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Abstract
The rapid spread of COVID-19, caused by the SARS-CoV-2 virus, has had and continues to pose a significant threat to

global health. We propose a predictive model based on the gated recurrent unit (GRU) that investigates the influence of

non-pharmaceutical interventions (NPIs) on the progression of COVID-19. The proposed model is validated by case

studies for multiple states in the United States. It should be noted that the proposed model can be generalized to other

regions of interest. The results show that the predictive model can achieve accurate forecasts across the US. The forecast is

then utilized to identify the optimal mitigation policies. The goal is to identify the best stringency level for each policy that

can minimize the total number of new COVID-19 cases while minimizing the mitigation costs. A meta-heuristics method,

named multi-population evolutionary algorithm with differential evolution (MPEA-DE), has been developed to identify

optimal mitigation strategies that minimize COVID-19 infection cases while reducing economic and other negative

implications. We compared the optimal mitigation strategies identified by the MPEA-DE model with three baseline search

strategies. The results show that MPEA-DE performs better than other baseline models based on prescription dominance.

Keywords COVID-19 prediction � Differential evolution (DE) � Gated recurrent unit (GRU) � Multi-population

evolutionary algorithm � Policy prescription

1 Introduction

Since March 2020, COVID-19 has been rapidly spreading

worldwide. As of August 17th, 2021, there are over 208

million documented COVID-19 cases and over 4.3 million

deaths, constituting major health, economic, and social

harms to many countries and regions [1]. To proactively

plan the needs for the healthcare and provide a good

understanding of policy decisions, the accurate prediction

of COVID-19 cases is essential. Many of the models to

predict COVID-19 cases are based on traditional epi-

demiological methods, such as susceptible-infected-recov-

ered (SIR) [2]. These models consider susceptible

individuals, the number of people infected, and the number

of people recovered and incorporate parameters, such as

the basic reproduction number R0, to predict the outbreak

of the COVID-19 [3]. However, the susceptibility to

infection has been manipulated dramatically because

authorities have implemented different non-pharmaceutical

interventions (NPIs), such as face coverings and social

distancing, to reduce the spread of the virus [4]. The non-

linear complexity of these NPIs will reduce the general-

ization and robustness of the models. Another issue of

epidemiological methods is the non-stationarity of the

factors [5]. Since these NPIs and their influence change

over time, static models cannot achieve high prediction

accuracy for long-term prediction.

To overcome the shortcomings of epidemiological

methods, machine learning based methods have been

developed for outbreak prediction. Yin et al. proposed a

stacking model for the prediction of antigenic variants of
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H1N1 influenza virus, which achieved 80–95% prediction

accuracy [6]. Agarwal et al. discovered the correlation

between weather parameters and dengue outbreak using the

regression model and the k-means clustering algorithm [7].

Liang et al. presented a random forest based algorithm for

the prediction of global African swine fever outbreaks and

achieved a higher test accuracy than other methods [8]. For

the prediction of the COVID-19 spread, time-series pre-

diction using the infection data (e.g., daily new cases, total

cases, daily deaths, daily recoveries) has been widely

adopted since the infection cases are the result of all

unknown epidemiological, cultural, and economic factors

[9]. However, a significant amount of information on

transmission rates has been included in the NPIs [2]. Thus,

it is necessary to consider the time-series infection data and

NPIs simultaneously. Due to non-linear interactions among

NPIs, linear models are inappropriate and ineffective.

Instead, deep learning models can strengthen the general-

ization ability and flexibility. LSTM model have been used

in some COVID-19 studies [10, 11]. One disadvantage of

LSTM is that the training speed is much slower due to the

increased number of parameters. To improve training

speed, the gated recurrent unit (GRU) simplified the model

structure by using only two gates, namely, reset gate and

update gate [12]. In this paper, GRU has been implemented

for the prediction of the COVID-19 spread.

After obtaining the predicted daily cases, the policy-

makers need to make appropriate intervention plans that

optimize COVID-19 mitigation strategies while reducing

the economic and social impacts. The two goals are often

conflicting. For example, when people are required to

quarantine in their homes, the number of new cases can be

significantly reduced. However, the economy will also be

negatively influenced. Therefore, this problem can be for-

mulated as a bi-objective optimization problem that sear-

ches for the Pareto frontier between the two competing

objectives.

The major challenge is that the time-series prediction

model of COVID-19 is a non-linear model which cannot be

solved by existing available solvers. Under this context,

evolutionary algorithms which search for improved solu-

tions iteratively become an option. An evolutionary algo-

rithm (EA) is an optimization algorithm that mimics

biological mechanisms such as mutation, recombination,

and natural selection to find an optimal design within

specific constraints [4]. Since evolutionary algorithms

don’t make any assumption about the objective function,

they perform well in searching for approximate optimal

solutions to all types of problems [13]. In this paper, the

evolutionary algorithm generates groups of prescriptions

(NPIs) for each region. Then these prescriptions are eval-

uated from two perspectives. One is to evaluate the new

cases using the prediction model. The other one is to

evaluate the social and economic impacts. We assume that

for each region, the impact of different levels of a specific

NPI can be represented by a fixed value defined by a cost

matrix. According to this cost matrix, the social and eco-

nomic cost of prescriptions can be measured by addition.

To ensure the generalization ability and stability of the

algorithm, multi-population evolutionary algorithm with

differential evolution (MPEA-DE) is proposed in this

paper.

The main contributions of this research can be sum-

marized as follows:

• An approach that connects the predictive model with

the prescriptive model has been proposed to provide

optimal NPI prescriptions for policymakers based on

the historical NPIs and other context information.

• For prediction, a GRU-based hybrid model has been

implemented to predict the spread of COVID-19 in the

50 regions of the United States. The time-series

infection data and NPIs are considered simultaneously.

• For prescription, based on the prediction of the hybrid

model, a multi-population evolutionary algorithm using

blind greedy has been proposed to search for optimal

intervention plans that can minimize the newly infected

cases as well as the social and economic cost. Different

initialization strategies are used to generate the popu-

lation. To improve the exploration ability and exploita-

tion ability of the algorithm, multiple evolutionary

algorithms are utilized to evolve the sub-populations

together in a cooperative way by using the DE strategy.

• Both the proposed predictive model and the prescriptive

model have been compared with other baseline models

using different test time windows in multiple geograph-

ical areas. The comparison results have proved the

effectiveness of the proposed approach.

