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Background: Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common,
caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often
progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy ded-
icated to muscle atrophy. For this reason, our research focuses on finding an alternative method using
natural compounds to treat MA. This study proposes implementing natural substances such as celastrol
and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods:
Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12
cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions
were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and
MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the
MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that
both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic
cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin
VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and
Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders.
Thus, natural drugs seem promising for muscle regeneration.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Muscle atrophy can be caused by various reasons, such as lack
of mechanical stimulation, starvation, cancer, genetic diseases, or
even presence in a vestigial or no gravity environment. The excit-
ing and reasonable solution to mentioned dysfunction would be
the use of pharmacological agents to inhibit the atrophy of muscle
tissue, even under conditions that could induce and stimulate the
occurrence of muscular atrophy. Muscle atrophy can occur during
long periods of inactivity. This ‘‘inactivity phenomenon” can be
caused by poor nutrition (as a result of cancer, celiac disease, or
irritable bowel syndrome), age, or genetic disorders, e.g., spinal
muscular atrophy (SMA) (Prior et al., 1993). Other diseases and
chronic conditions can induce atrophy, e.g., amyotrophic lateral
sclerosis, arthritis, and myositis. The most difficult to treat are atro-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsps.2022.06.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jsps.2022.06.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:julita.kulbacka@umw.edu.pl
https://doi.org/10.1016/j.jsps.2022.06.008
http://www.sciencedirect.com/science/journal/13190164
http://www.sciencedirect.com
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phies caused by genetic disorders, and currently, available
approaches are ineffective and expensive (Jędrzejowska and
Kostera-Pruszczyk, 2020). Muscle mass weight depends primarily
on the ratio of processes and proteins that affect healthy muscle
cell proliferation to those that affect their atrophic development.
During muscle tension absences or relaxation - the process of mus-
cle tissue protein degradation is controlled by the transcription
factor FoxO, directly related to the ubiquitin-proteasomal system
(Arun et al., 2017). In this case, a reduced actin activity stimulates
the FoxO factor, which stimulates muscle-specific ligases such as
MaFbx (Muscle atrophy F-box) MuRF1 (Muscle RING Finger 1) -
crucial in stimulation and responsibility for the pathophysiological
process. These processes can also be stimulated by the transcrip-
tional activity of glucocorticoid receptors, which depends on exter-
nal factors like adrenal hormones such as DEX (dexamethasone)
(Gwag et al., 2013).

Currently, there is no golden solution for the regeneration of
the atrophic muscles. Therapies based on natural substances can
support the available therapeutic protocols and be more safe
and more beneficial for the patients. Recently, a beneficial role
of herbal medicine against muscle atrophy was demonstrated
(Li et al., 2021), e.g., of valeriana fauriei (Kim et al., 2022) or Abel-
moschus manihot L. Medik (Anggi, 2020). In this study, we aimed
to validate celastrol and Rhynchophylline for this purpose. Celas-
trol is a pentacyclic triterpenoid (belonging to the quinone struc-
tured compounds) naturally occurring in the roots of the plant
Tripterygium wilfordii (Thunder duke vine), used in traditional Chi-
nese medicine. This compound is of high interest due to its
potential use in the treatment of obesity, diabetes, and cardiovas-
cular diseases caused by poor nutrition (mostly diets containing
highly processed and sweetened products) - which was confirmed
by researchers from centers in the USA, China, and Korea studies
in the years 2011–2019 (Wastag et al., 2020)(Moreira et al.,
2018). The feasible therapeutic mechanism of this compound con-
cerns the induction of the HSF1 protein (encoded by the HSF1
gene), which affects the HSP70, HSP90 heat shock proteins prolif-
eration and regulation of what is commensurate with the activity
of the PGC-1a transcription coactivator complex. The PGC-1a pro-
tein (encoded by the PPARGC1A gene) plays a crucial role in
energy metabolism regulation due to its effect on mitochondrial
activity and biogenesis, which is crucial in muscle functioning
(Gwag et al., 2013)(Gwag et al., 2015). Rhynchophylline (Ryn) is
an alkaloid derived extracted from of Uncaria rhynchophylla
(Ballester Roig et al., 2021)(Kaneko et al., 2020). There was noted
that Ryn enhances cellular proliferation, differentiation, neuropro-
tection (He et al., 2014)(Dey and Mukherjee, 2018) (Akkol et al.,
2021), and also acts as an antioxidant (Kaneko et al., 2020)
(Ravipati et al., 2014), and as an anti-inflammation compound
(Dey and Mukherjee, 2018). Thus the broad spectrum of applica-
tions of celastrol and Rhynchophylline place them as good candi-
dates for potential usage in neurological diseases (Akkol et al.,
2021) and validation in muscle-related disorders. Natural com-
pounds seem safe and might be combined with currently used
conventional methods.

