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No trends in spring and autumn phenology during
the global warming hiatus
Xufeng Wang 1,2, Jingfeng Xiao 2, Xin Li3,4, Guodong Cheng 1,5, Mingguo Ma 6, Gaofeng Zhu7,

M. Altaf Arain8, T. Andrew Black9 & Rachhpal S. Jassal9

Phenology plays a fundamental role in regulating photosynthesis, evapotranspiration, and

surface energy fluxes and is sensitive to climate change. The global mean surface air tem-

perature data indicate a global warming hiatus between 1998 and 2012, while its impacts on

global phenology remains unclear. Here we use long-term satellite and FLUXNET records to

examine phenology trends in the northern hemisphere before and during the warming hiatus.

Our results based on the satellite record show that the phenology change rate slowed down

during the warming hiatus. The analysis of the long-term FLUXNET measurements, mainly

within the warming hiatus, shows that there were no widespread advancing (or delaying)

trends in spring (or autumn) phenology. The lack of widespread phenology trends partly led

to the lack of widespread trends in spring and autumn carbon fluxes. Our findings have

significant implications for understanding the responses of phenology to climate change and

the climate-carbon feedbacks.
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A ir temperature is one of the major controlling factors of
phenology1–4, and global warming advances spring phe-
nology (i.e., greenup) and/or delays autumn phenology

(i.e., senescence)5,6. Phenology has been widely monitored to
understand the interactions between vegetation and climate
change7,8. Changes in spring and autumn phenology can differ-
entially alter the growing season length and affect the carbon,
water, and energy fluxes between the terrestrial biosphere and the
atmosphere3,9–11. Increased carbon uptake resulting from the
lengthening of the growing season has the potential to mitigate
climate change12. Thus, elucidating the trends in phenology can
improve our understanding of the impacts of climate change on
ecosystem productivity and carbon cycling and the feedbacks to
the climate. The global mean surface air temperatures data
indicated a global warming hiatus between 1998 and 201213–15.
How the warming hiatus affected terrestrial ecosystems has
drawn much attention in recent years. A recent study indicated
that the warming hiatus led to accelerated net terrestrial carbon
uptake in that period, because of reduced respiration16. A few
studies found the warming hiatus affected the phenology trend17

using species-level phenology data at the site scale. However, the
warming hiatus effects on phenology trends have not been eval-
uated at the global scale.

The latest FLUXNET dataset provides the first opportunity to
examine the trends in spring and autumn phenology for a large
number of sites globally using eddy covariance flux data. The
eddy covariance technique continuously measures net ecosystem
exchange (NEE) at the ecosystem level. The gross primary pro-
ductivity (GPP) time series partitioned from the NEE observa-
tions provides an ecosystem-level means to extract
phenology18,19. The resulting phenological dates reflect activity of
all vegetation within the flux tower footprint (e.g., the extent of
the upwind area from which the flux originates). Phenology
extracted from eddy covariance carbon flux data has been often
used as ground truth to validate phenology estimated from
remote-sensing data19–22. To our knowledge, however, this
FLUXNET database has not yet been used to examine phenolo-
gical trends over a large spatial domain. Many of the eddy cov-
ariance sites have long-term observations and cover the warming
hiatus. Thus, the latest FLUXNET dataset can be used to explore
phenology trend during the warming hiatus. Meanwhile, the
latest GIMMS3g23 dataset provides long-term normalized dif-
ference vegetation index (NDVI) from 1982 to 2015. The NDVI
dataset has been widely used to examine phenology for the
northern hemisphere or the globe8,24–26. Although some of
these studies examined the change point in SOS25,26 or the sen-
sitivity of advancing SOS to global warming4, how the spring and
autumn phenology changed during the warming hiatus
compared with the warming period has not been examined using
long-term satellite or FLUXNET records. The long duration of
the latest GIMMS3g dataset makes it feasible to assess the
trends in phenology for both before and during the warming
hiatus.

In this study, we used the latest FLUXNET database and the
GIMMS3g dataset to examine the trends in spring and autumn
phenology in the northern hemisphere and to assess the effects of
the warming hiatus on phenology trends. The spring and autumn
phenology were estimated from GIMMS3g using five widely used
phenology retrieval methods (see “Methods” for details), and the
phenology trends before and during the warming hiatus were
then compared. We also estimated phenology using the FLUX-
NET observations and examined the phenology trend during the
warming hiatus. Meanwhile, the environmental controls on
phenology and the associated changes in carbon fluxes were
analyzed based on the FLUXNET database (see “Methods” for the
selection of the 56 sites).

