÞÞ ¼ 0 ð1Þ

with subject-wise contributions U
ðmÞ
i ¼ D

ðmÞT

i V
ðmÞ�1

i S
ðmÞ
i . Here, S

ðmÞ
i ¼ Y

ðmÞ
i � l

ðmÞ
i is a vector of residuals.

V
ðmÞ
i ¼ A

ðmÞ1=2

i R
ðmÞ
i ðaÞA

ðmÞ1=2

i �ðmÞ is a working covariance matrix with A
ðmÞ
i ¼ diag

�
vð�ðmÞij Þ

�
the diagonal matrix of

variance functions and R
ðmÞ
i the working correlation of Y

ðmÞ
i . R

ðmÞ
i is parametrized via a parameter vector aðmÞ

(which typically is of small dimension compared to the number of entries in RðmÞ). D
ðmÞ
i ¼

@lðmÞ
i

@bðmÞ

� �T
, and in an

exponential family model with canonical link D
ðmÞT

i ¼
@lðmÞ

i

@bðmÞ
¼ X

ðmÞT

i A
ðmÞ
i , with X

ðmÞT

i ¼ x
ðmÞ
i1

T
, . . . , x

ðmÞ
ini

T
� �

.
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Given bðmÞ, the parameters aðmÞ and �ðmÞ may be consistently estimated from the residuals S
ðmÞ
i , i ¼ 1, . . . ,K by

moment estimators.1 Given aðmÞ and �ðmÞ, an estimate for bðmÞ is found as solution to equation (1). Iteration of these

two estimation steps results in a consistent estimate b̂ðmÞ such that asymptotically K1=2ðb̂ðmÞ � bðmÞÞ is multivariate
normal (Theorem 2 in Liang and Zeger1). A consistent estimator for the covariance matrix of the limiting normal

distribution as proposed in Liang and Zeger1 is 1
K Ĥ
ðmÞ

� ��1
1
K B̂
ðmÞ 1

K Ĥ
ðmÞ

� ��1
. Here, B̂ðmÞ ¼

PK
i¼1 U

ðmÞ
i U

ðmÞ
i T and

ĤðmÞ ¼ �
PK

i¼1 D
ðmÞ
i

T
V
ðmÞ�1

i D
ðmÞ
i both evaluated at b̂ðmÞ, with 1

K Ĥ
ðmÞ converging to 1

KH
ðmÞ ¼ 1

K
@UðmÞðbðmÞÞ

@bðmÞ
. The

asymptotic results for b̂ðmÞ do not require that the working correlation Ri matches the true correlation of Yi;

however, the efficiency of b̂ increases if Ri is close to the true correlation.

Note that in case the mean model is misspecified, b̂ðmÞ will typically converge to a vector b(m) that defines the
model within the chosen mean structure that best approximates the true model in the sense of minimized
Kullback-Leibler distance.11,12 In that case, the proposed methods provide inference on the parameters of the
approximating model.

2.3 Multiple marginal models

We are interested in simultaneous inference on the regression coefficient vectors bð1Þ, . . . , bðMÞ and approximate the

joint distribution of the stacked vector b̂ ¼ ðb̂ð1ÞT, . . . , b̂ðMÞTÞT by a multivariate normal distribution based on the
framework of Pipper et al.2

By equation (1), b̂ (together with the marginal model estimates for the nuisance parameters aðmÞ and
�ðmÞ,m ¼ 1, . . . ,M) is the solution to the stacked estimating equation

U ¼

Uð1Þ

..

.

UðMÞ

0
BB@

1
CCA ¼XK

i¼1

U
ð1Þ
i

..

.

U
ðMÞ
i

0
BB@

1
CCA ¼XK

i¼1

Ui ¼ 0 ð2Þ

Similar to the case of a single GEE model, for increasing number of subjects K,
ffiffiffiffi
K
p
ðb̂� bÞ converges to a

multivariate normal distribution with mean zero and covariance matrix limp
1
K
@UðbÞ
@b

� ��1
1
K

PK
i¼1 UiðbÞUiðbÞ

T
� �

1
K
@UðbÞ
@b

� ��1
provided b̂ is consistent for b and certain regularity conditions are met. Here limp denotes the limit

in probability when K goes to infinity. Consistency of b̂ follows if b̂ðmÞ is consistent for bðmÞ for all m¼ 1,. . .,M. The
essential regularity conditions concern the derivatives of U with respect to b (see Chapter 5.3 in the book by Van

der Vaart6 and Chapter 9.1 in the book by Cox and Hinkley13). However, the matrix of first derivativesH ¼ @UðbÞ
@b is

a block diagonal matrix of the matrices HðmÞ ¼ @UðmÞðbðmÞÞ

@bðmÞ
. Hence, conditions such as existence of derivatives, a

dominating function, expectation and a matrix-inverse are inherited if they are met by all marginal models.

An estimate of the covariance matrix of b̂ is given by

D̂ ¼ Ĥ�1B̂Ĥ�1 ¼

Ĥ
ð1Þ�1

B̂
ð1,1Þ

Ĥ
ð1Þ�1

. . . Ĥ
ð1Þ�1

B̂
ð1,MÞ

Ĥ
ðMÞ�1

..

. . .
. ..

.

Ĥ
ð1Þ�1

B̂
ðM,1Þ

Ĥ
ðMÞ�1

. . . Ĥ
ðMÞ�1

B̂
ðM,MÞ

Ĥ
ðMÞ�1

0
BB@

1
CCA ð3Þ

where B̂ ¼
PK

i¼1 Uiðb̂ÞUiðb̂Þ
T is calculated from the stacked vectors Ui. The components B̂ðm,m0Þ ¼PK

i¼1 U
ðmÞ
i ðb̂

ðmÞÞUm0

i ðb̂
ðm0ÞÞ

T correspond to the empirical correlation between the contributions of a subject to the

estimating equations of models m,m0. Ĥ is a block diagonal matrix with block elements ĤðmÞ ¼ @UðmÞðb̂
ðmÞ
Þ

@bðmÞ
that are the

corresponding estimates from the marginal models. The resulting multiple model sandwich variance estimator
maintains the marginal GEE sandwich variance estimators in the diagonal blocks, while the off diagonal blocks
contain estimates for the covariances between estimated regression coefficients from different models.
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2.3.1 Bias-adjusted covariance estimator

The covariance matrix estimator in GEE models is consistent but it is in general not unbiased. With small sample
sizes, the variances may be underestimated which leads to an inflation of the type I error rate of hypothesis tests
and to confidence intervals with coverage less than the nominal 1 – � level. Based on the bias-adjusted estimator
proposed by Mancl and DeRouen7 (see also Wang et al.14) for a single GEE model, we derive a bias-adjusted
covariance estimator for multiple models, given by

D̂adj ¼ Ĥ�1B̂adjĤ
�1 ð4Þ

where B̂adj ¼
PK

i¼1 D
T
i V
�1
i ðIi � P̂iiÞ

�1SiS
T
i ðIi � P̂iiÞ

�1V�1i Di and P̂ii ¼ DiĤ
�1DT

i V
�1
i and Ii is the identity matrix

with matching dimension. See the supplemental material Section S.1 for details. The matrices Di, Vi and,

consequently, P̂ii are block diagonal with block elements D
ðmÞ
i , V

ðmÞ
i , P̂

ðmÞ
ii , m ¼ 1, . . . ,M, respectively. D̂adj

contains in the diagonal blocks the bias-adjusted variance matrix estimators that would result from separate
marginal models and the off-diagonal blocks contain bias-adjusted estimates of the covariances between
regression coefficient estimates from different models.