This study evaluates if natural compounds can improve muscle
cells’ recovery from the atrophic state. An in vitro model of muscle
atrophy based on C212 cells was used in the study. Natural com-
pounds, i.e., celastrol and Rhynchophylline were implemented to
overcome atrophic symptoms. Simulated atrophy and its neutral-
ization were detected by specific markers FOXO3 or MAFbx. The
effect of the treatment with natural compounds was determined
by the viability assay, MTCO-1, VDAC, and prohibitin visualization.
The obtained results can contribute to muscle atrophy co-
treatment by using natural drugs.
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2. Materials and methods

2.1. Cell culture

C2C12-normal mouse myoblasts (American Type Culture Col-
lection, ATCC�, LGC Standards Sp. z o.o., Poland) were used in the
study. C2C12 cells were grown in DMEM (Sigma-Aldrich, Poznan,
Poland), low glucose (1 g/L), and GlutaMAXTM Supplement (Gibco).
The culture medium was supplemented with 10% fetal bovine
serum (FBS, Sigma Aldrich), and penicillin/streptomycin (100 U/
mL, Gibco). Cells were passaged twice a week. The cells were
grown in an incubator at 37 �C with 5% CO2. Cells were tested rou-
tinely for mycoplasma once per month.

2.2. Cells’ differentiation induction

Cells’ differentiation process was initiated at 80% confluency of
cells. The standard culture medium for C2C12 was replaced by
DMEM (Sigma-Aldrich, Poznan, Poland) of high glucose (4.5 g/L),
and with 2% horse serum (HS, GibcoTM Horse Serum, heat-
inactivated). The culture medium was changed every second day.
Myotubes Cells were differentiated for five days before experi-
ments. Differentiated control cells are shown in Fig. 1 SM as CTRL.

2.3. Natural compounds preparation

Celastrol (C0869) and Rhynchophylline (PHL80381) presented
in Fig. 1 were obtained from Sigma-Aldrich (Poland, Poznan) and
used for the study to counterbalance cells from the atrophic condi-
tions. Stock solutions of 10 mM concentration were prepared in
MilliQ water and were used to prepare dilutions in the range from
10 nM to 200 lM (final dilutions in cells’ culture media), which
enabled the selection of the therapeutic drugs’ concentration used
in the study.

2.4. Doxorubicin exposure for atrophy stimulation

When cells differentiated into myotubes after 5 days, atrophic
conditions were provoked by various concentrations (1–20 lM)
of doxorubicin (DOX) post 24 h exposure time. Doxorubicin final
dilutions were prepared freshly in a cell culture medium. The pro-
cedure was based on the experimental literature data (Willis et al.,
2019)(Burke et al., 2020). In this study, we have selected low cyto-
toxic DOX concentrations 2 and 4 lM for the simulation of the
atrophic conditions (Fig. 1-SM). The atrophic state was validated
by microscopic observations of myoblasts differentiation inhibition
and differentiation marker (FoxO3) evaluation.