Results
Phenological trends based on remote sensing data. The start of
growing season (SOS) and end of growing season (EOS) for each
grid cell in the northern hemisphere during the period 1982–2014
were estimated from the GIMMS3g dataset using five different
methods (see “Methods” for details). To examine the effects of the
warming hiatus (1998–2012) on phenology, we examined the
phenology trends in the northern hemisphere before and after
1998. The average SOS and EOS estimated using five different
methods are shown in Fig. 1 and Table 1. The spring phenology
(SOS) significantly advanced before 1998 (slope=−0.34 days
year−1, p= 0.007), but had no significant trend after 1998 (slope
=−0.02 days year−1, p= 0.967) (Fig. 1a). EOS had a delaying
trend before 1998 (slope= 0.26 days year−1, p= 0.108), but had
no trend after 1998 (slope=−0.03 days year−1, p= 0.902)
(Fig. 1a). Meanwhile, we used five global temperature anomaly
datasets (CRUTEM3.0, CRUTEM4.6, NOAA, Berkley Earth, and
NASA GISTEMP) to examine the warming trend for spring
(Fig. 1c), autumn (Fig. 1d), and the annual scale (Fig. 1e). The
rate of the increase in average temperature slowed down after
1998 in spring and at the annual scale. The spatial patterns of
GIMMS3g-based phenology and temperature were also compared
before and during the warming hiatus (Supplementary Fig. 1).
The slowdown of temperature during the warming hiatus was
more widespread in North America than in Eurasia. As a result,
the lack of advancing trends in SOS and delaying trends in EOS
during the warming hiatus was more widespread in North
America than in Eurasia.

Phenological trends based on the FLUXNET database. Pheno-
logical dates were estimated for each site based on the daily GPP
data. The average SOS and EOS are shown in Supplementary Fig.
2 for the 56 sites that have at least 7 years of high-quality data.
We examined the trends of SOS (Fig. 2a, Supplementary Fig. 3)
and EOS (Fig. 2c, Supplementary Fig. 3) for each site using the
extracted phenological dates. Among the 56 sites, only five sites
had significant SOS trends (p < 0.05 at three sites and 0.05 < p <
0.1 at two sites) with three of them having advancing trends and
two of them having delaying trends (Fig. 2b, Supplementary
Fig. 3). EOS significantly changed at 12 sites (p < 0.05 at 11 sites
and 0.05 < p < 0.1 at 1 site) with 10 of them having delaying
trends and 2 of them having advancing trends (Fig. 2d, Supple-
mentary Fig. 3). The spatial distribution of the sites with sig-
nificant SOS or EOS trends was shown in Supplementary Fig. 4.
Our analysis based on the FLUXNET dataset showed that there
were no widespread SOS advancing or EOS delaying trends in the
northern hemisphere. The measurements of most of the sites fell
within the global warming hiatus (Fig. 2a, c), and only 9 sites had
measurements before 1998.

Environmental controls on phenology. We first performed
correlation analysis between environmental factors and pheno-
logical dates (SOS and EOS) and then examined the trends of
environmental factors. With the auxiliary meteorological data
observed at each FLUXNET site, the environmental controls on
phenology were explored. The correlation coefficients between
phenology and seasonal environmental factors (average air tem-
perature, average shortwave radiation, accumulated precipitation,
average VPD, average soil temperature, and average soil water
content) were calculated for each of the 56 sites (Supplementary
Figs. 5 and 6). The average value of correlation coefficients for the
56 sites is shown in Fig. 3. For SOS, the spring and winter
environmental factors were used (Fig. 3a, Supplementary
Table 1). For EOS, the summer and autumn environmental fac-
tors were used (Fig. 3b, Supplementary Table 2). The
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Fig. 1 Phenology and temperature trends in the northern hemisphere (latitude ≥30°) from 1982 to 2014. a The trend of SOS estimated from the GIMMS3g
NDVI dataset. b The trend of EOS estimated from the GIMMS3g NDVI dataset. c The trends of spring temperature anomalies from CRUTEM3.0,
CRUTEM4.6, NOAA, Berkley Earth, and NASA GISTEMP. d The trends of autumn temperature anomalies from CRUTEM3.0, CRUTEM4.6, NOAA, Berkley
Earth, and NASA GISTEMP. e The trends of annual temperature anomalies from CRUTEM3.0, CRUTEM4.6, NOAA, Berkley Earth, and NASA GISTEMP.
The dashed lines stand for the long-term trend (1982–2014) calculated using the Mann–Kendall Tau-b with Sen’s method. The light gray background
indicates the warming hiatus (1998–2012). Mann–Kendall trend test was performed for the periods before 1998 and after 1998, separately. SOS start of
growing season, EOS end of growing season, DOY day of year

