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Abstract

Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life
quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2
weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical
allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-a-aminoadipate (astrocytic
specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but
not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism
of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by
inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes
dramatically increased interleukin-1b expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphory-
lation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal
activated astrocytes may be one of the most important factors in the pathophysiology of PHN and ‘‘NO-Astrocyte-Cytokine-
NMDAR-Neuron’’ pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic
activation may represent a novel therapeutic strategy for clinical management of PHN.
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Introduction

The most common complication of herpes zoster (HZ) is

postherpetic neuralgia (PHN) which has been defined as severe

pain occurring 1 month after rash onset and persisting for more

than 3 months [1]. PHN is often prolonged, responds poorly to

current analgesics such as anticonvulsants, tricyclic antidepressants,

opioids and non-steroidal anti-inflammatory drugs (NSAIDS) [2].

PHN can result in impaired sleep, emotional distress and depression

which patients may suffer for years [3]. Continued inflammation

was observed in biopsy studies of some PHN patients, whereas PHN

is resistant to NSAIDS, suggesting that inflammatory response per

se is not sufficient to induce PHN [4,5]. Recently, it has been

pointed out that PHN shares some characteristics of neuropathic

pain [6]. For example, up-regulation of some neuropeptide, calcium

channel and sodium channel has been observed in dorsal root

ganglia of PHN rat model. Besides, systemic treatment with

gabapentin or the sodium channel blockers could to some extent

reverse PHN [7]. However, there is still no ideal explanation on the

neural mechanisms underlying PHN.

According to classic pain research, the pain pathway has been

assumed to be composed &&entirely of neuronal synaptic

transmission. It has been widely accepted that activation of N-

methyl-D-aspartate receptor (NMDAR) in spinal postsynaptic

neurons plays an important role in neuropathic pain, and

NMDAR antagonists are potential analgesics [8,9]. NMDAR

activation is mainly manifested by NR1 subunit phosphorylation,

which is proposed to be involved in spinal central sensitization

[10,11]. However, recent studies have shown that spinal cord glia

and proinflammatory cytokines, such as interleukin (IL)-1b, are

also identified to be strongly involved in the creation and

maintenance of diverse exaggerated neuropathic pain states

[12,13]. After inflammation or nerve injury, spinal glial cells can

be activated by excessively produced nitric oxide (NO), and then

synthesize and release IL-1b that modulate neuronal activity

[14,15]. Several recent studies showed that IL-1b may bind to its

endogenous receptor to induce the phosphorylation of NR1

subunit of NMDAR to strengthen painful signal transmission

[16,17]. However, there is still no related report on the

involvement of spinal glial cells in PHN.
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Investigation of the neural mechanisms underlying PHN has

been facilitated by the introduction of an in vivo rat model of

varicella zoster virus (VZV) persistent infection [18,19]. Recent

studies indicated that this rat model could ideally mimic the

chronic pain states that occur in PHN patients [20,21]. In this

study, we investigated the role of spinal glia in the pathophysiology

of PHN by using this PHN model. L-a-aminoadipate (LAA) and

minocycline were used to inactivate astrocyte and microglia,

respectively, to identify the roles of spinal glial cells in the

development of PHN. LAA was used to inhibit astrocytes based on

the fact that its role of a specific astrocytic toxin [22]. In addition,

intrathecal treatment with inhibitors of nitric oxide synthase

(NOS) or scavenger of NO was performed to test whether NO

mediate the development of glial activation. The mediating role of

inflammatory cytokine on NMDAR activation was also investi-

gated.

Materials and Methods

Animals
Adult male Wistar rats, weighing 200–250 g, were used. Rats

were housed under standard conditions. All procedures of our

experiments were approved by the Committee of Animal Use for

Research and Education of the Fourth Military Medical

University (Xi’an, PR China), and all efforts were made to

minimize the number of animals used and their suffering [23].

(Permit Number: fmmu-10-6688).