2.5. Cell differentiation examination by immunocytochemical (ICC)
staining of forkhead box O3 (FoxO3)

C2C12 cells were seeded on 10-well microscopic slides
(Equimed, Poland) and differentiated 5 days according to the 2.2
protocol described above. Then atrophy was induced in C2C12 cells
by 2 and 4 lM DOX for 24 h. Cells were washed in PBS (BioShop,
Poland) before and after fixation in 4% formaldehyde (Roth, Ger-
many). Phospho-FOXO3A (Ser253) polyclonal antibody (cat no.
PA5-104701, ThermoFisher) in 1:500 dilution was used for the
immunocytochemical reaction. The immunocytochemical (ICC)
assay was performed according to our previous study (Novickij
et al., 2020). Peroxidase-ABC labeling assay (Abcam, United States;
Cat. no ab80a36) was used for the samples. Cells on the micro-
scopic slides were incubated with a diaminobenzidine-H2O2 mix-
ture to visualize the peroxidase label and counterstained with



Fig. 1. Structural representation of (a) celastrol, and (b) Rhynchophylline (Compounds’ structures were prepared and their geometry optimized in Avogadro software,
visualizations were created in Pymol software). Simple structures originate from https://www.sigmaaldrich.com/.
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hematoxylin (Roth, Germany) for 60 sec. The samples were ana-
lyzed with an upright microscope (Olympus BX51, Japan).
Immunostained cells on microscopic slides were determined by
counting 100 cells in randomly selected regions. The results were
positive if the stained reaction was observed in more than 5% of
cells. The intensity of immunocytochemical (ICC) staining was
evaluated as (-) negative, (+) weak, (++) moderate, and (+++)
strong.
2.6. Cytotoxicity assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo
lium bromide) assay was used for the drugs’ cytotoxicity. All drugs’
dilutions were performed in the cultivation media. Cells were
detached by trypsinization (0.25% trypsin-EDTA, Sigma), and
seeded in density 2x104 on 96-well plates (Nunc). Cells were culti-
vated overnight to adhere and afterward incubated with various
concentrations of celastrol, Rhynchophylline, or doxorubicin for
24 h. The control cells, corresponding to 100% of the mitochondrial
activity, were incubated in a culture medium (DMEM). For the final
viability measurements, the mediumwas replaced with 100 lL per
well of 5 mg/mL (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo
lium bromide (MTT, Sigma-Aldrich) diluted in phosphate-buffered
saline (PBS, Bioshop, Poland). The MTT experiments were per-
formed according to the manufacturer’s procedure. The absorbance
was measured in the multiplate reader (GloMax Promega) at a
wavelength of 570 nm. The results were presented as a percentage
of control untreated cells. Each experiment was performed in a
minimum of eight repetitions. Results were presented as mean val-
ues with standard deviations. IC50 was calculated using the analy-
sis in GraphPad Prism software 7.0, where nonlinear regression is
used for analysis (https://www.graphpad.com/support/faq/how-
to-determine-an-icsub50sub/).
2.7. Myoblasts diameter measurements

Cells were seeded in the density of 4x104 on 6-well plates,
coated with collagen I (Gibco, Life Technologies, Poland), and dif-
ferentiated for 5 days as was described previously (section 2.2)
(Fig. 1SM.). Then atrophic conditions were stimulated in C2C12
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cells by 4 lM DOX for 24 h. Next, cells were washed by a cell cul-
ture medium, and celastrol or Rhynchophylline was added in var-
ious concentrations for the next 24 h., A minimum of three
repetitions were performed. Then microscopic observations were
performed, and the obtained images were analyzed by ImageJ
1.53 k free software (Schindelin et al., 2012). A color threshold
was set as black and white to simplify images; the scale was set
in the software to be compatible with the microscopic visualiza-
tion, and the width and length of cells were measured.
2.8. Combination therapy – atrophy mitigation

Firstly, cells were seeded in the density of 4x104 on 12-well
plates (Greiner, Germany), and differentiated for 5 days as was
described previously (section 2.2). Then atrophic conditions were
stimulated in C2C12 cells by 4 lM DOX for 24 h. After this time,
cells were washed by a cell culture medium, and celastrol or Rhyn-
chophylline was added in to various concentrations for the next
24 h. Then cells were dedicated to further analysis, i.e., viability
and immuno- assays.
2.9. Immunofluorescent reactivity of muscle atrophy F-box gene
(MAFbx)