2.4 Missing data

Values of some Y
ðmÞ
ij or x

ðmÞ
ij may be missing in an actual data set. As for single GEE models,1 b̂ is consistent

for b if some observations are missing completely at random (MCAR), i.e. missingness is completely independent
from any missing or non-missing values of the included variables, and each model is fit with the respective
available data. Also, inference based on the asymptotic normality of the stacked score vector U stays
unaffected under MCAR. If a subject i has to be excluded entirely from the model for the m-th endpoint due
to missing data, the realization of the respective contribution to the estimating equation is treated as U

ðmÞ
i ¼ 0 in

equations (1) and (2) and subsequent calculations. Note that this does not bias the estimated covariance matrix (3)
or (4) as the effective sample size enters these equations in terms of the observed information Ĥ�1 and not the
number of clusters.

If data are missing at random (MAR), i.e. the missingness may depend on non-missing values of observed
variables, residuals may be biased. Consequently, a model fit with available data may result in biased and
inconsistent estimates. This bias may be counteracted by weighing observed residuals with the inverse
probability of non-missingness of the given data point. Under MAR, these probabilities may in principle
be estimated from the observed data. There are different ways to introduce weights in the generalized
estimating equation.15–18 Our software implementation, discussed in Section 6, allows for weights that resemble
a scale factor for each observation, similar to the GENMOD procedure in SAS.19 Here, subject-wise
contributions to a correspondingly weighted generalized estimating equation are of the form
D
ðmÞT

i W1=2
i V

ðmÞ�1

i W1=2
i S

ðmÞ
i , where Wi is a diagonal matrix of weights for the observations of subject i. When all

observations of a subject receive the same weight, this formulation is equivalent to the cluster-weighted GEE
proposed by Fitzmaurice and Laird.15 With an identity working correlation, it is equivalent to the weighted GEE
proposed by Robins et al.16

3 Maximum-type tests and quadratic form tests for linear hypotheses

Consider a null hypothesis of the form H0 : Lb� r ¼ 0, where L is a matrix of linear constraints with c rows and
number of columns equal to the length of b and r is a vector of matching dimension. Each row of this equation
corresponds to an elementary null hypothesis Hi : ðLbÞi ¼ ri, i ¼ 1, . . . , c. Furthermore, assume that Lb ¼ r has at
least one solution in b. In Section 3.1, we construct asymptotic hypothesis tests for the global null hypothesis H0

that are based on the maximum of multivariate Wald statistics, and we propose adjustments of the tests for small
samples. In Section 3.2, a maximum test based on score statistics is proposed. In Section 3.3, we discuss Wald and
score tests for H0 that are based on quadratic forms. In Section 3.4, the closed testing principle is applied to
construct multiple testing procedures, allowing for decisions on intersection and elementary hypotheses with type I
error rate control. Furthermore, simultaneous confidence intervals for ðLbÞi, i ¼ 1, . . . , c corresponding to a single
step multiple testing procedure are derived.
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3.1 Maximum-type Wald test

The maximum test rejects H0 if

max
i¼1, ..., c

Lb̂
� �

i
� ri

� ��
^SEi

����
����4 q1��

where we use the normal approximation
ffiffiffiffi
K
p
ðLb̂� LbÞ � Nð0,KLD̂LTÞ to define the critical value q1�� as the

solution of Pðmaxi¼1, ..., cjZij � q1��Þ ¼ 1� �.20 Here, Z denotes a c-dimensional multivariate normal variable with

mean 0, unit variances and correlation structure given by LD̂LT, such that covðZÞ ¼ diagðŜEÞ�1LD̂LTdiagðŜEÞ�1,

where the vector of standard errors ŜE is given by the square roots of the diagonal entries of LD̂LT. Similarly, the

p-value for the maximum test is defined as Pðmaxi¼1, ..., cjZij � maxi¼1, ..., cjððLb̂Þi � riÞ= ^SEijÞ.

L may be below full rank since the quantile q1�� is also defined for a degenerate multivariate normal
distribution with singular covariance matrix.

3.1.1 Small sample improvements

For small samples, the type I error rate of the above test can be considerably greater than the nominal level. As a

first small sample improvement, the bias-adjusted covariance estimate D̂adj (equation (4)) may be used instead of D̂

(equation (3)). Furthermore, to also account for the variability of the covariance estimators, the critical value q1��
of the multivariate normal distribution can be replaced by the critical value t1�� of a multivariate t-distribution,21

such that Pðmaxi¼1, ..., cjTij � t1��Þ ¼ 1� �, where T is distributed according to a c-dimensional multivariate

t-distribution with correlation matrix diagðŜEÞ�1LD̂LTdiagðŜEÞ�1 and an appropriate number of degrees of
freedom (df). See the earlier studies7,8,22 for related approaches in the context of multiple contrast tests. As a

simple method to choose the error degrees of freedom, we propose df ¼ minm¼1, ...,MðK� pðmÞÞ where pðmÞ is the
number of regression coefficients in model m (compare with Munzel and Hothorn23). Alternative methods to
choose degrees of freedom for multivariate comparisons are discussed in Section 7.

3.2 Maximum-type score test

We derive the maximum-type generalized score test as an approximation to the Wald test. By first order

approximation, Lb̂� r ¼ Lb̂� Lb � �LH�1UðbÞ. Hence, tests for H0 can be constructed based on the right

hand side �LH�1UðbÞ and its normal approximation under the null hypothesis, Nð0,LH�1BH�1LTÞ. Under a

simple null hypothesis, the true b is known, under a composite null hypothesis, a restricted estimate eb, which
satisfies Leb� r ¼ 0, is plugged in. To estimate the limiting distribution covariance matrix, H and B are replaced by

estimates eH ¼ �DðmÞTi V
ðmÞ�1

i D
ðmÞ
i evaluated at ebðmÞ and eB ¼PK

i¼1 UiðebÞUiðebÞT.
The maximum-type score test rejects H0 if

max
i¼1, ..., c

jðLeH�1UðebÞÞi=fSEij4 ~q1��

Here fSEi is the square root of the i-th diagonal element of LeH�1eBeH�1LT. ~q1�� satisfies Pðmaxi¼1, ..., cjeZij

� ~q1��Þ ¼ 1� �, where eZ denotes a c-dimensional multivariate normal variable with mean 0, and covariance

matrix given by diagðfSEÞ�1LeH�1eBeH�1LTdiagðfSEÞ�1.
For a single marginal GEE model, the restricted estimateebðmÞ can be computed by the iterative restricted weighted

least squares algorithmebðm,jþ1Þ ¼ebðm,j Þ � @U
@b ð
ebðm,j Þ

Þ

� ��1
ðUðebðm,j ÞÞ � LTkð j ÞÞ, with the vector of Lagrange multipliers

kð j Þ ¼ � L @U
@b ð
ebðm,j Þ

Þ

� ��1
LTÞ
�1
ðLebðm,j Þ

� r� L @U
@b ð
ebðm,j Þ

Þ

� ��1
Uðebðm,j Þ

Þ

	 

, compare with Rao and Toutenburg.24 Here,

the second superscript indicates the iteration number. Where b̂ can be understood to maximize a quasi-likelihood

with first derivative U, eb maximizes the quasi-likelihood subject to the restriction of H0.
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If the null hypothesis Lb� r ¼ 0 has a block diagonal structure such that each constraint involves only
parameters of one marginal model, we have

Lb ¼

Lð1Þ

. .
.