Varicella zoster virus (VZV) infection
We utilized a previously reported PHN model of latent VZV

infection [18,20,21]. VZV (VR-568 mycoplasma free strain

obtained from ATCC, VA, USA) was propagated on CV-1 cells

(African green monkey kidney fibroblast cells) and harvested in

0.0l M phosphate-buffered saline (PBS, pH 7.4) when the cells

exhibited an 80% cytopathic effect. Rats were anaesthetised with

halothane and the plantar surface of the right hindpaw was

injected with 50 ml of inoculum containing 66106 VZV-infected

cells (VZV group). The contralateral hindpaw was without

infection. Control rats were injected with uninfected CV-1 cells

(Mock infected group) or PBS (Naı̈ve group) and housed separately

from VZV group. Pain behavioural tests were performed prior to

infection to obtain a baseline and then at specific time points post-

infection.

Antibodies
Primary antibodies: mouse anti-GFAP IgG (astrocytic marker;

Chemicon, Temecula, CA, USA), mouse anti-NeuN IgG

(neuronal marker; Chemicon), mouse anti-OX42 IgG (microglial

marker; Chemicon), rabbit anti-IL-1b IgG (Endogen, Rockford,

IL, USA), rabbit anti-P-ser896 NR1 IgG (Millipore, Bedford, MA,

USA), rabbit anti-iNOS IgG (Calbiochem, San Diego, CA, USA),

rabbit anti-nNOS IgG (Calbiochem) and rat anti-IL-1RI IgG

(Santa Cruz Biotechnology; Santa Cruz, CA, USA). Secondary

antibodies: FITC or Cy3-labeled donkey anti-mouse IgG

(Chemicon), FITC or Cy3-labeled donkey anti-rabbit IgG

(Chemicon), FITC or Cy3-labeled donkey anti-rat IgG (Chemi-

con).

Drugs
Chemicals and their sources were as follows: L-a-aminoadipate

(LAA, astrocytic specific inhibitor; Sigma, St. Louis, MO, USA),

minocycline (microglial specific inhibitor; Sigma), 2-(4-carboxy-

phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO,

scavenger of NO; Sigma), L-N6-(I-iminoethyl)-lysine hydrochlo-

ride (L-NIL, inhibitor of iNOS; Sigma), 7-Nitroindazole (7-NINA,

inhibitor of nNOS; Sigma), pentoxifylline (cytokine inhibitor;

Polfilin, Polfarma, Poland), interleukin-1 receptor antagonist (IL-

1ra; Amgen, Thousand Oaks, CA, USA), 5-aminophosphonova-

leric acid (AP5, NMDA receptor antagonist; Sigma) and (5R,10S)-

(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-im-

ine hydrogen maleate (MK-801, non-competitive NMDA receptor

antagonist; Sigma), valaciclovir (Glaxo Wellcome, USA).

Experimental design
In the first series of experiments, rats were divided into Naive

group, Mock infected group and VZV group. At post-infection

different time points (per week after VZV infection), pain

behavior, immunostaining, Western blot and real-time RT-PCR

studies were performed in each group. Also, some VZV infected

rats received antiviral treatment (Valaciclovir, 50 mg/kg/day

from post-infection day 1 to day 10, i.p) and pain behavior was

detected per week after infection. (n = 10/group; Fig. 1A).

In the second series of experiments, saline, LAA, minocycline,

PTIO, L-NIL, 7-NINA, pentoxifylline, IL-1ra, AP5 or MK-801

was injected intrathecally in VZV-infected rats at post-infection 2

weeks. After injection, pain behavior was immediately measured

(n = 10/group).

In the third series of experiments, rats at post-infection 2 weeks

were used. LAA or minocycline was injected intrathecally, and one

hour later a total of 30 wide dynamic range (WDR) neurons were

recorded in each group (naive group, mock infected group, VZV

group, VZV+LAA group and VZV+minocycline group; n = 30/

group).

In the fourth series of experiments, rats at post-infection 2 weeks

were used. Firstly, the L5 dorsal root ganglia and spinal cord

segments were harvested for Western blot analysis of iNOS or

nNOS in Naive group, Mock infected group and VZV group

(n = 10/group). Secondly, double-labeling immunofluorescence of

iNOS with NeuN , GFAP or OX42 was performed in dorsal root

ganglia or spinal cord sections (n = 10/group). Thirdly, PTIO, L-

NIL or 7-NINA was injected intrathecally, and one hour later the

spinal cords of VZV-infected rats were harvested for Western blot

analysis of GFAP (n = 10/group).

In the fifth series of experiments, LAA was injected intrathecally

in VZV-infected rats at post-infection 2 weeks, and one hour later

spinal cords were harvested for Western blot analysis of IL-1b
(n = 10). Double-labeling immunofluorescence of IL-1b with

GFAP or OX42 was performed in the L5 spinal cord sections.