Cells were seeded on cover microscopic slides (Menzel, Ger-
many) and differentiated for 5 days. After atrophy simulation by
4 lM DOX, cells were washed in PBS (BioShop, Poland) and fixed
in 4% formaldehyde (Roth, Germany). Then the cells were washed
3x in PBS, and incubated for 5 min with PBS with 1% Triton 100X,
blocked for 60 min with 4% FBS. MAFbx Antibody (F-9) conjugated
with Alexa Fluor� 488 (1:200, sc-166806 AF488, Santa Cruz) was
diluted in PBS with 0.5% FBS and added for 60 min at 37 �C and
5% CO2. After washing in PBS, cells were mounted with DAPI (nu-
clei marker) Mounting Medium (Roth, Germany). The samples
were analyzed by a confocal laser microscope (Olympus Fluo-
Viewer 1000, Japan). Fiji package of ImageJ 1.53 k software (ROI
Manager, Multi Measure) (Schindelin et al., 2012) was used to
quantify the mean fluorescent signal.
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2.10. Immunocytochemical staining of MT-CO1, VDAC1, prohibitin

Cells were seeded on 3-well microscopic slides (Roth, Germany)
and differentiated for 5 days. Large wells of the microscopic slides
were selected in particular for the cells’ differentiation. After the
atrophy simulation by DOX, cells were washed in PBS (BioShop,
Poland) before and after fixation in 4% formaldehyde (Roth, Ger-
many). Mitochondrially Encoded Cytochrome C Oxidase I (MTCO1)
monoclonal antibody (1D6E1A8, cat no. 459600, ThermoFisher),
prohibitin polyclonal antibody (cat no. PA5-27329, ThermoFisher),
and voltage-dependent anion channel (VDAC, cat no. ab34726
Abcam) antibody were used in 1:200 dilution for the immunocyto-
chemical reaction. According to our previous study, the immuno-
cytochemical (ICC) assay was performed (Novickij et al., 2020).
All samples were counterstained with hematoxylin (Roth, Ger-
many) for 60 sec. A diaminobenzidine-H2O2 mixture stained the
immunocytochemical reaction to visualize the peroxidase label.
The intensity of ICC staining was evaluated as: (-) negative, (+)
weak, (++) moderate and (+++) strong.

2.11. Statistical analysis

All data were expressed as the mean ± SD. Statistical signifi-
cance was determined using one-way ANOVA, where values
p � 0.05 or p � 0.005 were classified as statistically significant.
The obtained values were related to the untreated appropriate con-
trol in the viability assay, i.e., differentiated or undifferentiated.
Prism software (GraphPad Software v. 7.0) was used for the
evaluation.

3. Results

3.1. Atrophy detection

In the study, C2C12 cells were differentiated to myotubes
(Fig. SM1 – CTRL) and then exposed to 2 and 4 lM doxorubicin
to stimulate atrophic conditions. The observations of myotubes
morphology revealed that 24 h exposure to 4 lM of DOX altered
cells’ morphology to ‘‘not differentiated”. Moreover, incubation
with DOX slightly reduced cell number, which was shown in Fig.
SM1- (DOX (4 lM)). Atrophic changes were examined by FoxO3
immunostaining and microscopical observations of morphology.
The immunostaining results are shown in Table 1 and Fig.SM-2
in Supplementary Material. The validation of FoxO3 – an atrophy
marker, was also performed in undifferentiated cells as a control.
The obtained results revealed an intensive stained reaction after
the exposure to 2 lM of DOX in 90% of cells and 100% reactive cells
after the exposure to 4 lM of DOX.