The rest of this paper is organized as follows: Sect. 2

describes the datasets used in this study as well as the data

preprocessing steps. Section 3 introduces the framework of

the whole process and the principle of the prediction model

and the prescription model. In Sect. 4, the proposed pre-

diction model and prescription model have been tested

under various scenarios. The comparison results are also

discussed in this section. In Sect. 5, we further discuss the

findings and applications of the proposed method. Finally,

we summarize the contributions and conclude the future

research directions in Sect. 6.

2 Materials and methods

In this section, we describe the datasets used for the pre-

dictive and the prescriptive models. We also explain the

additional variables as a part of the data preprocessing
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procedure. Moreover, we propose a method to generate

cost matrix to simulate the cost of policies in the real

world.

2.1 Dataset

The OxCGRT data contains 20 indicators of the govern-

ment responses. Eight measures are corresponding to the

closure policies (e.g., school closures). Four of the measure

are related to economic policies such as income support.

There are also 8 healthcare-related policies (e.g., emer-

gency investment in healthcare) recorded for different

countries. OxCGRT updates the dataset continuously, but

at the time of this study, we limited the time window from

January 2020 to May 2021. In this study, we used closure

and healthcare related policies for the purpose of predicting

the new cases. In addition to the policies mentioned above,

COVID-19 dataset contains information regarding the

number of confirmed cases, and confirmed deaths for dif-

ferent states on a daily basis. In the following, the two

categories are explained in more detail, and the set of

policies in each of them are described.

• Containment and closure policies These policies are

denoted as C1–C8. The policies in this category include

school closure, workplace closing, public events can-

cellation, gathering restrictions, public transport clo-

sure, stay-at-home requirement, internal movements

restriction (between cities and regions), and interna-

tional travel control for foreign travelers. All policies

are ordinal variables for each the number of levels are

summarized in Table 1. The values for any policy start

from 0, which means no measures taken or restrictions

applied, and goes up to the most stringent level, which

includes maximum restriction or closure. Figure 1

shows the mean stringency level for closure policies in

the United States. For most policies, we can see that the

mean stringency increases and reaches a maximum

around April 2020, and then goes down afterward.

• Health system policies This category includes the

policies pertinent to the healthcare system. Variables

in this category are denoted by H1–H8. Presence of

public information campaigns is one of the policies in

this category. Testing availability is another recorded

policy which shows at a certain time who has access to

the testing. There are also other policies in this category

such as contact tracing, emergency investment, vacci-

nation investment, facial coverings policies, vaccination

policies, and protection of elderly people. Table 2

shows the number of levels for discrete variables each

starting from 0 (no action) to the most stringent level.

H4 and H5 policies are continuous variables; therefore,

they are not in Table 2.

In this study, we only used H1, H2, H3, and H6 for the

prediction. Figure 2 shows the mean stringency level for

the policies in healthcare category for United States.

In this study, we have also used the US states population

dataset (http://www2.census.gov/programs-surveys/popest/

datasets/2010-2019/national/totals/nst-est2019-alldata.

csv). Later, the ratio of confirmed cases to the overall

population is calculated as the proportion of people infec-

ted, and is added to the dataset as a new feature.

2.2 Data preprocessing

Data preprocessing is one of the critical steps in almost any

machine learning project. In this section, we explain the

preprocessing steps taken to prepare the data for model

training. One of the new variables introduced is ‘‘new

cases’’ which is obtained by sequential differencing of the

confirmed cases. Eq. (1) shows the new cases:

yta ¼ cta � ct�1
a ð1Þ

where cta is the number of cumulative number of COVID-

19 cases at time t for state a and yta is the number of new

cases for state a at time t. For those with missing values, we

assumed there was no new cases reported that day; i.e.,

confirmed cases for that day was the same as previous day.

We also replaced any negative values of yta with 0 since it

should be a non-negative variable. To smooth the number

of new cases, we used rolling mean with weekly windows.

Equation (2) shows the formula:

~yta ¼
Xt

T¼t�6

=7; t� 7 ð2Þ

where ~ytais the smoothed number of new cases at time point

t for state a. We also defined the percent change in the

smoothed number of new cases. This variable is denoted as

RCt
a and is defined as in Eq. (3):

Table 1 Closure policies description

Policy Description Levels

C1 School closure 4

C2 Workplace closure 4

C3 Public events cancellation 3

C4 Gathering restriction 5

C5 Public transport closure 3

C6 Stay at home requirements 4

C7 Internal movement restrictions 3

C8 International travel controls 5
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RCt
a ¼ ~yta=~y

t�1
a ð3Þ

The same procedure is applied for the number of deaths.

The equations for these introduced variables are summa-

rized in Eqs. (4)–(6).

zta ¼ dta � dt�1
a ð4Þ

~zta ¼
Xt

T¼t�6

~zta=7; t� 7 ð5Þ

RDt
a ¼ ð~zta � ~zt�1

a Þ=~zt�1
a ð6Þ

where zta is the number of new deaths at time t in state a, dta
is the number of confirmed deaths at time point t in state a,

~zta is the smoothed number of new deaths at time t and state

a, and RDt
a is the percentage of change in the smoothed

number of new deaths at time point t and state a.

Figure 3A, B show the total number of smoothed new

cases and deaths, respectively. For the smoothed new

cases, we can see that the peak occurred in the beginning of

2021, while for the smoothed new deaths we can observe

two peaks, one in April 2020, and the other one in the

beginning of 2021.

As mentioned earlier, we used population data in the

analysis. We defined a new variable as the proportion of

Fig. 1 Mean stringency level

for healthcare policies in United

States

Table 2 Healthcare system policies description

Policy Description Levels

H1 Public information campaigns 3

H2 Testing policy 4

H3 Contact tracing 3

H6 Facial coverings 5

H7 Vaccination policy 6

H8 Protection of elderly people 4

Fig. 2 Mean stringency level

for closure policies in United

States
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people infected by Covid-19 in state a at time t (denoted as

pta) using population of state a, which is shown in Eq. (7):

pta ¼ cta=Na ð7Þ

where Na is the population of state a. In this study, the

response variable is defined as the ratio of the percent of

change in the number of smoothed new cases to the pro-

portion of people not being infected at time t and state

a(ut
a). This new dependent variable, named prediction

ratio, is represented in Eq. (8).

ut
a ¼ RCt

a=ð1� ptaÞ ð8Þ

The target of this paper is to model the relationship

between NPIs and the prediction ratio and then search for

the optimal solution which can minimize infected cases as

well as the impacts based on the predictive model.