In the sixth series of experiments, LAA, pentoxifylline or IL-1ra

was injected intrathecally in VZV-infected rats at post-infection 2

weeks, and one hour later the spinal cords were harvested for

Western blot analysis of P-NR1 (n = 10/group). Double-labeling

immunofluorescence of IL-1RI and P-NR1 was performed in the

L5 spinal cord sections.

Intrathecal catheter insertion and drug administration
A polyethylene-10 catheter (Becton-Dickinson, Sparks, MD,

USA) was intrathecally inserted according to a previous method

[24]. The rats were allowed to recover for 3 days. Only the rats

judged as neurologically normal were used for the subsequent drug

administration. The dosage of each drug used in the present study

was according to the previous reports [25,26,27,28,29,30].

Treatment group received intrathecal injection of LAA (100 nmol)

[25], minocycline (100 mg) [26], L-NIL (1.1 mmol) [27], PTIO

(30 mg) [28], 7-NINA (20 mg) [27], AP5 (40 pmol) [27], MK-801

(100 pmol) [27], pentoxifylline (150 nmol) [29] or IL-1ra (100 mg)

[30], while the same volume of normal saline was injected in
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control group. Each drug was dissolved in 10 ml of saline and

injected intrathecally by the way of a single acute administration.

Pain behavioral test
The rats were adapted to the testing situation for at least

15 min. The observers of the behaviors were blind to the

treatment of the rats. As previously described [31], a set of von

Frey monofilaments (Stoelting, Chicago, IL, USA) was used to test

the mechanical withdrawal threshold of the hindpaws. The

monofilaments were applied with increasing force until the rats

withdrew the paw. The threshold was taken as the lowest force

that evoked a brisk withdrawal response. To observe how different

drug treatments affected the allodynia, behavioral tests were

performed 12 h before the drugs administration to provide

baseline scores. After intrathecal drug injection, mechanical

withdrawal threshold was measured for every 10 min.

Immunofluorescence histochemical staining
Tissue preparation. Rats were anesthetized and perfused

transcardially with paraformaldehyde. The L5 dorsal root ganglia

(DRG) and the L5 spinal cord were removed and transferred into

30% sucrose in 0.1 M phosphate buffer (PB, pH 7.4) for

cryoprotection. Spinal cord was cut into 30 mm thick sections

and collected in 0.01 M phosphate-buffered saline (PBS, pH 7.4).

The DRG was cut into longitudinal sections measuring 10 mm

thick and mounted onto gelatin-coated glass slides. 10

representative tissue sections from each rat were selected (10

rats/group). After being blocked with 10% normal goat serum

(NGS), sections were incubated with corresponding antibodies.

Single immunofluorescence. After washed in PBS

containing 0.3% Triton X-100 (PBS-X, pH 7.4), the spinal cord

sections were incubated sequentially with: (1) mouse anti-GFAP

IgG (1:500) or mouse anti-OX42 IgG (1:200) in 0.0l M PBS

containing 5% (v/v) normal donkey serum (NDS), 0.3% (v/v)

Triton X-100, 0.05% (w/v) NaN3 and 0.25% (w/v) carrageenan

(PBS-NDS, pH 7.4) for 48 h at 4uC; (2) FITC-labeled donkey

anti-mouse IgG (1:200) in PBS-NDS for 12 h at 4uC.

Double immunofluorescence. Rabbit anti-IL-1b IgG

(1:300), rabbit anti-P-ser896 NR1 IgG (1:500), rat anti-IL-1RI

IgG (1:600) and rabbit anti-iNOS IgG (1:400) were respectively

double labelled with mouse anti-GFAP IgG (1:500), mouse anti-

NeuN IgG (1:1000) or mouse anti-OX42 IgG (1:200) in the spinal

cord sections; rabbit anti-P-ser896 NR1 IgG (1:500) was double

labelled with rat anti-IL-1RI IgG (1:600) in the spinal cord

sections; rabbit anti-iNOS IgG (1:400) and rabbit anti-nNOS IgG

(1:400) were respectively double labelled with mouse anti-GFAP

IgG (1:500), mouse anti-NeuN IgG (1:1000) or mouse anti-OX42

IgG (1:200) in the DRG sections.