3.2. Viability studies

The results obtained from the viability studies after 24 h expo-
sure time to natural drugs and doxorubicin are shown in Fig. 2.
There were used two variants of cells: undifferentiated and differ-
entiated. The obtained results demonstrated a significant cytotoxic
Table 1
The semi-quantitative determination of the expression of the atrophy marker - FoxO3
in C2C12 cells differentiated and undifferentiated after exposure to doxorubicin
(DOX) – 24 h observations.

undifferentiated differentiated

Control cells 50% ± 5 + 70% ± 5 ++
2 lM DOX 5% ± 1 ++ 90% ± 3* +++
4 lM DOX 10% ± 2*++ 100% ± 7* ++/+++

* p � 0.05.
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effect of celastrol on the cell viability with the increasing concen-
tration (greater than 0.1 lM). In the case of the exposure to Rhyn-
chophylline similar effect was observed. However, undifferentiated
cells were more sensitive to this compound. Noncytotoxic concen-
trations of Ryn were in the range of 2.5–10 lM. The incubation
with doxorubicin (Fig. 2c) showed that undifferentiated cells were
more sensitive to DOX. The increasing concentration provoked a
slight decrease in cellular viability to a minimum of c.a. 47% in
undifferentiated cells and almost 70% in differentiated cells. The
obtained results enabled the calculation of IC50 for all used com-
pounds, and results are presented in Fig. 2d, and the values are
shown in Table 2. In all cases, we can see that differentiated cells
are less sensitive to natural compounds.

3.3. Atrophy neutralization in vitro

In the next stage, cells healing from the atrophic conditions was
performed after the simulated atrophy induction. Firstly, differen-
tiated cells were exposed to 4 lM DOX to induce atrophic changes.
Then cells were washed by medium and exposed to celastrol (CLS)
or Rhynchophylline (RYN). The results are demonstrated in Fig. 3.
Undifferentiated cells were used as a negative control (Fig. 3 a
and c). There was demonstrated that 0.01, and in particular
0.5 lM concentrations of CLS (Fig. 3b) protected differentiated
cells, and cell viability maintained in the control cells. Higher con-
centrations caused a cytotoxic effect and significantly reduced cell
viability (Fig. 3a). A similar effect was observed in the case of Rhyn-
chophylline. The incubation with 2.5 and 5 lM RYN protected dif-
ferentiated cells after DOX exposure, maintaining viability on the
control level (Fig. 3d). Undifferentiated cells were not sensitive,
and Rhynchophylline only slightly changed cell viability (Fig. 3c).

The results obtained from the analysis of myoblasts diameter
are shown in Fig. 4., Fig. SM1 was used as a model for the measure-
ments of the width and length of myoblasts. Measurements were
performed with ImageJ 1.53 k software (ROI Manager, Multi Mea-
sure) (Schindelin et al., 2012). The measurement of length and
width of myoblasts were represented as bars (Fig. 4 a and b).
DOX exposure caused no significant changes in cells’ width but a
significant decrease in cells’ length. Then the exposure to CLS or
RHY significantly stimulated cells to lengthen. Cell lengthening
was stimulated 3-fold by CLS, and 2-fold by RHY.

Further, MAFbx labeled antibody was used as an atrophy mar-
ker, where a specific translocation between cytoplasm and nuclei
can be noted (Lagirand-Cantaloube et al., 2012). The atrophy mar-
ker - MAFbx expression results in differentiated C2C12 cells after
the exposure to doxorubicin (DOX) are shown in Fig. 5 and Table 3.
A reduced expression of MAFbx in cells exposed to Rhyn-
chophylline (on control level) and strong nuclear expression in
cells after treatment with celastrol were observed. Fig. 5b demon-
strates the mean fluorescence intensity values calculated in ImageJ
software. The highest signal corresponding to MAFbx expression
was detected for cells exposed to DOX and celastrol, and the signal
appeared mainly in nuclei. Cells exposed to 4 lM of DOX revealed
only some increase in the fluorescent signal. Rhynchophylline
caused a more substantial decrease in the fluorescent intensity in
cells.