2.3 Cost matrix

In order to find the best policies for a region, one needs the

cost corresponding to each policy. If we do not consider the

cost, then the best mitigation strategy is to apply the most

stringent level of each policy as this reduces the new cases

the most. However, in reality, governments may have

serious limitations in applying such strategies due to the

infrastructure, budget constraints, or other restrictions.

Estimating the cost of each policy can be really chal-

lenging due to the complexity of estimation and the pres-

ence of many factors at the same time. Identifying these

factors and the magnitude of the effect of each may require

a separate in-depth study to quantify the relationships and

estimate cost for a policy and a given region. However, in

this study, we tried to take a simpler approach for the cost

matrix. It worth mentioning that our study proposes a

framework which is able to work with any given cost

matrix regardless of the structure or underlying assump-

tions for policies. Nevertheless, to validate the performance

of our model, we created different scenarios for the cost

matrix and explored each of them to see how well our

model performs in different situations.

We can assume no significant difference between the

policy costs, i.e., the cost is uniformly distributed between

0 and 5 for each policy. The variation in cost can be

attributed to the differences between regions when imple-

menting a certain policy. Figure 4 shows the average cost

for closure and healthcare policies across different states.

2.3.1 Scenario generation procedure

However, assuming that no significant difference between

the policy costs may be far from the reality. Therefore, we

designed a more sophisticated procedure for the remaining

scenarios. We took a more precise approach to model the

cost relations. For this purpose, first, we assigned each

policy to one of the groups below:

• Group 1: policies with low cost

• Group 2: policies with medium cost

• Group 3: policies with high cost

In the next step, we made pairwise comparisons to specify

the significance of one group to the other. In other words,

we used pairwise comparisons to suggest the ratio between

the average cost levels of policies within a group to that of

policies in another group. We used a 1–10 scale for the

pairwise comparisons.We assigned the value 5 to group 1

[Eq. (9)] as the baseline. Then, we obtained the average

costs for other groups based on Eqs. (10)–(11):

l1 ¼ 5 ð9Þ

l2 ¼ l1r21 ð10Þ

l3 ¼ minðl1r31; l1r32r21Þ ð11Þ

where rij is the significance, or the ratio of the average

costs of group i to group j (i[ j, i; j ¼ 1; 2; 3), which is

obtained from pairwise comparisons. For the third group,

we used the minimum function since the cost for group 3

can be obtained either directly by comparing the third

group to the first group, or by comparing group 3 with 2

and then comparing group 2 with 1. In this design, we

allowed for discrepancies between the ratios; in other

words, we allowed to have r31 6¼ r32r21 which may happen

in pairwise comparisons. In the next step, to generate the

cost for policies in group iði ¼ 1; 2; 3Þ, we assumed costs

are normally distributed with mean li and standard devi-

ation ri as shown in Eq. (12).

Fig. 3 Total number of smoothed new cases (A), and total number of

smoothed new deaths recorded in United States (B)
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hij �N ðli; riÞ ð12Þ

where hij is the cost of policy j in group i. Here, we used

ri ¼ 2. We chose this value based on experiments.

Since we have different regions, and each might have

different infrastructures, the cost of a policy might be

different from one region to another. To take this into

account, we assumed the cost of each policy for different

regions is uniformly distributed between hij � � and hij þ �

as shown in Eq. (13):

/ijk �Uniformðhij � �; hij þ �Þ ð13Þ

where i is the index for groups, j is the policy index within

group i, and k shows the region index. Here, we used � ¼ 4,

which is selected based on experiments.

As shown earlier, there exists several stringency levels

for each policy. Applying a policy at level 1 might not be

as costly as applying the most stringent level of the same

policy in a region. We used the fourth root of stringency

level as the cost multiplier. This is shown in Eq. (14):

Cijkl �/ijk

ffiffi
l

4
p

ð14Þ

where l is the stringency level of policy j within group i for

region k.

The aforementioned cost generation procedure is not

designed to estimate the true costs and may not be a con-

sidered as a tool to illustrate the true relationships between

the policies. In fact, the goal is to generate different sce-

narios for our model to examine its performance in dif-

ferent situations. The assumptions used in this procedure

may not hold in the real world, but it provides a systematic

approach to validate the model under different

circumstances.

2.3.2 Generated scenarios

In the set of scenarios used in this paper, we included four

sources of variations: (1) variation between groups, (2)

variation between policies within a group, (3) variation

between regions for each policy, and (4) variation between

the levels of a policy in a region. We used pairwise com-

parisons to generate variation between groups, normal

distribution for variation between policies within a group,

uniform distribution for variation between regions, and

non-linear scaling for stringency level variations.

The groupings for scenarios 1–3 are tabulated in

Table 3. The numbers in this table represent the groups to

which a policy is assigned. The pairwise comparison scores

are shown in Table 4. We used a scale of 1–10 for the

comparisons.

Scenario 1 is generated according to the policy type,

meaning that the logic behind the grouping is that the

policies related to the public have more significant impacts

than the rest. The policies related to the public lead to

direct losses in airfare, lodging, food, and transportation as

well as the ancillary impacts to event sponsors, job market

and local economy. Thus, we assigned public events can-

cellation, public transport closure and public information

campaigns as policies with high costs. Scenario 2 is based

on the GDP influence. It is assumed that the impact of a

policy can be quantified as the multiplication of the number

of affected people and the potential individual GDP, for

workers, or spending power, for consumers. For example,

since students have less spending power, the closure of

primary/middle schools has less impact than workplace

closure. In scenario 3, we considered cost as the imple-

mentation cost.

In Fig. 5, the cost breakdown for scenario 1 has been

illustrated as an example. In the top level, we have the

group base costs, which are obtained using pairwise com-

parisons. At a level below, we have policy costs within

each group that are normally distributed around the base

cost of the group. The cost of applying the same policy

may differ from region to region; therefore, we assumed

the cost of each policy is uniformly distributed for different

regions. Finally, we used the fourth root of stringency

levels as the multipliers of policy cost for a particular

region to differentiate between the regions.