Table 1 Results of Mann–Kendall trend test performed for phenology and temperature for the periods before 1998 and
after 1998

Data Warming period (1982–1998) Warming hiatus (1998–2014)

Slope Intercept p-Value Slope Intercept p-Value

Phenology GIMMS3g SOS −0.337 789.9 0.007 −0.020 155.8 0.967
GIMMS3g EOS 0.256 −215.1 0.108 −0.027 349.5 0.902

Spring Tair CRUTEM4 0.062 −122.1 0.003 0.047 −92.7 0.053
CRUTEM3 0.061 −121.8 0.004 0.013 −24.8 0.558
NOAA 0.058 −115.0 0.009 0.027 −52.3 0.149
Berkely_Earth 0.077 −153.1 0.003 0.046 −91.7 0.077
NASA-GISTEMP 0.062 −122.0 0.003 0.048 −96.0 0.064

Autumn Tair CRUTEM4 0.045 −89.3 0.077 0.050 −99.4 0.015
CRUTEM3 0.046 −91.5 0.064 0.037 −73.4 0.017
NOAA 0.033 −65.1 0.174 0.031 −61.9 0.029
Berkely_Earth 0.051 −101.5 0.108 0.047 − 92.8 0.023
NASA-GISTEMP 0.049 −97.0 0.077 0.041 −80.8 0.019

Annual Tair CRUTEM4 0.039 −77.5 0.003 0.020 −38.9 0.009
CRUTEM3 0.037 −73.1 0.006 0.007 −13.6 0.344
NOAA 0.035 −69.6 0.004 0.009 −18.1 0.044
Berkely_Earth 0.03 −69.2 0.007 0.031 −60.4 0.015
NASA-GISTEMP 0.022 −43.6 0.044 0.030 −60.0 0.004
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environmental controls on SOS (or EOS) varied greatly among
sites (Supplementary Figs. 5 and 6). Generally, SOS showed
higher correlation with environmental factors than did EOS.
Among the examined environmental factors, spring air tem-
perature had the highest correlation with SOS. At most of the
sites, spring air temperature was significantly correlated with SOS
(Supplementary Fig. 5). Among the various factors, autumn
temperature had the highest correlation with EOS. Moreover,
autumn air temperature was significantly correlated with EOS for
more sites than was any other environmental variable (Supple-
mentary Fig. 6). The correlation between autumn temperature
and EOS was much weaker than that between spring temperature
and SOS. To consider the joint controls of multiple environ-
mental factors, the partial correlation analysis was also performed
between phenology and environmental factors (Supplementary
Fig. 7). Spring temperature had the strongest partial correlation
with SOS, and autumn temperature had the strongest partial
correlation with EOS. Environmental factors showed stronger
control on SOS than on EOS. These results were generally similar
to those based on the univariate statistical analyses.

We then examined the trends for environmental factors of both
SOS (Supplementary Fig. 8) and EOS (Supplementary Fig. 9). At
almost all the five sites with significant SOS trends, at least one
environmental factor had a significant trend and was also
significantly correlated with SOS (more detailed analysis is given
in Supplementary Note 1). Our study showed that spring air
temperature was the main controlling factor of SOS at these sites,

and the spring air or soil temperature was negatively correlated
with SOS. This is consistent with many previous studies27–29. By
examining the trend, however, spring air temperature signifi-
cantly increased at only one site (Fig. 4a). Other factors played
minor roles in the changes in SOS.

Similarly, for most of the 12 sites with significant EOS trends,
at least one of the meteorological variables that were significantly
correlated with EOS had a significant trend (more detailed
analysis is given in Supplementary Note 1). Autumn air
temperature was the major controlling factor of EOS (Fig. 3b).
For most of the sites without EOS trends, there was no significant
trend in any of the meteorological variables that were significantly
correlated with EOS. There were also few sites that the EOS trend
was decoupled with meteorological variables.

Impacts of changes in phenology on carbon fluxes. To examine
the effects of the trends in SOS (or EOS) on carbon fluxes, we
calculated the correlation coefficients between SOS and spring
carbon fluxes (Supplementary Fig. 10), and between EOS and
autumn carbon fluxes (Supplementary Fig. 11), as well as the
Mann–Kendall trend of carbon fluxes at each site (Supplementary
Fig. 12). Changes in spring and/or autumn phenology can alter
ecosystem carbon fluxes. An advancing trend in SOS resulted in
increasing trends in carbon fluxes at three of five sites with sig-
nificant SOS trends. Similarly, a delaying trend in EOS resulted in
increasing trends in carbon fluxes at most of the 12 sites with
significant EOS trends (more detailed analysis is also given in
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Supplementary Note 2). The proportion of sites with significant
GPP and ecosystem respiration (ER) trends was higher for the
sites with significant SOS (or EOS) trends than for the sites
without significant SOS (or EOS) trends (Fig. 5). Due to the offset
between GPP and ER, SOS (or EOS) trends had weaker impact on
NEE trends compared with GPP and ER. GPP had the strongest
correlation with SOS (or EOS), followed by ER and NEE (Sup-
plementary Tables 3 and 4). Advancing SOS could strengthen
GPP, ER, and NEE in spring. Delaying EOS could also strengthen
GPP, ER, and NEE. EOS had weaker effects on NEE than SOS.