LðMÞ

0
B@

1
CA

bð1Þ

..

.

bðMÞ

0
BB@

1
CCA ¼

Lð1Þbð1Þ

. .
.

LðMÞbðMÞ

0
BB@

1
CCA ð5Þ

Then, the restricted estimateeb is a stacked vector of restricted estimates from the marginal models. We consider
only null hypotheses covered by equation (5). Otherwise, the elements of eb needed to be estimated jointly for all
models. However, contrasts between coefficients from different marginal models are rarely of interest, if they
correspond to different units or scales of measurement. If outcomes are indeed measured at the same scale and
units, they can be modelled together in one GEE model.

3.2.1 Small sample considerations

With the score test, nuisance parameters are estimated under the null hypothesis based on the restricted estimateeb,
which is less variable than b̂. (In the limit covð

ffiffiffiffi
K
p
ðeb� bÞ ¼ covð

ffiffiffiffi
K
p
ðb̂� bÞ �H�1p LTðLH�1p LTÞ

�1LHp, where

Hp ¼ limp
1
KH.) Consequently, we may expect that the nuisance parameters are estimated with less variability,

too, and the type I error rate control with the score test is improved compared to the unadjusted Wald test. In

principle, though, the Mancl and DeRouen bias adjustment can be extended to the estimate eB. Instead of

P̂ii ¼ DiĤ
�1DT

i V
�1
i , the adjustment utilizes ePii ¼ DiðI� eH�1LTðLeH�1LTÞ

�1LÞeH�1DT
i V
�1
i . When calculating the

score test, eB is replaced by eBadj ¼
PK

i¼1 D
T
i V
�1
i ðIi �

ePiiÞ
�1SiS

T
i ðIi �

ePiiÞ
�1V�1i Di. See supplemental material

Section S.1 for the derivation. Also, a multivariate t reference distribution could be used. We will, however,
focus on the unadjusted score test in the numeric simulations.

3.3 Quadratic form tests

Alternatives to the maximum-type tests may be derived based on the normal approximation of the multivariate
Wald and score statistics. An example are quadratic form tests. The quadratic form Wald test rejects H0 if

Lb̂� r
� �T

LD̂LT
� ��1

Lb̂� r
� �

4Qð�
2Þ

c ð1� �Þ

where Qð�
2Þ

c ð1� �Þ denotes the 1 – � quantile of the chi-squared distribution with c degrees of freedom.
As small sample improvement, D̂may be replaced by D̂adj. Further, Q

ð�2Þ
c ð1� �Þmay be replaced by cQ

ðFÞ
c,dfð1� �Þ

or df
df�cþ1 cQ

ðFÞ
c,df�cþ1ð1� �Þ, where Q

ðFÞ
c,dfð1� �Þ denotes the 1 – � quantile of an F-distribution with c numerator

degrees of freedom and df denominator degrees of freedom, chosen in the same way as for the maximum test. The
former option is analogous to an F-test, where the variability of an assumedly independent and chi-squared
distributed single nuisance parameter is taken into account. The latter option is analogous to Hotelling’s test
which adjusts for the variability of an assumedly independent and Wishart distributed covariance matrix estimate.
This approach was described by Kenward and Roger25 for random effects models and by Pan and Wall9 in the
context of single GEE models.

The quadratic form generalized score test rejects H0 if

UðebÞTeH�1LT LeH�1eBeH�1LT
� ��1

LeH�1UðebÞ4Qð�
2Þ

c ð1� �Þ

Similar to the maximum score test, this test is based on the normal approximation for the statistic �LeHð�1ÞUðebÞ.
For an alternative derivation see the study by Boos.26

If L is below full rank, a generalized matrix inverse may be applied in the calculation of the quadratic form
statistics and c is replaced by the rank of L.

In terms of the multivariate space of Lb̂� r, the quadratic form test statistic and the maximum test statistic
apply different metrics to measure deviations from the null vector. The quadratic form test is monotone in the non-
centrality parameter ðLb� rÞTðLDLTÞ

�1
ðLb� rÞ; however, it is in general not monotone in the observed effects
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jðLb̂Þij. In contrast, the maximum test is monotone in jðLb̂Þij. In the setting of single regression models, a familiar
application of quadratic form tests is testing a null hypothesis of equal effects between all, cþ 1 say, stages of
some grouping variable. There, the elements of Lb̂ constitute a set of c arbitrarily selected between-group
differences and a quadratic metric is appropriate to assess the overall deviation from the null hypothesis. If,
however, the null hypothesis refers to a set of effects in multiple models, each elements of Lb̂ has an individual
interpretation and asks for a test that is monotone in the individual observed effects. Therefore, a maximum-type
test will typically be preferable when testing hypotheses across multiple models.

3.4 Multiple testing procedures

The tests considered so far test a global null hypothesis H0 : Lb ¼ r. Each row of this equation corresponds to an
elementary null hypotheses Hi : ðLbÞi ¼ ri, i ¼ 1, . . . , c while controlling the FWER in the strong sense requires an
appropriate multiple testing procedure.

3.4.1 Single step procedure

Based on the maximum-type Wald test, a single step multiple testing procedure with strong FWER control at level
� rejects Hi if jððLb̂Þi � riÞ= ^SEij4 q1��. Corresponding simultaneous 1 – � Wald confidence intervals for Lb are
given by

ðLb̂Þi � q1�� ^SEi ð6Þ

q1�� may be replaced by t1�� to use a multivariate t reference distribution. Note that the single step procedure
based on the maximum-type score test may not control the FWER because its multivariate reference distribution is
valid only under the global null hypothesis H0.

3.4.2 Closed testing procedure

A general and more powerful multiple testing procedure can be constructed with the closed testing principle.27

Let I ¼ f1, . . . , cg denote the index set of the elementary hypotheses. According to the closed testing principle, an
intersection hypothesis \i2SHi,S � I can be rejected with strong control of the FWER at level � if all intersection
hypotheses \i2S0Hi with S � S0 are rejected by a local level � test. Note that in the context of linear hypotheses, the
intersection hypothesis \i2SHi corresponds to the set of linear contrasts ðLbÞi2S ¼ ðrÞi2S. Thus, to construct a
multiple testing procedure, we define for each such intersection hypothesis a level � test given by one of the tests
described above and decide on the intersection and elementary hypothesis according to the closed testing principle.