In Fig. 6, we plotted the costs generated from each

scenario. On the left side of each plot, the normal distri-

butions from which the policy costs are generated are

shown. In this plot, all costs associated with different levels

of stringency levels are plotted for each policy. There are

Fig. 4 Average policy cost across different states in US for closure category (A), and healthcare category (B)
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points with zero costs, which are corresponding to the

policies for which we do not take any actions (level 0).

3 Proposed model

In this section, we discuss the mathematical model pro-

posed to predict the new daily increased cases and pre-

scribe the optimal NPI policies.

3.1 Overview of the proposed framework

The framework of our work is summarized in Fig. 7.

Firstly, the NPI data, the infection data and other infor-

mation are collected. Through data processing, these data

are used as the input of the prediction model. Secondly,

based on the prediction results, a prescription model is used

to search for the optimal NPI policies. The policies are

evaluated in terms of new daily cases and policy cost. Then

the policy makers can choose the appropriate ones from the

options and implement them in the real world. Finally, the

real effectiveness of policies can be observed and be used

as indicator to determine how to upgrade the prediction

model and the prescription model.

3.2 Prediction model

GRU is a variant of LSTM since both use the gating

mechanism in recurrent neural networks [14]. The

Table 3 Group assignments for

scenarios 1–3
Policy Scenario 1 Scenario 2 Scenario 3

School closure 2 1 2

Workplace closure 2 3 3

Public events cancellation 3 3 1

Restrictions on gatherings 1 3 3

Public transport closure 3 2 2

Stay at home requirements 1 3 3

Restrictions on internal movement 3 3 2

International travel controls 1 2 1

Public information campaigns 3 1 1

Testing policy 1 1 2

Contact tracing 2 2 2

Facial coverings 1 2 1

Table 4 Pairwise comparison scores for scenarios 1–3

Base Cost Ratio Scenario 1 Scenario 2 Scenario 3

r21 3 3 4

r32 6 3 4

r31 10 7 8

Fig. 5 Cost breakdown for scenario 1
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performance of GRU on tasks, such as speech recognition,

was found to be comparable to that of LSTM [12]. GRU

also converges faster than LSTM because it has fewer

parameters.

A GRU cell consists of two gates: reset gate r and update

gate z. A reset gate is used to determine which part of

information should be reset. The value of reset gate at time

t, i.e., rt, is calculated based on the previous output ht�1,

and the current input xt as presented in Eq. (15).

rt ¼ r Wr ht�1; xt½ �ð Þ ð15Þ

where r is a sigmoid function, Wr is the parameter matrix

Fig. 6 Cost distribution for

different policies in scenarios

1–3

Fig. 7 The flowchart of policy

prescription procedure
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of the reset gate. The update gate is used to update the

output of the GRU, ht. The value of update gate at time t,

i.e., zt, is computed using previous output ht�1 and the

current input xt as presented in Eq. (16).

zt ¼ r Wz ht�1; xt½ �ð Þ ð16Þ

where Wz is the parameter matrix of the update gate. Then

the candidate hidden layer is calculated according to

Eq. (17).

h0t ¼ tan h W rtht�1; xt½ �ð Þ ð17Þ

where W is parameter matrix of the candidate hidden layer.

Finally, the current output can be obtained according to

Eq. (18). The gates, namely, zt and rt, and parameters,

namely, Wz, Wr and W will be updated in the training

process.

ht ¼ 1� ztð Þht�1 þ zth
0
t ð18Þ

The GRU-based method proposed in this paper considers

three type of input features, i.e., time-series NPI data, time-

series prediction ratio and daily changes of NPIs.

How to extract information from the time-series NPI

data is the key of building the predictor. A GRU layer is

used to convert the time-series NPIs to one output. This

serves as the major body of the model. It is assumed that

the increase of NPI levels can suppress the spread of the

COVID-19. Thus, all parameters of the GRU layer are set

to be non-negative to ensure the monotonic influence of

NPI levels. However, without the context information

(daily new cases in the past), only knowing the influence of

NPIs is not enough to make prediction. Thus, the time-

series prediction ratio, which considers the infected cases

and population of the region, is used as the context input of

the model. In this paper, a GRU layer is used to extract the

context features (epidemiological, cultural, and economic

factors) from time-series prediction ratio. It is assumed that

the new infection ratio is proportional to the context input.

For example, if the infected cases increase fast in the past

several days, it may suggest the prediction ratio in the next

days would remain high. Thus, all parameters of the GRU

layer are set to be non-negative. Also, it is reasonable to

assume that the changes of NPIs can influence the volatility

of the number of infected cases. For example, if there are

no changes of NPIs in the past days and the levels of NPIs

are very low, the daily new cases may increase dramati-

cally in future. If the NPI levels keep dropping in the past

several days, it may suggest that the infection is in a

downtrend since there is no need for NPIs. Thus, daily

changes can be used as an auxiliary input to improve the

prediction accuracy. In this paper, the daily changes of

NPIs are flattened to one-dimensional input then converted

to one node using a fully connected layer. Through

different sub-models, each type of input features will

generate one extracted feature. Then the three extracted

features are used to obtain the final prediction using a

simple formula as shown in Eq. (19).

u ¼ fcontextð1� fNPIÞ þ fNPIchange þ n ð19Þ

where u is the prediction ratio, fNPI is the extracted feature

of time-series NPI data, fcontext is the extracted feature of

time-series prediction ratio, fNPIchange is the extracted feature

of NPI daily changes and n is the bias.

For multi-step time-series prediction, the rolling pre-

diction method is used to get the future prediction ratios. In

the first iteration, given the time-series inputs, the model

can output the prediction ratio of the next time point. In the

next iterations, the output of the model will be added to the

past time-series data and used as the input to forecast the

prediction ratio of the next time point. By repeating this

process, the model can obtain the prediction results of the

coming month.

3.3 Prescription model

The prediction model can provide more guidance and

information for policymakers by evaluating the outcome of

policies. After predicting the new cases for future, we use

the outputs to feed into the prescriptive model so the

optimal set of policies for a state can be identified. How-

ever, since the search space of NPIs is huge, setting the

NPIs manually by experts is still limited. Thus, an auto-

mated algorithm that can identify the optimal mitigation

strategies with less cost in the large search space is needed.

Due to the non-linear complexity of the optimization

problem, evolutionary algorithms which can evolve pre-

scriptions through population-based search is more effec-

tive than other methods.