Discussion
Based on long-term satellite records, our results showed that there
was no significant trend in SOS or EOS during the warming
hiatus. A previous study using long-term data on flower onset
date at three sites in Germany found that the flowering advancing
rate largely decreased during the warming hiatus17. In our study,
the northern hemisphere SOS estimated from remote-sensing
data stopped advancing and the EOS exhibited an insignificant
trend during the warming hiatus. Generally, the trends in spring
and autumn phenology were consistent with those in spring and
autumn temperature, respectively. Many studies based on satellite
records showed advancing SOS (or delaying EOS)30, and one
recent study indicated that the SOS advancing (or EOS delaying)
rate during the period 2002–2012 was even faster than that
during the period 1982–199231. Another study indicated that
although the SOS advancing slowed down in some parts of the
northern hemisphere, it was unlikely to slow down over the whole
northern hemisphere over the period 1982–201125. Our study
found that SOS (or EOS) stopped advancing (or delaying) during
the warming hiatus, and this is different from the findings of most
previous studies. The discrepancies in phenology trends among
studies are due to the differences in satellite records, data pro-
cessing procedures, and phenology extraction methods as well as
the associated uncertainties30. Our study focused on the phe-
nology trend during the warming hiatus (1998–2012) which was
not previously examined. Compared with previous studies, we
also used the latest GIMMS NDVI3g dataset. We divided the
entire study period into two shorter periods according to the
definition of the warming hiatus. We performed a sensitivity test
to examine the effects of the start and end years for the hiatus on
phenology trends because the trend analysis for a short period
might be sensitive to the start (or end) values25. The sensitivity
test showed that the SOS (or EOS) based on the satellite record

stopped advancing (or delaying) during the warming hiatus
regardless of the start and/or end years (Supplementary Fig. 13).
The GIMMS3g-based phenology also contains uncertainties due
to data quality issues caused by noise, sensor degradation, and
calibration between different sensors32.

Our analysis based on the FLUXNET database showed that
more sites (12) had significant trends in autumn phenology than
in spring phenology. By averaging the SOS (or EOS) changing
rate among all these sites, EOS had higher change rate than SOS.
This is inconsistent with most of the remote sensing-based studies
showing that the SOS advancing rate was much higher than the
EOS delaying rate8. Previous ground-based phenological obser-
vations also indicated that the EOS delaying rate was much faster
than the SOS advancing rate at some sites12,33. The phenology
trends at three of the 56 sites were also examined by a previous
study3, and their results are consistent with our work at
these sites.

Extracting phenology trends from eddy covariance flux data
has advantages over other phenology monitoring methods. First,
ecosystem-scale SOS and EOS can be reliably determined from
tower GPP data. Remote sensing-based phenology usually con-
tains large uncertainties because vegetation indices like NDVI are
more of proxies of vegetation greenness and also have significant
uncertainty resulting from various sources (e.g., cloud con-
tamination, snow cover, cross-sensor calibration, and sensor
degradation)22. Second, the carbon flux-based phenology is useful
for understanding phenology dynamics at the ecosystem level.
Third, the flux towers measure NEE, surface energy exchange,
evapotranspiration (ET), and meteorological variables, and these
data along with phenological estimates can be used to analyze the
impacts of phenological changes on the carbon, energy, and water
fluxes at the ecosystem scale. Finally, eddy covariance flux sites
are distributed across the globe and the observing methods are
standardized. Among the 914 registered FLUXNET sites, 191 sites
have more than 10 years of observations. Should more flux tower
data be shared with the research community in the future, the
flux tower data could be used to examine changes in phenology
for a larger number of sites globally. Detecting phenology from
carbon flux data also faces some challenges. First, flux data
contain uncertainties due to random measurement error34, and
these measurement error can result in uncertainties in phenology
estimation. Second, for some sites, there are substantial data gaps
in the shoulder seasons due to instrument malfunction or bad
data quality, which hinders the correct estimation of phenological
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stages. Third, the gap-filling and partitioning of NEE could lead
to uncertainty in GPP, which will in turn introduce uncertainty to
the estimates of phenological dates. Finally, although there are a
large number of flux sites over the globe encompassing a range of
climate and ecosystem types, the resulting phenology estimates
are not spatially continuous.