If the matrix L is not of full rank, some intersection hypotheses are equivalent. It is therefore not necessary, and
in fact would reduce the power of the procedure, to test all intersection hypotheses in the closed testing procedure.
Instead, the test of a hypothesis \i2SHi may be substituted by the test for an equivalent hypothesis \i2S0Hi with
S � S0. Shaffer28 describes a general method to identify redundant intersection hypotheses. In the context of linear
contrast tests, and under the assumption that Lb ¼ r has at least one solution, two intersection hypotheses \i2SHi

and \i2S0Hi are equivalent if the corresponding contrast matrices ðLÞi2S and ðLÞi2S0 define the same region in the

parameter space. This is the case if rank ðLÞi2S
� �

¼ rank ðLÞTi2S, ðLÞ
T
i2S0

� �T� �
.

Multiplicity adjusted p-values for the test of \i2SHi are defined as the smallest family-wise significance level for
which \i2SHi can be rejected using the closed testing procedure or, equivalently, as the maximum of local p-values
for all local tests of \i2S0Hi,S � S0.

When using maximum-type tests, a weighted closed testing procedure as discussed by Xi et al.29 may be applied
to account for differences in importance of the tested hypotheses, depending on the study aims.

4 Example – A retina disease study

In a recent exploratory study, the association between two metric endpoints Yð1Þ and Yð2Þ, both measuring retinal
function, and three categorical variables Xð1Þ,Xð2Þ,Xð3Þ, each representing the condition of one of three retinal cell
layers, was analyzed. Xð1Þ and Xð2Þ allow for three stages of deterioration in {0, 1, 2} and Xð3Þ comprises two stages
{0, 1}. Within each eye, the set of variables was measured at 29 to 51 distinct locations defined through a common
grid. In total, the study data comprise observations from 1489 locations in 35 eyes of 18 patients. Six marginal
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analysis models (7) to (12) were defined.

EðY
ð1Þ
ij Þ ¼ �

ð1Þ
0 þ 1

fXð1Þ
ij
¼1g
�ð1Þ1 þ 1

fXð1Þ
ij
¼2g
�ð1Þ2 ð7Þ

EðY
ð1Þ
ij Þ ¼ �

ð2Þ
0 þ 1

fX
ð2Þ
ij
¼1g
�ð2Þ1 þ 1

fX
ð2Þ
ij
¼2g
�ð2Þ2 ð8Þ

EðY
ð1Þ
ij Þ ¼ �

ð3Þ
0 þ 1

fX
ð3Þ
ij
¼1g
�ð3Þ1 ð9Þ

EðY
ð2Þ
ij Þ ¼ �

ð4Þ
0 þ 1

fX
ð1Þ
ij
¼1g
�ð4Þ1 þ 1

fX
ð1Þ
ij
¼2g
�ð4Þ2 ð10Þ

EðY
ð2Þ
ij Þ ¼ �

ð5Þ
0 þ 1

fXð2Þ
ij
¼1g
�ð5Þ1 þ 1

fXð2Þ
ij
¼2g
�ð5Þ2 ð11Þ

EðY
ð2Þ
ij Þ ¼ �

ð6Þ
0 þ 1

fX
ð3Þ
ij
¼1g
�ð6Þ1 ð12Þ

Here, 1 is the indicator function. Each model was fit using the GEE method with patient as clustering variable
and specifying an exchangeable working correlation structure. Note that the robust variance estimation via the
GEE approach was preferred over a mixed model since the true correlation structure is most likely too complicated
to be explicitly modelled correctly.

Six null hypotheses, addressing the association between an outcome and one independent factor, are regarded

in the study: H1 : �ð1Þ1 ¼ �
ð1Þ
2 ¼ 0, H2 : �ð2Þ1 ¼ �

ð2Þ
2 ¼ 0, H3 : �ð3Þ1 ¼ 0, H4 : �ð4Þ1 ¼ �

ð4Þ
2 ¼ 0, H5 : �ð5Þ1 ¼ �

ð5Þ
2 ¼ 0 and

H6 : �ð6Þ1 ¼ 0. We illustrate the application of multivariate inference for the set of hypotheses fHi, i ¼ 1, . . . , 6g

based on the joint distribution of the coefficients from all six models. Following the discussion at the end of

Section 3.3, we use maximum tests. Define the contrast matrices Lð1Þ ¼ Lð2Þ ¼ Lð4Þ ¼ Lð5Þ ¼ ðð0, 1, 0ÞT, ð0, 0, 1ÞT,

ð0, 1, � 1ÞTÞT and let Lð3Þ ¼ Lð6Þ ¼ ð0, 1Þ. The right-hand side vector is r ¼ 0. Then, the intersection hypotheses
\i2SHi,S � f1, . . . , 6g correspond to LSbS ¼ 0 where LS is a block diagonal matrix composed of the matrices

LðiÞ, i 2 S and bS is the stacked vector of bðiÞ, i 2 S. Each of these hypotheses is tested by a maximum-type Wald
test, using the bias-adjusted covariance matrix estimate and a multivariate t-distribution with df¼K – 3¼ 18 –
3¼ 15 degrees of freedom (or df¼K – 2¼ 16 if only H3 and H6 are involved) as reference distribution. Adjusted p-
values resulting from the closed test for fHi, i ¼ 1, . . . , 6g are calculated as described in Section 3.4. For
comparison, adjusted p-values according to the Bonferroni–Holm method30 are also calculated.

Table 1 shows the unadjusted p-values of the separate maximum tests for H1, . . . ,H6, adjusted p-values
resulting from the application of the Bonferroni-Holm method to the former unadjusted p-values and adjusted
p-values calculated by applying the closed testing procedure outlined in Section 3.4 to the set of hypotheses
fH1, . . . ,H6g. Hypotheses H1, H2 and H3 are rejected at a family-wise 5% significance level with both
multiplicity adjustments. Also, for H4 and H5, both methods give similar results and do not reject. The test for
H6 has a local p-value of 0.0237, and the Bonferroni–Holm adjustment results in an adjusted p-value of 0.0710,
such that the hypothesis is not rejected with this procedure. In contrast, the closed test based on maximum
tests across multiple marginal GEE models results in a multiplicity adjusted p-value of 0.0362, allowing for the
rejection of H6.

Table 1. Unadjusted and adjusted p-values for maximum-type Wald tests in the retina disease

example.

Hypothesis Unadjusted p Holm mmmGEE

H1 <0.0001 <0.0001 <0.0001

H2 <0.0001 <0.0001 <0.0001

H3 0.0001 0.0002 0.0002

H4 0.0773 0.0828 0.0819

H5 0.0414 0.0828 0.0819

H6 0.0237 0.0710 0.0363

Adjusted p-values are calculated using the Bonferroni-Holm method (Holm) and the closed testing procedure

applied to contrasts across multiple marginal generalized estimating equation (GEE) models (mmmGEE).
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5 Type I error rate and power comparisons in finite samples

A simulation study was performed to investigate the power and type I error rate of the proposed hypothesis tests
as well as the coverage probability of simultaneous confidence intervals in settings with multiple differently scaled
endpoints. The supplemental material Section S.2 contains a further simulation study assessing the coverage of
simultaneous confidence intervals based on multiple marginal GEE models in a recently planned clinical trial in
actinic keratosis with a continuous and a binary endpoint.