The second policy generator works based on an opti-

mization problem. We were interested to know if we

wanted to activate N levels of intervention plans for a

country from 34 available levels, what would be those

policies? In other words, we wanted the best solution for

the following problem:

min
12

i¼1
Ci;Xi

ð20Þ

minPðX1;X2; :::;X12Þ ð21Þ

Subject to:

Xi 2 f0; 1; :::; dig ð22Þ

where Xi is the level of intervention plan i, Ci;Xi
is the unit

cost of implementing Xi, P is the predicted daily new cases

using the NPIs, and di is the maximum level for that

intervention plan.
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On the basis of the traditional population-based algo-

rithm, this paper uses MPEA in which multiple algorithms

are added into the framework to ensure the adaptability of

algorithm. Aimed to improve the exploitation ability of

MPEA, the mechanism of DE is introduced to strengthen

the communication between different populations in this

paper. It is assumed that there are m algorithms available

for the proposed model. The components of MPEA-DE are

as follows.

• Initialization Generate m populations, one for each

algorithm.

• Encoding and evaluation The individuals, i.e., NPIs

prescriptions, are encoded using real integer value

encoding method. To improve the consistency of the

policy, we assumed that NPIs can only change every 10

days. Since the number of NPIs considered is 12, the

total number of decision variables can be calculated by

dividing the number of days to prescribe by 10 and then

multiplying by 12. For example, if the number of days

to prescribe is 60, the number of decision variables is

72. In each iteration, the two objectives of each

individual, i.e., new cases and cost, will be evaluated.

The individual is used as the input of the predictor to

get the predicted new cases. The social and economic

cost is used based on the cost matrix.

• Evolution Based on the objective values of individuals,

the corresponding algorithm of each population will

determine the evolution direction. The old individuals

will be replaced by the new generated individuals that

have dominated objective values.

• Migration After several iterations, the diversity of

individuals in each population will be reduced dramat-

ically. To improve the evolution efficiency of each

population, migration mechanism is introduced. When

the number of iteration reaches the predefined number,

the worst individuals in the current population are

evolved towards the best ones in the other populations,

using the DE scheme as expressed in Eq. (23).

Inewworst ¼ Ioldworst þ FðIbest � IoldworstÞ ð23Þ

where Ioldworst is the worst individual in the current

population, Ibest is the best individual in other popula-

tions, F is the scaling factor in DE.

The pseudo-code for the MPEA-DE is as follows.

Through the result analysis of the predictive models, it

can be found out that the time-series predictive models can

get better accuracy than the non-time series predictive

model. This means the past NPI measurements will influ-

ence the daily new cases in the present. Therefore, the

long-term influence of prescription should be considered in

the decision-making. For example, the prescriptions for the

next 10 days should also consider the possible new cases in

the next one month or two months. However, the perfor-

mance of predictive models decays as the length of pre-

diction period increases. To address the above concerns,

the objective is defined in Eq. (24):

D ¼
XT

k¼0

ckdk ð24Þ

where D is weighted daily new cases, k is the number of

prediction period, T is the total number of prediction

periods considered, c is the coefficient to measure the

longer-term influence of NPIs and the uncertainty of the

predictive model, dk is the predicted daily new cases in the

kth prediction period.

4 Numerical results

In this section, both the prediction model and the pre-

scription model will be tested under different scenarios to

show the validity of the methodology.

Algorithm 1 MPEA-DE

1: Generate m populations, pop 1, pop 2,. . . ,pop m
2: while stopping conditions are not satisfied do
3: for i = 1 : m do
4: Evolve pop i using algorithm Ai

5: end for
6: if a migration interval is reached then
7: for i =1:m do
8: Using DE to update the worst individuals
9: end for

10: end if
11: end while
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4.1 Performance of the prediction model

The prediction accuracy of the prediction model determi-

nes whether the generated prescriptions are consistent with

the real world.Two indices including mean absolute error

(MAE) and mean absolute percentage error (MAPE), as

calculated in Eqs. (25) and (26) were measured to evaluate

the performance of models.

MAE ¼ 1

n

X

n

jeij ð25Þ

MAPE ¼ 1

n

P
n jeijP
n di

ð26Þ

where n is the total number of observations, ei is the error

between the real daily cases and predicted daily cases of ith

observation, and di is the real daily new cases of ith

instance. MAE1M represent the mean absolute error per 1

million people.

4.1.1 Baseline models

Four baseline methods were investigated in this paper.

(1) Non-time series least absolute shrinkage and selec-

tion operator (LASSO). LASSO is a kind of linear

regression models that use L1 norm to perform both

variable selection and regularization. It is widely

used in different research areas owing to its

simplicity and interpretability. The goal of the model

is to minimize:

Xn

i¼1

ðyi �
X

j

xijbjÞ2 þ k
Xp

j¼1

jbjj ð27Þ

where n represents the total number of samples, yi is

the ground truth of the ith sample, xij is the value of

the jth variable of ith sample, bj is the coefficient of

the jth variable, k is the penalty coefficient, and p is

the total number of input variables. In this paper,

LASSO takes the NPIs and the prediction ratio of the

previous day as the input.

(2) Time-series LASSO. LASSO can also be used for

time-series prediction. The NPIs and the prediction

ratio of multiple days can be flattened as one-row

inputs. For example, assuming that there are p

variables in total, the LASSO model that considers

the past t days will have p� t inputs coefficients.

(3) Fully connected neural network (FCNN). FCNN is a

class of methods that use multiple layers to extract

information from the input data [15]. The basic

layers are a fully connected layer and an activation

layer. The fully connected layer consists of multiple

neurons. Each neuron in a fully connected layer

connects to all neurons in the next layer. The output

of a fully connected layer is calculated as Eq. (28).

y ¼ Wxþ b ð28Þ

where W is the weight vector, and b is the bias for

the node in the next layer. The fully connected layer

can only deal with a linear problem. To add the non-

linear characteristic to the model, the concept of

activation layers was introduced. Some widely used

activation functions include sigmoid function,

hyperbolic tangent function (Tanh) and Rectified

Linear Unit (ReLU) function. In this paper, sigmoid

function is used as Eq. (29).