3.4. Mitochondrial markers in cells counterbalanced from the
simulated atrophic state.

According to the viability experiments, we have selected noncy-
totoxic concentrations: 10 nM for celastrol and 5 lM for Rhyn-
chophylline for mitochondrial markers evaluation. Mitochondrial
markers determined the energetic state of treated cells, which is
significant in cell regeneration, particularly in degenerated (at-
rophic) muscle cells. Mitochondria play a crucial role in the meta-

http://Fig.SM


Fig. 2. The evaluation of the cells’ proliferation in undifferentiated and differentiated C2C12 cells after 24 h exposure to (a) celastrol, (b) Rhynchophylline, and (c)
doxorubicin, (d) graphical representation of IC50 Values marked (* or #) were classified as statistically significant p � 0.05.

Table 2
IC50 values [lM] were calculated based on the viability results.

C2C12 cells Celastrol Rhynchophylline Doxorubicin

undifferentiated 0.110* ± 0.012 17.068* ± 0.419 5.148 ± 0.217
differentiated 0.521* ± 0.025 135.810 ± 2.134 44.469 ± 6.037

* p � 0.05.
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bolism of muscle cells, energy resources, and regulation of the sig-
naling and production of reactive oxygen species, calcium home-
ostasis, and cell death regulation (Gouspillou and Hepple, 2016).
The cell healing process from stressed conditions should reveal
an increasing energetical condition of mitochondria and their
markers. Thus VDAC1 (Voltage-Dependent Anion Channel), pro-
hibitin (protein located in the inner membrane of mitochondria),
and MT-CO1 (cytochrome c oxidase) were immunohistochemically
determined as markers. The results are shown in Fig. 6 and Table 4.
There was observed that doxorubicin and exposure to natural
drugs induced an increased immunostained reaction of MT-CO1,
VDAC, and prohibitin. The exposure to 4 lM doxorubicin induced
a partial immunostained reaction of MT-CO1 and prohibitin in cells
and a stronger reaction in the case of VDAC expression in 100% of
cells. The treatment of cells with celastrol intensified the
immunoreaction with MT-CO1 in the cytoplasmic area. VDAC
immunoreaction was less intensive but observed in 90% of cells.
Prohibitin expression revealed the most intensive stained reaction
in ca. 100% of cells. The exposure to Rhynchophylline demon-
strated weaker immunoreaction of MT-CO1 in 90% of cells, an
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intensive stained reaction in the case of VDAC (98%), and a slightly
weaker expression of prohibitin (++).

4. Discussion

The available studies indicate that skeletal muscle atrophy
involves complex molecular signaling that is still unclear (Ebert
et al., 2019). Mitochondrial dysfunction had been directly linked
to muscle wasting; thus, the idea of mitochondrial dysfunction
contributes also to disuse muscle atrophy (Hyatt et al., 2019).
The most promising therapies are based on troponin activation
or gene therapy, where small molecules such as RG7916, LMI070
are applied (Hyatt et al., 2019)(Jędrzejowska and Kostera-
Pruszczyk, 2020)(Prior et al., 1993). However, this approach is still
limited to a broader range of patients. Another problemmay be the
various sensitivity of atrophic cells to the treatment, which are at
different stages of differentiation. Our observations revealed that
undifferentiated cells were more sensitive to both natural com-
pounds. It can be related to the difference between the differenti-
ated and undifferentiated types of cells. In turn, some authors



Fig. 3. The evaluation of the cells’ proliferation in undifferentiated (a, c) and differentiated (b, d) C2C12 cells after exposure to doxorubicin (24 h) and counterbalancing by
celastrol and Rhynchophylline. ‘‘no DOX” corresponds to cells not exposed do doxorubicin. Values marked (*) were classified as statistically significant p � 0.05.