Figure 1. Experimental procedures in this study (A) and mechanical allodynia in VZV infected rats (B and C). (A) The timeline
represents the period during which behavior, histochemistry, PCR and Western blot studies were performed per week after VZV infection. Intrathecal
catheterization was performed on rats and followed by 3-day recovery. The pharmacology, electrophysiology, and NOS studies were conducted at
post-infection 2 weeks when the mechanical allodynia reached the highest level. (B) Compared with Naive rats and Mock infected rats, the paw
withdrawal threshold of VZV infected rats was significantly decreased. * P,0.05, ** P,0.01 vs. Naive rats and Mock infected rats. (C) Systemic
treatment with antiviral agent valaciclovir had no effect on the development of mechanical allodynia. * P,0.05, ** P,0.01 vs. Mock infected rats. All
data were calculated as mean 6 SEM (n = 10/group/week).
doi:10.1371/journal.pone.0023059.g001
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Between each step, the sections were washed with PBS for three

times. After staining, the sections were coverslipped with a mixture

of 50% (v/v) glycerin and 2.5% (w/v) triethylene diamine (anti-

fading agent) in PBS, and observed with a confocal laser scanning

microscope (Olympus FV1000, Tokyo, Japan) under appropriate

filters for green-emitting FITC (excitation 490 nm; emission

520 nm) and for red-emitting Cy3 (excitation 552 nm; emission

565 nm).

Western blot analysis
Rats were anesthetized and the dorsal halves of the spinal cord

innervated by the L5 dorsal roots were rapidly removed. The

collected tissue was mechanically homogenized and centrifuged.

The supernatant was collected and stored at 280uC. Protein

concentrations of the supernatant were determined using the BCA

Protein Assay Kit (Pierce, Rockford, IL, USA). Proteins of interest

were separated by SDS-PAGE electrophoresis (20 mg of total

protein per well), and transferred onto nitrocellulose membranes.

The membranes were placed in a blocking solution (TBS with

0.02% Tween and 5% non-fat dry milk powder) for 1 h, and

incubated overnight with mouse anti-GFAP IgG (1:500), mouse

anti-OX42 IgG (1:200), rabbit anti-iNOS IgG (1:400), rabbit anti-

nNOS IgG (1:400), rabbit anti-IL-1b IgG (1:300) or rabbit anti-P-

ser896 NR1 IgG (1:500). After washing, the membranes were

incubated in peroxidase-conjugated secondary antibody (1:1000;

Santa Cruz) for 1 h, and then the membranes were detected by

the enhanced chemiluminescence detection method (Amersham

Pharmacia Biotech Inc., Piscataway, NJ, USA). The densities of

protein blots were analyzed by using Labworks Software (Ultra-

Violet Products Ltd., Cambridge, UK) and normalized to b-actin

levels.

Real-time reverse transcription polymerase chain
reaction (RT-PCR)

Rats were anesthetized and L5 of the spinal dorsal horn was

rapidly harvested. Total RNA was extracted with Trizol (GIBCO/

BRL Life Technologies Inc., Grand Island, NY, USA), an RNA

isolation reagent. cDNA was synthesized with oligo (dT)12–18 using

SuperscriptTM Reverse Transcriptase for RT-PCR (Invitrogen,

Carlsbad, CA, USA). The primers used were presented in Table 1.

GAPDH was served as an endogenous internal standard control.

The PCR reactions were carried out using 2 ml of cDNA, primers

specific to the gene of interest (Table 1) and the SYBRH Premix Ex

TaqTM (Takara, Tokyo, Japan) in 20 ml reactions. Levels of PCR

product were measured using SYBR Green fluorescence collected

during real time PCR in a detection system (Applied Biosystems

7300, Foster City, CA, USA). Melting point analyses were

performed for each reaction to confirm single amplified products.

Target RNA sequence quantities were estimated from the

threshold amplification cycle number (Ct) using Sequence

Detection System software (Applied Biosystems). Expression was

normalized to GAPDH.