Our results from the GIMMS NDVI3g and the FLUXNET
database were generally consistent with each other. The GIMMS
NDVI3g dataset-based phenology showed no trends in SOS (or
EOS) during the warming hiatus. The phenology based on the
FLUXNET GPP data showed no widespread SOS (or EOS) trends
in the northern hemisphere during the warming hiatus. By
extracting the SOS (or EOS) from the GIMMS NDVI3g phe-
nology estimates at the FLUXNET sites, the satellite-based SOS
(or EOS) trends at the FLUXNET sites were also examined. The
trends of average satellite-based SOS (or EOS) at the FLUXNET
sites were consistent with those averaged for the northern
hemisphere. Before the warming hiatus, the average satellite-
based SOS at FLUXNET sites significantly advanced but no trend
was observed during the warming hiatus (Supplementary Fig. 14).
The average satellite-based EOS at the FLUXNET sites had no
trend either before or during the warming hiatus (Supplementary
Fig. 14).

Many previous studies reported that spring temperature was
the main driver of phenology changes, and increasing spring
temperature led to advanced SOS28,29. In some temperate eco-
systems, winter temperature increase could result in delayed SOS
because the chilling requirements were not met6,35. By contrast,
our results showed that winter air temperature and winter soil
temperature were also negatively correlated with SOS for most of
the flux sites. Previous studies indicated that SOS trends can
result from trends in either spring or winter temperature. For
example, warmer spring temperature may result in the advancing
in SOS5,36, while some other studies attributed the reversed SOS
trend to warming winter and the subsequent failure of the chilling
requirement37,38. Our results showed that SOS was more strongly
correlated with spring temperature than with winter temperature,
and the lack of trend in spring temperature was mainly respon-
sible for the lack of SOS trend at most sites. For some sites, SOS
change was decoupled with climatic factors and was mainly
controlled by other factors (more detailed analysis is also given in
Supplementary Note 1). In particular, SOS at cropland sites could
be controlled by human management, such as rotation, sowing,
and harvesting, to a large extent. For example, all climatic factors
(air temperature, soil temperature, VPD, precipitation, and
shortwave radiation) had very weak correlation with SOS, but the
sowing date had a strong relationship with SOS at a cropland site
in Nebraska, USA (US-Ne2) (Supplementary Fig. 15). Some
previous studies showed that EOS was controlled by temperature,
particularly the late summer or autumn temperature39,40, while
some other studies indicated that EOS was weakly correlated with
air temperature41. Precipitation and solar radiation were also
main determinants of EOS at some ecosystems24. Across all
56 sites in our study, autumn air and soil temperature had larger
effects on EOS than did other factors.

Compared to EOS, SOS was generally more sensitive to
environmental factors. EOS may also be impacted by vegetation
development during the growing season or some climate events.
Previous studies mainly documented the effects of temperature
on phenology, and other environmental factors were not well
studied9. We found that, in general, temperature, VPD, and
shortwave radiation were the main factors influencing the inter-
annual changes in phenology across these sites, although pre-
cipitation and soil water content had larger impacts on phenology
than other factors for a few sites. The environmental effects on
phenology varied with site. Vegetation phenology is jointly

controlled by a combination of many environmental factors and
the status of vegetation. The correlation between a single envir-
onmental factor and phenology was often relatively weak and the
consistency between the trend of a single environmental factor
and the trend of spring or autumn phenology was relatively poor
for many sites. Meanwhile, the footprint of many flux sites is
spatially heterogeneous with different plant species. To examine
whether the species composition affected the revealing of the
underlying mechanisms of phenological responses, we grouped
the forest sites into two groups based on the site description
information: one group with one dominant species and one group
with multiple dominant species. The comparison of the rela-
tionships between phenology and environmental variables
between these two groups indicated that the species composition
had little impact on the environmental controls on phenology,
especially SOS (Supplementary Fig. 16).