Fig. 4. The evaluation of the muscle cell diameter (a) width and (b) length in [lm]. Black and white transformations (c) were used for the image analysis. Control cells
correspond to differentiated C2C12 cells after 5 days (scale bar 200 lm); DOX (lM) corresponds to cells exposed to doxorubicin (24 h) after differentiation (scale bar
500 lm); DOX + CLS – cells counterbalanced by celastrol (10 nM) or DOX + RYN by Rhynchophylline (5 lM) (scale bars 500 lm). Values marked (*) were classified as
statistically significant p � 0.05 or (**) p � 0.005.
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Fig. 5. The immunofluorescent evaluation of the atrophy marker – (a) MAFbx in differentiated C2C12 cells after 24 h exposure to doxorubicin (DOX � 4 lM), and exposed to
celastrol (10 nM), or Rhynchophylline (5 lM). (b) The mean fluorescence intensity values evaluated based on the immunofluorescent studies of the atrophy marker - MAFbx
expression in differentiated C2C12 cells after exposure to doxorubicin (DOX- 4 lM). Values marked (*) were classified as statistically significant p � 0.05.

Table 3
The semi-quantitative determination of the atrophy marker - MAFbx expression in
differentiated C2C12 cells after doxorubicin (DOX- 4 lM) exposure.

Differentiated C2C12 cells

Control cells 70% ± 5 +/++
2 lM DOX 96% ± 4 ++ (reduced cell number and

structure)
DOX + celastrol (10 nM) 92% ± 8* +++Nuclear localization
DOX + Rhynchophylline

(5 lM)
90% ± 10 +/++

* p � 0.05.
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observed that differentiated C2C12 cells in adherent culture are
more resistant to apoptosis, which is related to the increased
expression of Bak and Bad in this type of culture (Schöneich
et al., 2014). Additionally there was proved that differentiated cells
have higher expression of potassium channels TASK2 and TREK1,
which play a significant role in the maintenance of basic cellular
parameters (Afzali et al., 2016). The available data also indicate
that both types of cells have various protein metabolism, which
also determines drug response (Cardin et al., 2017). The important
role in the differentiation process play the upregulation of genes
such as sarcoglycan and myoglobin that encode essential func-
tional components of skeletal myotubes (Szustakowski et al.,
2006). Tannu et al. demonstrated that 75 proteins are regulated
during the phenotypic transformation of C2C12 myoblasts into
fully differentiated, multi-nucleated, and post-mitotic myotubes.
Additionally, the authors discovered a differential accumulation
of 26 phospho-proteins in C2C12 differentiating cells (Tannu
et al., 2004). Thus, this changing profile of genes and proteins
undoubtedly determines the sensitivity or the resistance to the
applied treatment.

In this current study, we proposed the application of the natural
compounds: celastrol and Rhynchophylline for counterbalancing
from atrophic conditions, cells triggered by doxorubicin. There
was noted that validated doxorubicin concentrations can cause a
subacute decrease in muscle cell volume in mice and humans
and provoke atrophy dependent on MuRF1 (Muscle RING-finger
protein-1) (Willis et al., 2019). We have used marked atrophy with
FoxO3 before therapy and with MAFbx after treatment, which are
crucial in determining the appropriate level of simulated atrophy
and, finally, the efficacy of regenerative activity of natural com-
pounds. Or results show that Rhynchophylline decreased MAFbx
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immunofluorescent signal and simultaneously stimulated differen-
tiated cells for increased proliferation. However, in the case of
celastrol treatment, nuclear distribution of MAFbx was observed
in differentiated cells. Despite the relatively high increase in cell
viability (ca. 130%), it might signal atrophic conditions. There is
known that the MAFbx overexpression in myotubes generates
atrophy (Ebert et al., 2019),(Zhang et al., 2013). Some authors also
found that MAFbx contains two functional nuclear localization sig-
nals (NLS) (Lagirand-Cantaloube et al., 2012), which might also be
related to the resistance to the atrophic changes. Up to now, only
an increased cytoplasmatic MAFbx distribution was related to
the atrophic state of the cells. The role of the nuclear MAFbx distri-
bution is still not clarified and requires further investigations. Atro-
phy can also be validated by the myoblasts measurements
(Oelkrug et al., 2015)(Bass et al., 2021). Here myoblasts diameter
was also measured to assess neutralization effects stimulated by
natural drugs. There was observed that simulated atrophic cells
recovered to myotubes again when treated with celastrol or Rhyn-
chophylline. In relation to the other studies, the results obtained in
this study can be associated with the healing process from atrophic
conditions. Gwag et al. showed that celastrol had cytoprotective
properties and inhibited Akt1 and ERK1/2 pathways in C2C12 cells
(Gwag et al., 2013). Another study revealed that celastrol-induced
HSP72 overexpression overcomes the atrophic silencing effect of
the HSP72 gene by increasing FoxO3 phosphorylation and activat-
ing the Akt1-ERK1/2 signaling pathway (Gwag et al., 2013). In the
other studies, the reducing effect of celastrol was proved in dis-
eases associated with neurodegenerative dysfunctions. Authors
indicated the usability of this compound in the therapy of muscu-
lar atrophies (Bai et al., 2021). The anti-arthritic effects of celastrol
in rheumatoid arthritis (RA) were demonstrated by KamWaiWong
et al. There was proved that celastrol triggered Ca2+ signaling
(Wong et al., 2019), and also efficiently induced paraptosis, apop-
tosis, and autophagy in cancer cells (Wang et al., 2012). The next
cause of muscle atrophy is mitochondrial dysfunction (Hyatt
et al., 2019). Mitochondria are crucial organelles, particularly in
excitable cells with high energy demand (Glancy et al., 2015).
Our results indicated that celastrol stimulated mitochondrially
encoded cytochrome C oxidase I, and prohibitin. Doxorubicin also
provoked immunostained reactions in differentiated cells, which
can be related to a response to oxidative stress. The main differ-
ence was associated with the intracellular distribution and inten-
sity of the reaction of detected mitochondrial markers. For
example, in cardiac cells (H9C2), doxorubicin had no significant