Electrophysiological testing
The rats were anesthetized and artificially ventilated. Core body

temperature was monitored and maintained at 37.560.5uC. A

laminectomy was performed from the T13 to L2 vertebrae to

expose the lumbosacral enlargement of the spinal cord. Extracel-

lular single unit recordings were made from L5 spinal dorsal horn

ipsilateral to VZV infection with glass capillary microelectrodes (10–

15 MV filled with 0.5 M sodium acetate). The dorsal horn neurons

were identified as WDR units on the basis of their characteristic

responses: (1) having a receptive field consisting of a small low

threshold center and a large high threshold surround ipsilateral to

the recording site; (2) responding with an increasing firing rate to

brush, pressure and noxious pinch applied to the low threshold

center; (3) showing no apparent accommodation when continuous

noxious stimulation was applied. After successful identification of a

single WDR unit, the unit responsiveness to 10 s mechanical stimuli

was recorded. The spike trains were monitored with a memory

oscilloscope and the numbers of neuronal firing were simultaneously

recorded and saved on a computer via an A/D converter following

spike discriminator and counter.

Data analysis
The results were presented as mean 6 SEM. Statistical analysis

of the data was carried out with a one-way analysis of variance

(ANOVA) followed by Bonferroni post hoc analysis. Comparisons

between two means were performed by a Student’s T-test. A

Pearson correlation was used to determine the correlation between

the intensity of GFAP (Western blot) and pain behavioral

performance. Significance level was set at P,0.05. The statistics

software used was SPSS 12.0 for Windows.

Results

VZV infection induced mechanical allodynia which was
resistant to antiviral therapy

No difference in paw withdrawal threshold was observed

between naive rats (2563.5 g) and mock infected rats

(24.563.4 g), and the paw withdrawal threshold of these two

groups maintained at basal level through the period tested.

Compared to naive rats and mock infected rats, the paw

withdrawal threshold of VZV infected rats significantly decreased

at post-infection 1 week (P1) (11.561.6 g), reached the lowest

value at P2 (5.661.8 g), and thereafter maintained at low level till

P8 (n = 10/group; P,0.05). After P8, the paw withdrawal

threshold of VZV infected rats gradually increased to the basal

level at P12 (Fig. 1B). On the other hand, some VZV infected rats

were treated with antiviral agent valaciclovir. However, valaciclo-

vir treatment had no effect on the development of mechanical

allodynia (decreased paw withdrawal threshold), which suggested

that continued virus infection was not required for VZV induced

allodynia (Fig. 1C).

Table 1. Primers and Taqman probe sequence for the rat
genes characterized in this experiment.

Genes Primers

GFAP Forward primer 59 TGGCCACCAGTAACATGCAA 39

Reverse primer 59 CAGTTGGCGGCGATAGTCAT 39

Taqman probe 59 CAGACGTTGCTTCCCGCAACGC 39

OX42 Forward primer 59 CTGCCTCAGGGATCCGTAAAG 39

Reverse primer 59 CCTCTGCCTCAGGAATGACATC 39

Taqman probe 59 CCCGGGACAATGCCGCGAA 39

IL-1b Forward primer 59 GCAAACAGGTCGGCGTCTT 39

Reverse primer 59 TGCGCAGCGCTAAAACTTG 39

Taqman probe 59 TGATCTCGGCCCTCTGTCCGCA 39

GAPDH Forward primer 59 CCCCCAATGTATCCGTTGTG 39

Reverse primer 59 TAGCCCAGGATGCCCTTTAGT 39

Taqman probe 59 TGCCGCCTGGAGAAACCTGCC 39

doi:10.1371/journal.pone.0023059.t001
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Spinal astrocytic activation contributed to mechanical
allodynia

Immunohistochemistry indicated that compared to naive rats

and mock infected rats, GFAP staining was significantly increased in

the spinal cord of VZV infected rats at post-infection 1 week (P1),

peaked at P2, and thereafter maintained at high level till P8.

Staining of GFAP appeared to be enhanced throughout the spinal

dorsal horn. (Fig. 2A–C). Using real-time RT-PCR, it was found

that the spinal mRNA expression of GFAP was significantly

upregulated in VZV infected rats compared to naive rats and mock

infected rats (Fig. 2D). Activated astrocytes had hypertrophied cell

bodies and thickened processes with enhanced GFAP-immunore-

activity in VZV infected rats. However, with regard to the total

number of GFAP positive cells, there was no difference between

Naı̈ve rats and VZV infected rats (Fig. 2E). On the other hand, we

found that BrdU immunoreactivity was undetectable in both Naı̈ve

rats and VZV infected rats in BrdU incorporation analysis, which

indicated that there was no proliferation of astrocytes in the spinal

cord of VZV infected rat (data not shown). Using Western blot, we

detected that compared to naive rats (0.2260.04) and mock infected

rats (0.260.03), GFAP expression was significantly increased in

VZV infected rats at post-infection day 3 (0.6860.15). GFAP

upregulation peaked at P2 (1.6260.3) and thereafter persisted at

high level till P8 (n = 10/group; P,0.05). After P8, GFAP

expression gradually decreased to the basal level at P12 (Fig. 2F).