SðxÞ ¼ 1=ð1þ e�xÞ ð29Þ

The structure of FCNN is the same as that of the

GRU-based method. The three types of input features

are converted to one node by a fully connected layer,

separately. Then the final prediction is made

according to Eq. (29).

(4) Convolutional neural network. CNN is a class of

deep, feed-forward artificial neural networks. It was

adopted widely for its fast deployment and high

performance on image classification tasks. However,

it is also a popular architecture for time series

prediction since time-series data can also be viewed

as 2-dimensional (2D) data. CNNs are usually

composed of convolutional layers, pooling layers,

batch normalization layers and fully connected

layers.

• Convolutional layer The convolutional layer is the core

building block of a CNN. The layer’s parameters

consist of a set of learnable filters, which have a small

receptive field, but extend through the full depth of the

input volume. During the forward pass, each filter is

convolved across the width and height of the input

volume, computing the dot product between the entries

of the filter and the input and producing a 2D activation

map of that filter. As a result, the network learns filters

that activate when it detects some specific type of

feature at some spatial position in the input.

• Maxpooling layer The Maxpooling Layer is applied to

perform downsampling operations, i.e. shrinking the

feature maps along both width and height by a factor of

two. Pooling layers reduce the dimensions of the data

by combining the outputs of neuron clusters at one layer

into a single neuron in the next layer. Max pooling uses

the maximum value from each of a cluster of neurons at

the prior layer.

• Full connected layer Fully connected layers connect

every neuron in one layer to every neuron in another
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layer. In principle, it is the same as the traditional multi-

layer perceptron neural network (MLP). The flattened

matrix goes through a fully connected layer to one

node.

In this paper, the CNN-based method uses three small CNN

modules to convert the three types of input (i.e., time-series

NPI data, time-series prediction ratio and daily changes of

NPIs) to final output. Since it is assumed the influence of

the NPI levels on the prediction ratio is monotonic, NPI

levels are used as real-value input of the CNN-based

method. The parameters of the first two CNN modules are

set to be non-negative.

4.1.2 Model parameters and experiment design

For the GRU-based method, the numbers of units of the

two GRU sub-modules are set at 32. For the LASSO

methods, the L1 norm coefficient is set to 0.9. The number

of neurons of the FCNN sub-modules is set at 32. For the

FCNN-based method, the numbers of neurons of the three

sub-modules is set at 32. For the CNN-based method, three

convolutional layers with 32 channels and 3*3 kernel size

are used. Each convolutional layer is attached with a

Maxpooling layer.

The length of the time-series is set to 21, meaning only

the policies and cases of the past 21 days are considered to

make the prediction. The batch size is set to 1000. The

optimizer is Adam [16].

To test the prediction performance of the models, five

experiments of different rolling prediction length were

designed. As shown in Table 5, in each experiment, the

four models were tested using 8 different time windows,

i.e. August, September, October, November and December

in 2020, and January, February and March in 2021. The

final measurement values for each experiment are the

average results of the 8 test windows and 50 regions.

4.1.3 Results and comparisons

The results are shown in Table 6. The indexes values were

the average values across 50 regions. In the five experi-

ments, the MAE1M and MAPE of the proposed GRU-based

method ranged from 101.72–143.34 and 19.62–32.72%,

separately. And GRU performed much better than others.

In Experiment I, for 6-day prediction, the MAE1M of GRU

is 13–19% less than the other methods. The MAPE of GRU

is 4–6% than that of others. In Experiment V, for 30-day

prediction, the MAE1M and MAPE of GRU were 19–22 and

7–11% less than that of other methods, separately. As the

length of the prediction widow increased from 6 days to 30

days, the MAE1M and MAPE of all models increased. The

reason is that the prediction error was accumulated when

only using the predicted values as the input.

Table 5 Setting of the five

experiments
No. I II III IV V

Rolling prediction length 6 days 12 days 18 days 24 days 30 days

Train start date April 1st, 2020

Train end date (excluded) The first day of each month (from August 2020 to March 2021)

Test start date (included) The first day of each month (from August 2020 to March 2021)

Test end date Test start date?Rolling prediction length

In each experiment, the models were tested using 8 time windows

Table 6 Comparisons among GRU and baseline models

Nos. Methods MAE1M MAPE (%)

I GRU 101.72 29.62

NT-LASSO 125.20 25.92

T-LASSO 124.39 25.71

FCNN 117.37 23.40

CNN 119.98 24.38

II GRU 117.63 23.04

NT-LASSO 152.26 31.83

T-LASSO 151.07 31.45

FCNN 143.71 30.19

CNN 145.44 28.64

III GRU 127.98 26.18

NT-LASSO 167.26 36.25

T-LASSO 166.09 35.84

FCNN 158.94 34.66

CNN 159.94 32.80

IV GRU 135.98 29.43

NT-LASSO 176.66 30.07

T-LASSO 175.55 39.70

FCNN 168.89 38.64

CNN 169.53 36.62

V GRU 143.34 32.72

NT-LASSO 183.22 43.32

T-LASSO 182.06 42.85

FCNN 176.07 39.95

CNN 176.65 41.97

NT-LASSO non-time series LASSO, T-LASSO time-series LASSO

17572 Neural Computing and Applications (2022) 34:17561–17579

123



As shown in Fig. 8, compared with the time-series

models, non-time series LASSO had greater MAE1M and

MAPE. This proved the necessity of time-series prediction.

It can be also noticed that the performance of time-series

LASSO was worse than that of FCNN, CNN and GRU.

This reason is that there are some complex interactions

between the input variables. Thus, it is necessary to con-

struct high-level features using models that are more

complex than linear regression. However, LASSO has

better interpretability than neural network-based methods.

It can be used for some basic analysis. Table 7 listed the

weights of each policy in the non-time series LASSO.

Since all policies are at the same scale, the weight value

can reflect the influence of each policy. The importance of

each feature can be calculated by multiplying the weight by

the variance of the feature. Therefore, based on the weights

of policies, the top-4 polices are stay at home requirements,

public information campaigns, public events cancellation,

and school closure. It can be seen from Fig. 2 that the

policy stringency of public information campaigns did not

change since March 2020. Thus, the most important polices

indicated by non-time series LASSO are stay at home

requirements, public events cancellation, and school

closure.

In Fig. 9, six regions, i.e., Iowa, West Virginia, Penn-

sylvania, Massachusetts, South Carolina, and Utah, were

selected to show the difference between test ground truth

and test predicted cases in 8 test time windows of Exper-

iment V. In general, the predictive model is following the

true daily new cases closely and has captured the pattern.