Fig. 6. The immunocytochemical staining of MT-CO1, VDAC, and prohibitin in differentiated C2C12 cells after exposure to doxorubicin (DOX) and treatment with celastrol
(10 nM, CLS) and Rhynchophylline (5 lM, RYN).

Table 4
The semi-quantitative determination of the immunocytochemistry results of MT-CO1, VDAC, and prohibitin in differentiated C2C12 cells after exposure to doxorubicin (DOX) and
treatment with celastrol and Rhynchophylline.

MT-CO1 VDAC Prohibitin

Control cells 10% ± 2 + 25% ± 4 ++ 15% ± 3 +/++
DOX 90% ± 5 ++ 90% ± 10 ++ 95% ± 5 ++
DOX + celastrol (10 nM) 95% ± 5 +++ 90% ± 5 ++ 96% ± 4 ++
DOX + Rhynchophylline (5 lM) 90% ± 5 ++ 98% ± 2 +++ 97% ± 3 ++
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effect on prohibitin levels (Qureshi et al., 2015). In turn, Rhyn-
chophylline promoted the expression of VDAC and prohibitin more
intensively. Rhynchophylline was previously noted as a modulator
of mitochondrial mechanisms. In myocardial ischemia–reperfusion
cardiomyocytes, Ryn also modified Ca2+ and MMP (mitochondrial
membrane potential) levels. Additionally, Rhynchophylline
decreased the oxidative stress and degree of mitochondrial perme-
ability transition pore (mPTP) in excitable cells (Qin et al., 2019).
The available data indicated that Rhynchophylline also affects the
sleeping process through ion channel mechanisms (Ballester Roig
et al., 2021).
5. Conclusions

Atrophy-related diseases have different backgrounds, including
genetic (e.g., SEM), or mechanical injury of the spinal cord. The use
of natural compounds can bring a possible economic effect and,
what is more, a supportive method for inhibiting disease progres-
sion. Here we have used an in vitro model of atrophic muscles,
which enabled us to verify a possible alternative or supportive
method using non-usual natural substances such as celastrol and
newly presented Rhynchophylline. The obtained results demon-
strated that natural drugs validated in this study can be good pro-
tectants and weaken the effects in the atrophic tissues. It should be
1394
considered an application of natural compounds as significant sup-
port in atrophy-related diseases. Additionally, the created atrophy
simulation model in vitro and proposed natural drugs for regener-
ation can be helpful in further pharmacological studies on more
advanced human-related models.
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