5.1 Data generating model

We considered scenarios with M 2 f3, 6, 9, 12g endpoints Y
ðmÞ
ij ,m ¼ 1, . . . ,M, with subjects indexed i ¼ 1, . . . ,K

and repeated measurements indexed j ¼ 1, . . . , ni. For each subject, ni was randomly drawn from a discrete
uniform distribution on {2, 3, 4}. In each scenario, one third of the endpoints were continuous Y

ðmÞ
ij 2

R,m ¼ 1, . . . ,M=3, with a conditional normal distribution (conditional on the covariates Groupi and x
ðmÞ
i ) with

variance 1 and mean

�ðmÞij ¼ �
ðmÞ
0 þ Groupi�

ðmÞ
1 þ x

ðmÞ
i �ðmÞ2 ð13Þ

One third were count data endpoints Y
ðmÞ
ij 2 f0, 1, 2, . . .g,m ¼M=3þ 1, . . . , 2M=3, with a conditional negative

binomial distribution with variance �ðmÞij þ �
ðmÞ2

ij and mean structure

log�ðmÞij ¼ �
ðmÞ
0 þ Groupi�

ðmÞ
1 þ x

ðmÞ
i �ðmÞ2 ð14Þ

The final third were binary endpoints Y
ðmÞ
ij 2 f0, 1g,m ¼ 2M=3þ 1, . . . ,M, with a conditional Bernoulli

distribution with mean structure.

log
�ðmÞij

1� �ðmÞij

¼ �ðm0 þ Groupi�
ðmÞ
1 þ x

ðmÞ
i �ðmÞ2 ð15Þ

Here, Group is a binary variable in {0, 1}, e.g. indicating treatment versus control. In the simulation study,
inference for the corresponding coefficients �ðmÞ1 ,m ¼ 1, . . . ,M was studied. x

ðmÞ
i corresponds to a covariate that is

specific for the m-th outcome and that is observed once for each patient. The vector ðx
ð1Þ
i , . . . , x

ðMÞ
i Þ was drawn from

a multivariate normal distribution with zero mean vector, unit variances and all pair-wise correlations set to 0.4.
To simulate correlated observations ðY

ð1Þ
i1 , . . . ,Y

ð1Þ
ini
, . . . ,Y

ðMÞ
i1 , . . . ,Y

ðMÞ
ini
Þ, for each subject, i ¼ 1, . . . ,K first a

latent multivariate normal vector ni ¼ ð�
ð1Þ
i1 , . . . , �ð1Þini , . . . , �ðMÞi1 , . . . , �ðMÞini

Þ with mean zero and unit variances was

sampled. Elements of ni corresponding to repeated observations of the same endpoint had pair-wise
correlations of 0.75. The correlation between elements corresponding to different endpoints was 0, 0.25, 0.5 or
0.75 to model zero, weak, intermediate and strong correlations between endpoints. The intermediate correlation
was our base setting used in most simulation scenarios. Observations on the continuous, count data and binary

outcomes were then obtained by the quantile substitution Y
ðmÞ
ij ¼ Q

ðmÞ
ij ð�ð�

ðmÞ
ij ÞÞ. Here, � is the standard normal

distribution function and Q
ðmÞ
ij is the quantile function of, depending on the type of endpoint, a normal distribution

with mean �ðmÞij and variance 1, a negative binomial distribution with mean �ðmÞij and dispersion parameter 1

(resulting in a variance of �ðmÞij þ �
ðmÞ2

ij ), or a Bernoulli distribution with mean �ðmÞij .

The resulting pair-wise correlations between the marginal Wald or score statistics were close to the
corresponding correlation between the latent variables or, for pairs involving non-continuous endpoints,
slightly below the latent variable correlation.

5.2 Hypothesis tests and confidence intervals

We tested the global null hypothesis H0 : �ð1Þ1 ¼ 	 	 	 ¼ �
ðMÞ
1 ¼ 0. For the scenario with M¼ 3 endpoints

and intermediate correlations, we also tested the elementary hypotheses H1 : �ð1Þ1 ¼ 0, H2 : �ð2Þ1 ¼ 0 and
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H3 : �ð3Þ1 ¼ 0, using the closed testing approach of Section 3. The estimates b̂ð1Þ, . . . , b̂ðMÞ were calculated from

marginal GEE models with mean structures as defined in equations (13) to (15), canonical variance functions for
linear, Poisson and logistic regression models, respectively, and subject as clustering variable. Note that inference
in the Poisson type GEE models is valid in the presence of overdispersion due to the robust covariance estimation.
The exchangeable working correlation structure was specified for all models.

We investigated the performance of the following hypothesis tests as described in Section 3: The quadratic
form Wald test using the chi-squared, F or scaled F reference distribution, the maximum-type Wald test using the
multivariate normal or multivariate t-distribution as reference distribution, the quadratic form score test with
a chi-squared reference distribution and the maximum-type score test with a multivariate normal
reference distribution. For the Wald statistics, all tests were calculated, both, with and without bias adjustment
of the covariance matrix estimate. For comparison, we further included Bonferroni–Holm tests for the maximum-
type Wald statistics using the 1-�/2/M quantile of a univariate normal or univariate t-distribution as
critical quantile.

Simultaneous confidence intervals according to equation (6) were calculated for scenarios with three endpoints
and intermediate correlations for �ð1Þ1 , �ð2Þ1 and �ð3Þ1 , with and without bias adjustment of the covariance matrix
estimate and based on a critical quantile of either a multivariate normal or t-distribution.

For methods based on a multivariate t-distribution or an F-distribution, df¼K – 3 error degrees of freedom
were used. For all tests, the nominal type I error rate was �¼ 0.05.

5.3 Simulation scenarios

We considered scenarios with K¼ 40 and K¼ 100 subjects, with K/2 subjects in each class of the Group variable.

The true coefficients in the data generating models were bðmÞ ¼ ð0, �ðmÞ1 , 0:25Þ for the continuous endpoints,

bðmÞ ¼ ð0, �ðmÞ1 , 0:25Þ for the count data endpoints and bðmÞ ¼ ð�0:75, �ðmÞ1 , 0:25Þ for the binary endpoints.

To investigate type I error rates, simulations were performed under the global null hypothesis where

�ð1Þ1 ¼ 	 	 	 ¼ �
ðMÞ
1 ¼ 0. For the case M¼ 3, we studied the power under alternative hypotheses with an effect in

(a) all three endpoints, (b) in endpoints 2 and 3 only and (c) in endpoint 3 only. For M 2 f6, 9, 12g, we considered
scenarios with an effect in all endpoints. To model an effect in the respective endpoint with K¼ 40 subjects, we set

the coefficients �ðmÞ1 to 0.75, 0.95 and 1.5 for continuous, count and binary endpoints, respectively. In scenarios

with K¼ 100 subjects, the respective values for �ðmÞ1 were 0.45, 0.6 and 0.9. This choice of parameters results in

similar expectations of the marginal Wald and score statistics close to 2.5 for each endpoint under the respective
marginal alternative in all scenarios. For an unadjusted single-endpoint test based on a standard normal
distribution, this corresponds to a power of approximately 70%.