Furthermore, the expression level of GFAP was found to be

significantly correlated to the paw withdrawal threshold in VZV

infected group (P,0.001, r = 20.868) (Fig. 2G).

No significant difference in OX42 mRNA expression was observed

among naive rats, mock infected rats and VZV infected rats (Fig. 3A).

With regard to OX42-like immunoreactivity (-LI) in spinal dorsal

horn, there was no difference between Naı̈ve rats and VZV infected

rats (Fig. 3B). With regard to OX42 expression in spinal cord,

Western blot showed that there was no difference between naive rats,

mock infected rats and VZV infected rats at post-infection any week.

In all the mice, OX42 expression was unchanged through the period

tested (Fig. 3C). We injected LAA or minocycline intrathecally and

observed their effects on mechanical allodynia in VZV infected rats

(P2). The astrocytic specific toxin LAA significantly attenuated the

allodynia. However, the microglial specific inhibitor minocycline did

not influence mechanical allodynia (Fig. 3D).

Spinal astrocytic activation contributed to spinal central
sensitization in VZV infected rat

The responsiveness of WDR neurons was gradedly increased

with the increase in mechanical intensity (brush, pressure and

pinch) (Fig. 4A–D). The stimulus-response functional curves for

mechanical sensitivity of the spinal dorsal horn WDR neurons are

shown in each group (Fig. 4E). Compared to mock infected rats,

the responsiveness of WDR neurons was significantly enhanced

with a distinct leftward shift of the stimulus-response functional

curve in VZV infected rats, which indicated that spinal central

sensitization occurred in VZV infected rat (Fig. 4E). We injected

LAA or minocycline intrathecally and observed their effects on

increased responsiveness of WDR neurons in VZV infected rats

(P2). The astrocytic specific toxin LAA significantly attenuated the

increased responsiveness. However, the microglial specific inhib-

itor minocycline did not have any effect (Fig. 4E).

Spinal astrocytic activation depended on activation of
neuronal iNOS

Compared to naive rats and mock infected rats, iNOS expression

was significantly increased in DRG and spinal cord of VZV infected

rats (P2). However, with regard to nNOS expression in DRG and

spinal cord, there was no difference among Naive rats, Mock

infected rats and VZV infected rats (Fig. 5A and B). Also, the

number of iNOS-immunopositive but not nNOS-immunopositive

DRG neurons in VZV infected rats was significantly increased

when compared to naive rats (Fig. 5C1–C4).

At P2 in VZV infected rats, double immunofluorescent staining

of spinal cord showed that iNOS-immunoreactivity was only

localized in NeuN-immunopositive cells but not in GFAP-

immunopositive cells or OX42-immunopositive cells (Fig. 5D1).

In addition, intrathecal treatment with L-NIL (inhibitor of iNOS)

or PTIO (scavenger of NO) significantly reduced GFAP

overexpression in VZV infected rats. However, intrathecal

treatment with 7-NINA (selective inhibitor of nNOS) had no

effect on GFAP overexpression in VZV infected rats (Fig. 5D2).

Furthermore, intrathecal treatment with L-NIL or PTIO exerted

significant analgesic effect in VZV infected rats. However,

intrathecal treatment with 7-NINA had no effect on pain behavior

in VZV infected rats (Fig. 5D3). All these data indicated that VZV

infection-induced activation of neuronal iNOS may mediate the

development of spinal astrocytic activation and allodynia in VZV

infected rats.

Spinal astrocytes dramatically increased the expression
of IL-1b which was related to mechanical allodynia

At post-infection 2 week (P2) in VZV infected rats, double

immunofluorescent staining of spinal cord showed that IL-1b-

immunoreactivity was only localized in GFAP-immunopositive

cells but not in OX42-immunopositive cells (Fig. 6A–C9). Western

blot analysis showed that compared to naive rats (0.0460.006) and

mock infected rats (0.04360.005), IL-1b expression was signifi-

cantly increased in VZV infected rats at post-infection 1 week (P1)

(0.560.11). IL-1b upregulation peaked at P2 (1.160.16), and

thereafter persisted at high level till P8 (n = 10/group; P,0.05).