However, in some situations, the gap between ground truth

and predicted daily cases was large. For example, in the

test time window of November 2020, the predictive model

thought the daily new cases of Iowa would go down, but on

the contrary, the daily new cases increased dramatically in

the real world. For other five regions, although the pre-

dictive model captured the rising trend, the predicted

numbers were much smaller than the ground truth numbers.

This was caused by the cumulative error of rolling out

prediction.

4.2 Performance of the prescription model

Prescription is the key to identifying the optimal solution

and suppressing the spread of COVID-19 using the mini-

mum cost. As discussed in Eq. (20)–(22), two objectives,

i.e., cost and average daily new cases, are used to evaluate

the quality of generated prescriptions.

4.2.1 Baseline models

Three strategies are used as baselines:

Fig. 8 Comparisons among the four predictive models for different prediction periods A MAE1M , B MAPE

Table 7 Weights of each policy in the non-time series LASSO trained

using data from April 1st, 2020 to March 1st, 2021

Policy Description Weight

C1 School closure 32.73

C2 Workplace closure 26.14

C3 Public events cancellation 33.12

C4 Gathering restriction 20.37

C5 Public transport closure 1.30

C6 Stay at home requirements 52.31

C7 Internal movement restrictions 1.29

C8 International travel controls 3.03

H1 Public information campaigns 44.41

H2 Testing policy 23.58

H3 Contact tracing 1.98

H6 Facial coverings 31.87
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• Random Random strategy is to generate solutions by

randomly selecting a level for each intervention indi-

cator. In each iteration, new individuals are generated

by perturbating the old ones and replacing the individ-

uals of bad quality.

• Blind greedy This approach works by adding the

maximum level of each policy based on the order of

cost. It is a logical assumption that adding more

restrictive policies will lower the number of predicted

cases. However, these policies are more expensive to

implement. The blind greedy search strategy starts with

all NPIs as zeros and then iteratively set the NPI that

has the least cost to the maximal level.

• Blind greedy with random search In blind greedy with

random search, blind greedy is used to generate initial

Fig. 9 The ground truth and predicted daily new cases of 8 testing time windows using the GRU-based method in Experiment V
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solutions in the first iteration and then the random

search is performed for the remaining iterations.

4.2.2 Simulation

In this study, we used three baseline/benchmark models,

i.e., random search, blind greedy and blind greedy with

random search. In the random search strategy, a population

consisting of 30 individuals are generated randomly. In

each iteration, new individuals are generated by

perturbating the old ones and replacing the individuals of

bad quality. The number of iterations is set to 30. The blind

greedy search strategy starts with all NPIs as zeros and then

iteratively set the NPI that has the least cost to the maximal

level. The blind greedy with random search is to use blind

greedy search first to generate an initial population con-

sisting of 30 individuals. Then the random search strategy

is used to update the population for 30 iterations.

For MPEA-DE, two populations have been generated

(m ¼ 2). Each population consists of 30 individuals. The

first 60% of the individuals in each population is generated

Table 8 Percentage of states

claimed by MPEA-DE for

scenario 1

Test start points Prescription period Considered period Claim Percentage

September 1st, 2020 10 days 30 days 94.0

November 1st, 2020 10 days 30 days 92.0

January 1st, 2021 10 days 30 days 94.0

Fig. 10 Pareto frontier of prescriptive models for Iowa, West

Virginia, Pennsylvania, and Massachusetts, for three test points under

scenario 1. (x-axis represents the cost, y-axis shows the average

number of new cases, a red X indicates the objectives of the

prescription in real world and a red dot the predicted objectives of the

prescription in real world) (color figure online)

Table 9 Percentage of states

claimed by MPEA-DE for

scenario 2

Test start points Prescription period Considered period Claim Percentage

September 1st, 2020 10 days 30 days 94.0

November 1st, 2020 10 days 30 days 98.0

January 1st, 2021 10 days 30 days 90.0
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by the blind greedy search strategy. To increase the

diversity of the population, the remaining 40% of the

individuals is generated by the random search strategy. The

two populations are evolved using standard genetic algo-

rithm (GA) [17] and DE [18], respectively. The total

number of iterations is 30. Every 5 iterations, the DE

scheme will be performed to strengthen the communication

between two populations.

Each model generated 10 prescriptions/mitigation

strategies for each region. The score of a prescription is

calculated as the number of prescriptions it dominates (i.e.,

have better new cases and cost). For example, if a pre-

scription of model A dominates 5 prescriptions of model B

and 2 prescriptions of model C, the score of this pre-

scription is 7. Thus, the performance of a prescriptive

model can be calculated as the sum of the scores of its

prescriptions. For each region, the prescriptive model that

has the highest cumulative score is selected as the winner

of the region. To measure the performance of prescriptive

models across all regions, the percentage of regions

claimed by each model is calculated.

In this study, there are three test points: September 1st,

2020, November 1st, 2020, and, January 1st, 2021. To

impose policy stability and reduce the searching space, the

NPIs can only change every ten days. The models are used

to prescribe for the next 10 days. As discussed in Eq. (24),

the long-term influence should be considered in decision

making. Thus, the prescription calculated the weighted

daily new cases over the next 30 days. The new cases and

stringency level averaged a day were used as the two

objectives.

4.2.3 Result analysis

Scenario 1: policy type. In the first scenario, the logic

behind the grouping is that the policies related to the public

have more significant impacts than the rest. The policies

related to the public lead to direct losses in airfare, lodging,

Fig. 11 Pareto frontier of prescriptive models for Iowa, West

Virginia, Pennsylvania, and Massachusetts, for three test points under

scenario 2. (x-axis represents the cost, y-axis shows the average

number of new cases, a red X indicates the objectives of the

prescription in real world and a red dot the predicted objectives of the

prescription in real world) (color figure online)

Table 10 Percentage of states

claimed by MPEA-DE for

scenario 3

Test start points Prescription period Considered period Claim percentage

September 1st, 2020 10 days 30 days 96.0

November 1st, 2020 10 days 30 days 94.0

January 1st, 2021 10 days 30 days 96.0
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food, and transportation as well as the ancillary impacts to

event sponsors, job market and local economy. Thus, we

assigned public events cancellation, public transport clo-

sure and public information campaigns as policies with

high costs. In Table 8, the percentage of states claimed by

the prescriptive model (MPEA-DE) is shown. As we can

see the proposed method is completely superior to the other

three baseline models.