For each scenario, 105 simulation runs were performed, except for more computation intensive
simulations addressing the effect of increasing numbers of endpoints, where 2
 104 simulation runs
were performed. The power for each test was calculated as the proportion of simulation runs in which H0 was
rejected.

5.4 Simulation results

Simulation results regarding the type I error rate of tests for H0 with M¼ 3 and M¼ 12 and intermediate
correlations are shown in Table 2. Using any of the Wald tests without small sample adjustments leads to
severe inflation of the type I error rate, and the inflation is increasing with the number of endpoints and
decreasing with the number of subjects. Among the studied scenarios, the type I error rate was up to 10% for
the unadjusted maximum-type Wald test and up to 41% for the unadjusted quadratic form Wald test. Both, the
bias adjustment of the covariance estimate and the distributional approximation via an F- or a multivariate
t-distribution, are required to control the type I error rate at the nominal level. For the quadratic form Wald
test, using a scaled F statistic in analogy to Hotelling’s T2 test is required to control the type I error rate across all
scenarios.

The score statistics exhibit favorable properties in the simulation, with type I error rates very close to the
nominal level. No small sample adjustment in terms of bias adjustment or refined distributional approximation
is required.
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We studied the power of those procedures for which type I error rate control was observed in the simulation.
For M¼ 3 endpoints and intermediate correlations, the results for the test of H0 : �ð1Þ1 ¼ �

ð2Þ
1 ¼ �

ð3Þ
1 ¼ 0 under

scenarios (a), (b) and (c) with effects in three, two and one endpoint are shown in Table 3. Throughout these
scenarios, the multivariate maximum-type Wald test has a power advantage of some percentage points over the
Bonferroni test. Furthermore, the score test is considerably more powerful than the Wald test and this holds for,
both, the quadratic form statistics and the maximum statistics.

The quadratic form Wald test has more power to reject the global null hypothesis in scenario (b) and almost
identical power in scenario (c) compared to scenario (a). This observation is in agreement with the discussion in
Section 3.3. Under the simulation settings, the correlation matrix of ð�̂ð1Þ1 , �̂ð2Þ1 , �̂ð3Þ1 Þ is approximately
C ¼ ðð1, 0:5, 0:5ÞT, ð0:5, 1, 0:5ÞT, ð0:5, 0:5, 1ÞTÞ. Thus, the non-centrality parameter of the quadratic form Wald
test is approximately ð2:5, 2:5, 2:5ÞC�1ð2:5, 2:5, 2:5ÞT ¼ 9:4 under scenario (a), ð0, 2:5, 2:5ÞC�1ð0, 2:5, 2:5ÞT ¼ 12:5
under scenario (b) and ð0, 0, 2:5ÞC�1ð0, 0, 2:5ÞT ¼ 9:4 under scenario (c). This corresponds to a theoretical power of
73%, 86% and 73%, respectively, under a chi-squared approximation, which is in line with the simulation results
in Table 3. For the quadratic form score test, similar results hold. Under the simulation settings the pair-wise
correlations between the marginal score statistics were approximately 0.5, however the expectation of the score
statistics were slightly different, with values approximately 2.4, 2.3 and 2.6 for the continuous, the count data and
the binary endpoint, respectively. Hence, even scenario (c), in which the only effect is on the binary endpoint,
results in more power than scenario (a) for the quadratic form score test.

We further studied for scenario (a), the power of closed testing procedures, which utilize the above tests for each
intersection hypothesis, to reject particularly H1, H2 or H3, as well as the power to reject at least one elementary
hypothesis or all elementary hypotheses, see Table 4. For comparison, the closed testing procedure based on
Bonferroni tests (which results in the Bonferroni-Holm procedure) is included. Similar to the results on the global
test, the maximum-type Wald test is more powerful than the Bonferroni–Holm test and the score tests are for most
decisions more powerful than the Wald tests.

The coverage probability of simultaneous confidence intervals for ð�ð1Þ1 ,�ð2Þ1 ,�ð3Þ1 Þ did not depend on the actual
values of the coefficients, up to simulation error. The observed values for scenario (a) are shown in Table 5.

Table 2. Type I error rate in the simulations with M¼ 3 endpoints and M¼ 12 endpoints with intermediate

correlations when testing H0 : �ð1Þ1 ¼ 	 	 	 ¼ �
ðMÞ
1 ¼ 0 using the methods described in Section 3 or a Bonferroni

test.

Statistic Type Approximation Bias adj.

Type I error rate (%)

M¼ 3 M¼ 12

K¼ 40 K¼ 100 K¼ 40 K¼ 100

Wald Quadratic Chi-squared no 9.8 6.8 41.0 15.1

yes 6.2 5.5 28.1 11.6

F no 7.6 6.1 30.0 12.1

yes 4.7 4.9 19.1 9.0

Scaled F no 6.4 5.6 8.6 6.7

yes 3.8 4.5 4.3 4.7

Maximum MVN no 8.1 6.1 10.4 6.8

yes 5.2 5.1 6.2 5.5

MVT no 6.5 5.6 7.6 6.0

yes 4.0 4.6 4.3 4.7

Normal-Bonferroni no 7.3 5.5 8.4 5.3

yes 4.7 4.5 4.9 4.2

t-Bonferroni no 5.8 5.0 5.6 4.5

yes 3.5 4.0 3.0 3.5

Score Quadratic Chi-squared no 4.6 4.9 2.2 4.0

Maximum MVN no 5.0 5.0 4.6 4.9

The tests are based on quadratic form or maximum-type Wald or score statistics. The reference distributions are chi-squared,

F, scaled F, MVN or MVT. All Wald tests were performed with and without bias adjustment (column ’Bias adj.’). The considered

sample sizes were K¼ 40 and K¼ 100. The results are based on 105 simulation runs. MVN: multivariate normal;

MVT: multivariate t.
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Both considered small sample adjustments are required to achieve a coverage probability of at least the nominal
value of 95%. Similar results were observed in the simulation contained in the supplemental material Section S.2.

In a further simulation study, we investigated the impact of increasing the number of endpoints and
increasing the correlation between endpoints for scenarios with K¼ 40 subjects and an effect in
all endpoints under the alternative. We included only those tests that controlled the type I error rate.

Table 3. Power to reject H0 : �ð1Þ1 ¼ �
ð2Þ
1 ¼ �

ð3Þ
1 ¼ 0 with selected testing approaches that control the type I error rate (see Table 2

for details).

Statistic Type Approx. Bias adj.