After P8, IL-1b expression gradually decreased to the basal level at

P12 (Fig. 6D). Thus, the time course of IL-1b expression was

similar to that of GFAP expression. At P2 in VZV infected rats,

intrathecally administered LAA could significantly down-regulate

IL-1b overexpression (0.2860.07) (Fig. 6D). Using real-time RT-

PCR, it was found that the spinal mRNA expression of IL-1b was

significantly upregulated in VZV infected rats compared to naive

rats and mock infected rats (Fig. 6E). At P2 in VZV infected rats,

we injected pentoxifylline (cytokine inhibitor) or IL-1ra (interleu-

kin-1 receptor antagonist) intrathecally and observed their effects

on mechanical allodynia in VZV infected rats. Both pentoxifylline

and IL-1ra could significantly attenuated the allodynia (Fig. 6F). In

addition, we found that intrathecal treatment with pentoxifylline

or IL-1ra had no effect on GFAP overexpression in VZV infected

rats (data not shown), which indicated that IL-1b may had no

effect on spinal astrocytes in VZV-infected rats.

IL-1b induced NMDA receptor phosphorylation which
contributed to mechanical allodynia

At P2 in VZV infected rats, double immunofluorescent staining

of spinal cord showed that P-NR1-immunoreactivity and IL-1RI-

immunoreactivity were only localized in NeuN-immunopositive

cells, and P-NR1-immunoreactivity and IL-1RI-immunoreactivity

were totally double-labeled (Fig. 7A–C).

Western blot analysis showed that compared to naive rats

(0.0560.009) and mock infected rats (0.0460.006), the phosphor-

ylation of NR1 was significantly increased in VZV infected rats at

P1 (0.3860.06). The phosphorylation of NR1 peaked at P2

(0.6860.12), and thereafter persisted at high level till P8 (n = 10/
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group; P,0.05). After P8, the phosphorylation of NR1 gradually

decreased to the basal level at P12 (Fig. 7D). Thus, the time course

of the level of P-NR1 was similar to that of IL-1b expression or

GFAP expression. At P2 in VZV infected rats, intrathecally

administered LAA, pentoxifylline or IL-1ra could significantly

reverse infection induced phosphorylation of NR1 (Fig. 7D). At P2

in VZV infected rats, we injected AP5 (NMDA receptor

antagonist) or MK-801 (non-competitive NMDA receptor antag-

onist) intrathecally and observed their effects on mechanical

allodynia in VZV infected rats. Both AP5 and MK-801 could

significantly attenuated the allodynia (Fig. 7E). Most importantly,

we found that neither MK-801 nor AP5 could affect the motor

performance of VZV infected rats in the rotarod test, which

indicated that the antinociceptive effects of MK-801 or AP5 did

not rely on impairments of motor function (data not shown). In

addition, it was found that intrathecal treatment with MK-801 or

AP5 had no effect on GFAP or IL-1b overexpression in VZV

infected rats (data not shown).

Figure 2. Spinal astrocytes were activated in VZV infected rats, which was significantly correlated to mechanical allodynia. (A–C)
Compared with Naive rats and Mock infected rats, GFAP-like immunoreactivity (-LI) in spinal dorsal horn of VZV infected rats was significantly
increased. Bar = 200 mm. (D) Real-time RT-PCR showed that spinal mRNA expression of GFAP was significantly upregulated in VZV infected rats
compared to naive rats and mock infected rats. (E) With regard to the total number of GFAP positive cells, there was no difference between Naı̈ve rats
and VZV infected rats. Bar = 10 mm. (F) Compared to Naive rats and Mock infected rats, Western blot analysis showed that spinal GFAP expression was
significantly increased in VZV infected rats. (G) The expression level of GFAP was found to be significantly correlated to the paw withdrawal threshold
in VZV infected rats (P,0.001, r = 20.868). All data were calculated as mean 6 SEM (n = 10/group/week). * P,0.05, ** P,0.01 vs. Naive rats and Mock
infected rats; DP,0.05 vs. post-infection 2 weeks rats.
doi:10.1371/journal.pone.0023059.g002
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Discussion

The present study was the first time to provide evidence that

spinal astrocytic activation contributed to mechanical allodynia in

VZV-infected rats. The neural mechanism in astrocyte incudced

allodynia may be that spinal activated astrocytes dramatically

increased the expression of IL-1b which may induce NMDA

receptor phosphorylation in spinal dorsal horn neurons to enhance

neuronal activity and pain transmission.