A significant trend in SOS (or EOS) can result in significant
trends in spring (or autumn) GPP and RECO (more detailed
analysis is also given in Supplementary Note 2). For the majority
of the 56 sites, however, there were no significant trends in spring
(or autumn) carbon fluxes because of the insignificant trends in
phenology during the warming hiatus. Some previous studies
reported accelerated global land carbon uptake during the
warming hiatus16,42. Based on FLUXNET data at the selected
56 sites, our study showed that few sites had significant trends in
carbon fluxes (GPP, ER, or NEE) despite insignificant trends in
phenology likely because of increased vegetation cover or
enhanced photosynthesis. For the majority of the 56 sites, how-
ever, there were no trends in spring/autumn carbon fluxes
because of the lack of significant trends in SOS (or EOS) phe-
nology; the correlation of annual carbon fluxes with SOS (or EOS)
were also very weak (Supplementary Tables 3 and 4). The
increase in net carbon uptake during the warming hiatus in recent
studies has been attributed to reduced ER16, lower land-use
emissions caused by decreased tropical forest loss and temperate
afforestation42, and enhanced peak growth43. Our findings along
with these recent studies indicated that the enhanced net carbon
uptake during the warming hiatus was likely not due to the
lengthening of the growing season but to other factors (e.g.,
reduced ER, land use change, and enhanced peak growth).
Moreover, the time period of our analysis is not exactly the same
as those of the previous studies. Uncertainties in carbon fluxes
caused by random measurement error34, gap-filling method44,
and NEE partitioning method45,46 may result in uncertainties in
the carbon flux trends and the relationship between phenology
and seasonal carbon fluxes.

In conclusion, based on phenology estimated from a long-term
satellite record using different methods, our study showed that
the phenology change rate in the northern hemisphere, especially
the SOS advancing rate, slowed down during the warming hiatus.
Meanwhile, our study showed that among the 56 FLUXNET sites
in the northern hemisphere with most observations within the
warming hiatus, significant trends in spring and autumn phe-
nology were observed for only 5 and 12 sites, respectively, and
most sites had no significant trends in either spring or autumn
phenology. Environmental effects on phenology varied among
different sites. Generally, among the environmental factors
examined, air temperature in spring and autumn were sig-
nificantly correlated with SOS and EOS, respectively. With the
FLUXNET records mainly falling in the warming hiatus, only
very few sites had significant increasing trends in air temperature
in spring and autumn. At most of the sites where phenology did
not significantly change, no significant trend was found for any
environmental factor. The trends in spring (or autumn) carbon
fluxes depended on SOS (or EOS) trends, and there were no
widespread increasing trends in spring (or autumn) carbon fluxes
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partly because of the lack of widespread trends in SOS (or EOS).
Our findings have implications for understanding the impacts of
climate change on vegetation phenology, the influences of phe-
nological changes on carbon uptake and vegetation productivity,
and thereby the climate–carbon cycle feedbacks. Rising air tem-
peratures driven by the buildup of carbon dioxide and other
greenhouse gases can advance SOS and/or delay EOS and thereby
lead to the lengthening of the growing season. A longer growing
season can increase plant productivity and ecosystem carbon
uptake which will in turn partly offset carbon emissions, and a
longer growing season can also enhance transpiration and
potentially reduce soil water availability and runoff. Our findings
show that the slowdown of climatic warming during the warming
hiatus led to the stabilization of spring and autumn phenology.
This indicates that the stabilization of climate in the future will
likely stabilize phenology and growing season length. With the
stabilization of phenology, ecosystems would not have an addi-
tional carbon uptake period; meanwhile, ecosystems would be
able to maintain the lengths of the different seasons and thereby
the seasonality, and would not increase water loss via enhanced
transpiration. Some recent studies, however, indicated that
regional or global mean temperatures may continue to increase
following zero carbon emissions47,48, although a number of stu-
dies showed that global mean surface temperatures would stay
roughly constant for a couple of centuries after carbon emissions
are stopped49,50. It also remains unclear when zero carbon
emissions will be achieved. Therefore, the stabilization of phe-
nology globally is likely not to be anticipated for the foreseeable
future unless another warming hiatus occurs. Our findings can
improve our understanding of the responses of phenology to the
warming hiatus and the carbon–climate feedbacks.