Power (%)

K¼ 40 K¼ 100

a b c a b c

Wald Quadratic Scaled F yes 67.5 83.7 63.1 70.5 86.8 70.5

Wald Maximum MVT yes 77.7 71.2 53.7 78.8 72.9 57.8

Wald Maximum t-Bonferroni yes 75.5 68.6 50.8 76.9 70.9 55.5

Score Quadratic Chi-squared no 72.1 86.7 74.5 71.9 87.7 74.2

Score Maximum MVN no 80.7 74.3 64.7 79.7 73.9 61.6

The power was calculated for sample sizes K¼ 40 and K¼ 100 in three different scenarios. In scenario (a), there was an effect in all three endpoints

(�ðiÞ1 6¼ 0, i ¼ 1, 2, 3), in scenario (b) there was an effect in endpoints 2 and 3 (�ð1Þ1 ¼ 0), and in scenario (c) there was an effect in endpoint 3

only (�ð1Þ1 ¼ �
ð2Þ
1 ¼ 0). See text for the exact values of non-zero coefficients. The results are based on 105 simulation runs. MVN: multivariate

normal; MVT: multivariate t.

Table 4. Power of closed testing procedures to reject H1 : �ð1Þ1 ¼ 0, H2 : �ð2Þ1 ¼ 0, H3 : �ð3Þ1 ¼ 0, at least one elementary hypothesis

(any Hi), or all elementary hypotheses.

K Statistic Type Approx. Bias adj. H1 H2 H3 any Hi all Hi

40 Wald Quadratic scaled F yes 53.1 54.0 54.3 67.1 41.4

40 Wald Maximum MVT yes 59.0 59.4 60.6 77.7 42.2

40 Wald Maximum t-Bonferroni yes 57.4 57.9 58.9 75.5 41.5

40 Score Quadratic Chi-squared no 57.7 53.8 64.0 71.7 46.0

40 Score Maximum MVN no 63.0 58.1 69.2 80.7 46.6

100 Wald Quadratic Scaled F yes 54.3 56.3 57.8 70.1 43.1

100 Wald Maximum MVT yes 58.8 60.8 62.8 78.8 43.2

100 Wald Maximum t-Bonferroni yes 57.5 59.4 61.4 76.9 42.7

100 Score Quadratic Chi-squared no 56.3 56.1 61.5 71.5 45.0

100 Score Maximum MVN no 60.6 60.2 66.1 79.7 45.1

Results are shown for the simulation scenario (a) with an effect in all endpoints. The results are based on 105 simulation runs. MVN: multivariate

normal; MVT: multivariate t.

Table 5. Simultaneous coverage probability of nominal 95% simultaneous confidence

intervals for ð�ð1Þ1 ,�ð2Þ1 ,�ð3Þ1 Þ for scenario (a) with sample sizes K¼ 40 and K¼ 100.

Approximation Bias adj. K¼ 40 K¼ 100

MVN no 91.9 93.7

MVN yes 94.7 94.8

MVT no 93.4 94.3

MVT yes 95.8 95.2

The intervals were calculated based on an approximating MVN or MVT distribution, with and without bias

adjustment for the covariance matrix estimate. The results are based on 105 simulation runs. MVN:

multivariate normal; MVT: multivariate t.
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The simulation results are shown in Figure 1. Here, we also included the caseM¼ 1. To allow for an unambiguous
comparison with the case of multiple endpoints of different types, we computed for M¼ 1 the results for models
with a single continuous, count data and binary endpoint, respectively, and plotted the average power across these
three models from a total of 2
 104 simulations.

The benefit of the maximum-type Wald and score tests over the Bonferroni test becomes more pronounced for
larger correlations and their power (under the considered alternative with an effect in all endpoints) is increasing
with the number of endpoints. Under high correlations, the power of the maximum-type Wald and score test is
approximately constant with an increasing number of endpoints, whereas the power of the Bonferroni test is
decreasing. Note that in an extreme case of correlation 1, the maximum test would be identical to a test for a single
endpoint, with no loss in power, whereas the Bonferroni test would correspond to a single-endpoint test at level
�/M hence loosing power.

The power of the quadratic form Wald and score tests depends strongly on the correlation between
endpoints. As seen in Table 3 and discussed in Section 3.3, if there is an effect in all endpoints and the
endpoints are positively correlated, the direction of the effects is not the direction of deviations from the null
hypothesis which are considered particularly large by the metric of these tests. This becomes more pronounced
with an increasing number of endpoints and increasing correlation, and the power of the quadratic form tests
decreases rapidly.

6 Software implementation

The proposed test procedures were implemented in the R-package ‘mmmgee’31 that is available from the CRAN
repository.32 The model fitting routines are based on those of the R-package ‘geeM’,33 and multivariate normal or
t distribution probabilities are calculated using the package ‘mvtnorm’.34

The mmmgee package provides three main functions: geem2 fits marginal GEE models as described in Sections
2.1 and 2.2. mmmgee calculates the estimate (equation (3)) or the bias adjusted estimate (equation (4)) of the
covariance matrix of a stacked vector of regression coefficients from multiple marginal GEE models fitted with
geem2. mmmgee.test calculates the multiple hypothesis tests and simultaneous confidence intervals described in
Section 3. The latter functions are applied to a list of models fitted with geem2. As a special case, the package may
also be applied to test hypotheses within a single GEE model.

An instance of a simulated data set withM¼ 3, K¼ 40 and intermediate correlations as described in Section 5 is
included in the package as exemplary data. The R code below invokes an analysis as used in the simulation studies
in Section 5. Marginal GEE models are fit for the three endpoints using geem2. The function mmmgee.test is
applied to test the global null hypothesis H0 : �ð1Þ1 ¼ �

ð2Þ
1 ¼ �

ð3Þ
1 ¼ 0 as well as the elementary hypotheses

H1 : �ð1Þ1 ¼ 0, H2 : �ð2Þ1 ¼ 0 and H3 : �ð3Þ1 ¼ 0 in a closed testing procedure. In the example, a maximum-type
Wald test using the bias adjusted covariance matrix estimate and a multivariate t reference distribution is
requested.

The output includes the test statistic, degrees of freedom and p-value for the test of the global null hypothesis
as described in Section 3.1. It further shows the estimated contrasts, which in this case correspond to �̂ð1Þ1 , �̂ð2Þ1 and
�̂ð3Þ1 , the right hand side value of each contrast under the respective null hypothesis, the unadjusted p-values and
multiplicity adjusted p-values according to the closed testing procedure of Section 3.4:

library(mmmgee)

data(datasim)

mod1<-geem2(Y.lin�gr.langþx1,id¼id,data¼datasim,
family¼"gaussian",corstr¼"exchangeable")

mod2<-geem2(Y.poi�gr.langþx2,id¼id,data¼datasim,
family¼"poisson",corstr¼"exchangeable")

mod3<-geem2(Y.bin�gr.langþx3,id¼id,data¼datasim,
family¼"binomial",corstr¼"exchangeable")

Li<-matrix(c(0,1,0),nrow¼1)
mmmgee.test(list(mod1,mod2,mod3),L¼list(Li,Li,Li),

statistic¼"Wald",type¼"maximum",biascorr¼TRUE,

asymptotic¼FALSE,closed.test¼TRUE)
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See the supplemental material S.3 for further examples.

7 Discussion

We proposed a general inference framework for multiple or multivariate outcomes. In particular, we considered
the problem of testing multiple hypotheses, the need to account for dependencies of observations within the same
subject, the lack of accuracy of asymptotic methods in small sample sizes, and we tried to give some advice on the
choice between particular test statistics in the multivariate setting.