In Fig. 10, the Pareto frontier generated by each algo-

rithm has been plotted for four states. On the x-axis, we

have the average cost across the whole test window, and on

the y-axis, we have the average of new COVID-19 cases.

Each point represents a policy suggested by one of the

algorithms. The goal is to design policies with both small

cost and small number of new cases. As we can see the

proposed method is outperforming the baseline models

since, on average, for the majority of the policies, MPEA-

DE dominated the other two models in both objectives.

The objectives of real-world NPIs have also been eval-

uated. The predicted objectives and ground-truth objectives

were compared to show the reliability of the proposed

prescriptions. For most regions and test time windows, the

red dot was close to the red X, meaning that the predictive

model can provide accurate prediction for the evaluations

of prescriptions. Under this context, it can be observed that

when compared with the real-world NPIs, the proposed

prescriptions can reduce 50–70% of the cost while having

the same or less daily new cases. The proposed prescrip-

tions can also reduce 5–50% of the daily new cases at the

same cost of the real-world NPIs.

Scenario 2: GDP influence. In the second scenario, as

assumed that the impact of a policy can be quantified as the

multiplication of the number of affected people and the

potential individual GDP, for workers, or spending power,

for consumers. For example, since students have less

spending power, the closure of primary/middle schools has

less impact than workplace closure.

In Table 9, the percentage of states claimed by the

prescriptive model (MPEA-DE) is shown. As we can see

the proposed method is completely superior to the other

three baseline models. When compared with the real-world

NPIs (as shown in Fig. 11), the proposed prescriptions can

reduce 38–72% of the cost while having the same or less

daily new cases. The proposed prescriptions can also

reduce 34–63% of the daily new cases at the same cost of

the real-world NPIs.

Scenario 3: implementation cost. In the third scenario,

we considered cost as the implementation cost. In

Table 10, the percentage of states claimed by the pre-

scriptive model (MPEA-DE) is shown. As we can see, the

proposed method is completely superior to the other three

baseline models. When compared with the real-world NPIs

Fig. 12 Pareto frontier of prescriptive models for Iowa, West

Virginia, Pennsylvania, and Massachusetts, for three test points under

scenario 3. (x-axis represents the cost, y-axis shows the average

number of new cases, a red X indicates the objectives of the

prescription in real world and a red dot the predicted objectives of the

prescription in real world) (color figure online)
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(as shown in Fig. 12, the proposed prescriptions can reduce

53–68% of the cost while having the same or less daily new

cases. The proposed prescriptions can also reduce 11–62%

of the daily new cases at the same cost of the real-world

NPIs.

5 Discussion

The economic and social disruptions caused by COVID-19

have been significant. This paper presents a framework to

identify optimal non-pharmaceutical intervention solutions

based on prediction of future development of the virus. The

goal is to provide more scientific and time-effective

intervention policies for the decision makers.

In the prediction component, instead of using an existing

neural network to predict daily increase numbers, we

design an explainable formula [i.e., Eq. (19)] that considers

increasing ratio, population, NPIs influence and volatility

as the skeleton of the prediction model. Then for each

component of Eq. (19), GRU modules are employed to

transform the time-series input into the components of the

formula. In the numerical experiment/case study, the pro-

posed model was tested on the 50 regions of the United

States. Compared to the non-time series LASSO, time-

series LASSO, FCNN and CNN, the proposed model can

get the highest prediction accuracy. It has also been veri-

fied that the increase of NPI stringency levels can effec-

tively reduce the progression of COVID-19, especially for

home requirements, public information campaigns, public

events cancellation, and school closure.

In the prescription component, a multi-population evo-

lutionary algorithm has been proposed to search for the

optimal prescriptions that can minimize the comprehensive

cost and suppress the spread of COVID-19. To simulate the

real world, the concept of cost matrix is presented to

generate reasonable scenarios. Compared to random search

and blind greedy search, the proposed algorithm is more

efficient in searching the pareto frontier due to the intelli-

gent local evolution strategies and migration mechanism.

The proposed algorithm can dominate the solutions of

others on over 94% of the 50 regions. The gap between the

objectives of pareto frontier and the real-world NPIs have

emphasized the importance of NPI policy optimization.

Besides, the high prediction accuracy of the proposed

prediction model can guarantee the effectiveness of the

generated optimal NPI policies.

Although most of states are easing some of its COVID-

19 restrictions due to the virus becomes less deadly, the

proposed framework can still provide valuable instructions

for the prediction and prevention of the future pandemics.

6 Conclusion

Accurate forecasting of infected cases and the right miti-

gation strategies are key to reducing the spread of COVID-

19. In this study, we proposed a framework to identify sets

of superior policies from which a decision-maker can

choose according to the goals and budgets.

In this paper, a GRU-based model is proposed to predict

the spread of COVID-19 using time-series infection data

and NPIs. The results have shown that the predictive model

can predict the spread of COVID-19 accurately. The pre-

diction results are then employed to identify which policies

can be applied to reduce the number of new cases while

minimizing the overall costs. To search for the optimal

intervention policy, a multi-population evolutionary algo-

rithm named MPEA-DE is proposed. We compared the

prescriptive model to three baseline models: random

selection strategy and blind greedy search method. The

performance of the proposed prescriptive models is eval-

uated based on the dominancy of the generated prescrip-

tions over the other two models. The experiments have

shown that in terms of prescription quality, MPEA-DE,

which claimed at least 95% of the regions, performs better

than other methods. Based on our approach, the authorities

can have a better recognition of the outcome of their

policies and make policy shifts in time.

This study is subject to a few limitations, which suggest

a few research directions. First, in the forecasting model,

the vaccination rate is not considered. Since the vaccina-

tion period is relatively short at the time of the study, it is

better to consider the vaccination factor after collecting

sufficient data. Second, in the prescription phase, we used

random costs for the policies generated from a distribution.

However, the social and economic impacts of intervention

plans in the real world are more complicated than what has

been assumed in this study. For this purpose, we consider

testing a variety of more complicated cost matrices as a

part of the robustness check and use models based on real

data to predict the social and economic impacts of NPIs for

future studies.
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