Methods
Datasets. The latest GIMMS NDVI3g (GIMMS3g) NDVI dataset was used to
estimate phenology for the northern hemisphere23. The data was available for the
period from 1982 to 2015. The latest global flux database, FLUXNET2015, was first
released in December 2015 with more site–years of data added in November 2016
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/)51. This dataset consists of
212 sites across the globe, and these sites encompass 13 major vegetation types
(Supplementary Fig. 17). The eddy covariance data for all the sites were processed
with the same procedures to minimize inconsistency and uncertainties caused by
data processing for cross-site synthesis. Compared with its predecessor—the 2007
LaThuile database, the new FLUXNET2015 database has been improved in both
data quality control and data processing procedures. To explore the long-term
trends in phenology, we identified and used the sites having at least 7 years of high-
quality carbon flux data (≥75% of good quality data in a year). One exception is
DK-ZaH, where the percentage of good-quality GPP data was higher than 0.75
during the growing season that was <2 months long and was very low in the non-
growing season. For some evergreen broadleaf forests, GPP does not exhibit
obvious seasonality, and we excluded these sites from this study. Finally, 56 sites
met our criteria and all these sites are located in North America and Europe
(Supplementary Fig. 17). The latitude of the 56 sites ranged from 31.74 (US-Wkg)
to 74.47°N (DK-ZaH). More detailed information on these sites is given in Sup-
plementary Data 1, including site name, site ID, vegetation type, site coordinates
(latitude/longitude), start year of measurement, end year of measurement, dura-
tion, number of years with high-quality data and references. Seasonal carbon fluxes
and meteorological variables were calculated from monthly data to explore the
impacts and controlling factors of phenology. Seasonal carbon fluxes or meteor-
ological variables were excluded if the percentage of good-quality data was smaller
than 75%. The global monthly temperature anomaly datasets used in this study
were provided by Climatic Research Unit, University of East Anglia (CRUTEM452;
CRUTEM353), NASA Goddard Institute for Space Studies54, NOAA National
Centers for Environmental Information55, and Berkeley Earth56. These are the
major temperature datasets used in the IPCC report to assess the global warming
rate57. Spring, autumn, and annual mean temperature anomalies were calculated
for the northern hemisphere. All the datasets contain the whole warming hiatus.

NDVI-based phenology estimation. There are a variety of methods to extract
phenology dates from the NDVI time series. Generally, they can be divided into
two groups. The first is inflection point detection method, which finds the
inflection point in the smoothed annual NDVI time series curve. The date when
the derivative of the smoothed NDVI is the local maxima (or minima) is used as
the SOS in spring or the EOS in autumn. The second group is threshold method,

which compares the smoothed NDVI time series with a fixed NDVI value (i.e.,
fixed threshold method) or a fixed percentage of the annual maximum NDVI (i.e.,
dynamic threshold method because the threshold NDVI value changed inter-
annually). Here, we selected five widely used phenology estimating methods with
two inflection point detection methods and three threshold methods to determine
the SOS and EOS for the northern hemisphere.

Method 1: First, a double logistic function (Eq. (1)) was fitted with the time
series NDVI, and then the second-order derivative of the fitted curve was
calculated. The two dates corresponding to the two local maxima points in the first
half year are the SOS and the onset of maturity. The two dates corresponding to the
two local maxima points in the second half year are the onset of senescence and the
EOS58,59.

y tð Þ ¼ aþ bð 1

1þ ecðt�dÞ þ
1

1þ eeðt�f ÞÞ ð1Þ

where c, d, e, and b are parameters of this function, a is the initial background
NDVI value, a+ b is the maximum NDVI value, t is time in days, and y(t) is the
NDVI value at time t.

Method 2: First, a double logistic function (Eq. (1)) was fitted with the time
series NDVI, then the date when NDVI increasing (or decreasing) fastest was used
as SOS (or EOS). Specifically, the date corresponding to the maxima (or minima)
value in first-order derivative of the fitted curve was determined as SOS (or EOS)60.

Methods 3 and 4: The dynamic threshold NDVI was used to extract phenology.
The NDVI was fitted with a double logistic function. Then, the fitted NDVI was
normalized using the following function:
Ratioday ¼ ðNDVIday � NDVIminÞ=ðNDVImax � NDVIminÞ, where NDVIday is
fitted NDVI at given day, NDVImax and NDVImin are maximum and minimum
NDVI each year. A threshold ratio was used to determine SOS and EOS in spring
and autumn. Here, we used the threshold 0.237 in method 3 and 0.561 in method 4.

Method 5: A fixed threshold NDVI value was used to determine the phenology.
The NDVI season dynamic was calculated from the multiyear NDVI, then the
NDVI change rate (NDVIRC) was estimated from the multi-year averaged NDVI

seasonal dynamics using the following function: NDVIRC ¼ NDVI tþ1ð Þ�NDVIðtÞ
NDVIðtÞ ,

where NDVI(t+ 1) and NDVI(t) are NDVI value at time t+ 1 and t, respectively;
The NDVI values correspond to maximum and minimum NDVI change rate are
used as the thresholds for SOS and EOS, respectively. The first and second half year
NDVI was fitted with a polynomial function: NDVI= a+ a1 × t+ a2 × t2+···+
an × tn, n= 6, where t is Julian day in a year, and a, a1, a2, …, a6 are fitting
parameters. SOS and EOS were determined by comparing the fitted daily NDVI
with the thresholds62,63.