The approach is based on multiple marginal models2 and requires a distributional model for the joint vector of
parameter estimates from these models, but it is not required to assume a fully specified joint model of all
outcomes. Marginal GEE models, accounting for dependent observations with respect to one endpoint, fit
naturally in the multiple marginal model framework, since both concepts are based on estimating equations
that are sums of independent contributions of different subjects and both utilize robust sandwich variance
estimation. Note that usual generalized linear models and linear models may be seen as special cases of GEE
models and can be included in the proposed framework. As alternative to using multiple marginal models, the
correlation between endpoints could be utilized in a weighted estimation of regression coefficients, which may
reduce their variance. This idea was studied by Fitzmaurice and Laird15 and Rochon3 for the special case of a
continuous and a binary endpoint. However, as a simulation study by Teixeira-Pinto and Normand35 suggests, the
improvement is small, and the required additional nuisance parameters may introduce further variability in the
case of small samples. We therefore focussed on estimation via marginal models.

The proposed method provides multiplicity adjustment when testing multiple hypotheses or when constructing
simultaneous confidence intervals and it takes the correlation between the studied parameters into account. Hence,
it is more efficient than commonly used methods that are based on the Bonferroni inequality. Furthermore, while
the Bonferroni adjustment is applicable to maximum-type tests, the multivariate normal approximation of the
parameter estimates allows for construction of more general test statistics.

Insufficient small sample accuracy of asymptotic methods is a frequent problem that particularly affects studies
at early stages of research and studies in rare diseases.36 For many asymptotic methods, a major improvement in
terms of type I error rate control can be achieved by replacing normal with t-distributions and chi-squared with
F-distributions. In general, the joint distribution of the ðLb̂Þi= ^SEi, i ¼ 1, . . . , c will not be exactly a multivariate
t-distribution (see the book by Kotz and Nadarajah21 for the definition of the multivariate t-distribution).
Nonetheless, the multivariate t-distribution often provides a good approximation.7,8,22 Also, the simulation
results (see Section 5) suggest that the tests and confidence intervals based on t1�� often have error rates close
to the nominal level even for small sample sizes. In any case, the liberalism of the hypothesis tests and confidence
intervals is reduced compared to the multivariate normal approximation, because t1��4 z1��. Asymptotically,
both approaches are identical.

However, with the exception of certain models under the assumption of normally distributed data, there is no
direct way to determine the respective number of error degrees of freedom. We used a simple method essentially
subtracting the number of parameters in a model from the number of subjects, with convincing results in the
numeric simulations. Several other approaches have been proposed in different contexts and it may be worthwhile
to include these in further research.

Hypothesis tests for linear contrasts in multiple marginal GEE models

Statistic: Maximum-type Wald statistic

Approximation: Multivariate t

Alternative: Undirected

Global test:

MaxWTW¼ 3.368, df¼ 37, p-value¼ 0.005021

Closed testing procedure:

contrast estimate rhs p.unadj p.adjusted

1 1 0.752 0 0.004586 0.009038

2 2 1.309 0 0.006406 0.009038

3 3 1.931 0 0.001778 0.005021
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Pan and Wall9 report good results for single GEE models using a Satterthwaite approximation. However, this
method requires the estimation of the variance of the covariance matrix estimate. Alternatively, degrees of freedom
may be calculated from the effective sample size, which is the number of independent observations that would
result in the same efficiency as the observed sample of partially dependent observations.22 This method requires
that the covariance structure is correctly specified, which is otherwise not required for GEE models. In some cases,
it may be reasonable to attribute different degrees of freedom to different tested contrast, e.g. if the number of
parameters strongly differs between the marginal models. In that case, a method described by Hasler and Hothorn8

may be utilized: For each tested contrast, a critical value is calculated from a multivariate t-distribution with
common correlation matrix and contrast-specific degrees of freedom. The test decision is based on comparison of
the individual test statistics with the respective critical values. Another way to improve the distributional normal
approximation of a statistic is to directly calculate and adjust for the error of approximation. Kauermann and

Figure 1. Power to reject the global null hypothesis H0 : �ð1Þ1 ¼ 	 	 	 ¼ �
ðMÞ
1 ¼ 0 under an alternative with an effect in all M endpoints

(solid lines) and type I error rate under H0 (dotted lines) for scenarios with K¼ 40 subjects and increasing number of endpoints. The

correlation between marginal Wald or score statistics is approximately 0.25, 0.5 and 0.75 in the scenarios with low correlation,

intermediate correlation and high correlation. The nominal level of 0.05 is indicated by a horizontal line. The studied tests are listed in

the legend. The information in parentheses shows that the bias adjustment for the covariance matrix was applied to all tests using

Wald statistics; furthermore, the reference distributions with abbreviations as in Table 2 are indicated. The results are based on

2
 104 simulation runs.
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Carroll37 propose this solution for the case of univariate contrast tests in GEE models. The method could in
principle be extended to multivariate tests.

The other small sample improvement we investigated is the bias adjustment of the covariance matrix estimate.
We focused on the method of Mancl and DeRouen7; however, related methods proposed in the literature for single
GEE models14 may as well be extendable to the multiple marginal models approach.

We regarded the score test as an approximation to the Wald test. Note that generalized score tests with
quadratic form test statistics may also be constructed from the score vector U and a generalized inverse of its
asymptotic covariance matrix (which may be singular).26 For the case of a linear hypothesis H0, the resulting test
is identical to the quadratic form score test motivated via approximation of the Wald test. The latter approach is,
however, easily applicable to construct maximum type tests. In the numeric investigations, the score tests did not
require adjustments to the asymptotic approximation to control the type I error rate and they were more powerful
than the corresponding Wald tests. In contrast to Guo et al.,38 who studied quadratic form score tests for single
GEE models, we did not observe a conservative behaviour, but the type I error rate was controlled almost exactly
at the nominal level. These results may not hold for all possible analysis scenarios but they suggest the score tests
as viable small sample alternative to the Wald tests. Confidence sets for Lb corresponding to a score test may in
principle be found as set of all vectors r0 2 R

c such that H0 : Lb� r0 ¼ 0 is rejected.38 To provide contiguous
intervals or sets, the test statistic needs to be a convex function of r. In contrast to the Wald statistic, the score
statistic depends on r in a non-trivial way, as the statistic is based on a model fitted under the constraint
Lb� r ¼ 0. Thus, the required convexity property needs to be checked for each given class of models, which
may not be easily done except for some special cases.

We focused on two-sided inference. The extension to one-sided tests for null hypotheses of the form
H00 ¼ \

c
i¼1fðLbÞi � rig and according one-sided confidence intervals is straight forward for maximum-type Wald

tests (compare with Hothorn20). The least favorable configuration under H00 is Lb ¼ r since D̂ is estimated without
restriction and the multivariate normal or t reference distribution is monotone in the assumed mean vector. Hence,
evaluation of the one-sided Wald test under the configuration Lb ¼ r is sufficient. To extend the maximum-type
score test to one-sided hypotheses, the restricted estimate eb has to be calculated under the according inequality
restriction which is subject of further research.
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