We selected the northern hemisphere with latitude greater than 30° to estimate
phenology because vegetation has evident seasonality in this area. The area with
annual mean NDVI <0.1 was considered as non-vegetated area and was excluded
in remote sensing-based phenology estimation. The Savizky–Golay filter was
applied to the GIMMS NDVI3g dataset to minimize the noise before phenology
estimation. The parameter setting for Savizky–Golay is the same as a previous
paper64.

Phenology estimation from the FLUXNET database. A moving average filter was
used to smooth the daily GPP curve for each of the 56 FLUXNET sites. Within the
moving window, the weights were calculated from the Gaussian density function in
which the weight is the highest for the mid-point of the time window and decreases
to the two sides. The dates for SOS and EOS were then extracted from the
smoothed GPP curve based on a GPP threshold. The SOS was determined as the
date when the smoothed daily GPP was greater than the GPP threshold in spring,
while the EOS was determined as the date when the smoothed daily GPP was less
than the GPP threshold in autumn (Supplementary Fig. 18). In this study, we used
15% of the multi-year daily GPP maximum value as our threshold following
previous studies65,66, and the resulting threshold value varied between 1 and 2 g C
m−2 day−1 for different ecosystems. By changing the threshold from 4% to 30%
with a step of 2%, we found the standard deviation of estimated phenological dates
from different NEE partitioning methods became stable when the threshold was
greater than 15% (Supplementary Fig. 19). The FLUXNET dataset provided GPP
estimates based on both respiration extrapolation approach45 and light use effi-
ciency approach46 We compared the SOS (EOS) extracted from both GPP esti-
mates, and found that they were almost identical with each other (Supplementary
Fig. 20). We therefore used GPP based on the respiration extrapolation approach.

Phenology trends and correlates. The Mann–Kendall67,68 method was used to
examine the trends in phenology and meteorological variables. Because the
Mann–Kendall method is a nonparametric test for monotonic trends, it does not
assume a specific distribution for the data and is insensitive to outliers. Because of
these advantages, it has been widely used for trend analysis recently. The Theil–Sen
method was used to estimate the slope of the Mann–Kendall trend69. We also
analyzed the environmental controls on phenology and impacts of phenology on
ecosystem carbon exchange. For each environmental factor (air temperature, soil
temperature, VPD, precipitation, soil moisture, or shortwave radiation) and carbon
flux (GPP, NEE, or ER), the seasonal and annual values were calculated from
monthly values. The seasons are defined as spring (March–May), summer
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(June–August), autumn (September–November), and winter (December of the
previous year to February). Seasonal meteorological data were quality controlled by
filtering low-quality data (QC flag < 75%). Then the correlation and partial cor-
relation coefficients were calculated between phenological dates and meteorological
variables at both seasonal and annual scales. The trends of these meteorological
variables for different seasons were also analyzed using the Mann–Kendall method
to examine whether there were consistent trends between environmental factors
and phenology. Correlation analysis was also performed between carbon fluxes and
phenology to examine the contribution of the changes in phenology to inter-annual
variations of carbon fluxes.

Data availability
Source data for Figs. 1–5 and Supplementary Figs. 1–16 are provided as a Source Data file and
can be accessed from https://github.com/XufengWangofCAS/NCOMMS-SourceDataFile.
The gridded SOS and EOS data (1982–2014) retrieved from the GIMMS NDVI3g dataset
using five different retrieval methods are available for downloading at http://globalecology.
unh.edu. The GIMMS NDVI3g version1 was provided by the NASA Ames Ecological
Forecasting Lab (https://ecocast.arc.nasa.gov/data/pub/gimms/). The FLUXNET2015
database was downloaded from http://fluxnet.fluxdata.org/data/ fluxnet2015-dataset/. The
temperature anomaly was provided by Climatic Research Unit, University of East Anglia
(RUTEM4: https://crudata.uea.ac.uk/cru/data/temperature/CRUTEM4-gl.dat and
CRUTEM3: https://crudata.uea.ac.uk/cru/data/crutem3/CRUTEM3-gl.dat), NASA Goddard
Institute for Space Studies (https://data.giss.nasa.gov/pub/gistemp/GHCNv3/gistemp250.nc.
gz), the NOAA National Centers for Environmental Information (ftp://ftp.ncdc.noaa.gov/
pub/data/ghcn/v3/grid/grid-mntp-1880-current-v3.3.0.dat.gz) and Berkley Earth (http://
berkeleyearth.lbl.gov/auto/Global/Gridded/Complete_TAVG_LatLong1.nc). More raw data
in this study are available from the corresponding author upon request.

Code availability
The code used to estimate phenology from remote sensing data and carbon flux can be
accessed from https://github.com/XufengWangofCAS/NCOMMS-Codes. More codes in
this study are available from the corresponding author upon request.
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