Spinal astrocyte but not microglia was activated in VZV
infected rat, which contributed to experimental
postherpetic neuralgia

PHN is characterized by the development of hyperalgesia (a

facilitated behavioral response to painful stimuli), mechanical

allodynia (the perception of innocuous stimuli as painful) and

spontaneous pain, which are also features of other forms of

neuropathic pain [32]. Although it is still unclear how latent

VZV infection interacts with the nervous system to induce pain

behavioural changes, the underlying pathophysiological mech-

anisms of PHN may be similar to other forms of neuropathic

pain. Spinal cord glia (astrocyte and microglia) are now posited

to be dynamically and powerfully involved in diverse exagger-

ated pain states [12,13]. While cumulating evidence suggested

the involvement of microglia in varius models of persistent pain

[33], such as spinal nerve ligation induced pian [34], formalin

induced inflammatory pain [35], spinal cord injury induced

pian [36] and so on, emerging studies have suggested the critical

role of spinal astrocytes in some pathological pain states,

including neuropathic pain [25], inflammatory pain [37],

visceral pain [38] and diabetic pain [39]. To identify the

potential involvement of which subtype of glial cell (astrocyte or

microglia) in PHN, we studied the expression of different glia

activation markers in the spinal cord and the influence of

different glial inhibitors on mechanical allodynia in VZV-

infected rats. We found that GFAP (astrocytic activation

marker) but not OX42 (microglial activation marker) was

significantly increased in the spinal cord of VZV infected rat.

Figure 3. Spinal microglia was not activated in VZV infected rats, astrocytic specific inhibitor LAA but not microglial specific
inhibitor minocycline could attenuate mechanical allodynia. (A) No significant difference in OX42 mRNA expression in spinal cord was
observed among naive rats, mock infected rats and VZV infected rats. (B) With regard to OX42-like immunoreactivity (-LI) in spinal dorsal horn, there
was no difference between Naı̈ve rats and VZV infected rats. Bar = 200 mm. (C) With regard to OX42 expression in spinal cord, there was no difference
among Naive rats, Mock infected rats and VZV infected rats. In VZV infected rats, OX42 expression was unchanged through the period tested. (D)
Intrathecal injection of LAA significantly attenuated the allodynia. However, minocycline did not influence the allodynia. All data were calculated as
mean 6 SEM (n = 10/group). * P,0.05, ** P,0.01 vs. VZV+Saline group or VZV+minocycline group in D.
doi:10.1371/journal.pone.0023059.g003
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The changing course of astrocytic activation was consistent with

that of mechanical allodynia. Astrocytic specific inhibitor LAA

but not microglial specific inhibitor minocycline significantly

attenuated the allodynia, which elucidated that astrocytic

activation but not microglial activation contributed to allodynia

in VZV infected rat. To the best of our knowledge, we are the

first to report that this glia cell (astrocyte) plays an important

role in mechanical allodynia of VZV infected rat.

Similar to our finding, a recent study showed that spinal

astrocytes but not microglia may be a crucial component of type 2

diabetes-induced neuropathic pain [39]. However, another recent

study indicated that spinal microglia are more activated than

astrocytes in the neuropathic pain of chronic constriction injury to

the sciatic nerve [40]. Interestingly, a previous study showed that

both spinal astrocytes and microglia were activated in the

neuropathic pain of partial peripheral nerve injury [41]. All the

above results indicated that spinal astrocytic activation and/or

microglial activation play crucial roles in different pathological

pain states. The discrepancy in the activation of glial cell subtypes

(astrocyte or microglia) may be attributed to different pathogenetic

mechanism within different models of neuropathic pain. Never-

theless, our promising findings regarding LAA-induced alleviation

of mechanical allodynia in VZV infected rat suggest that

pharmacological antagonism of astrocytic activation in spinal

cord may offer a great advantage in the treatment of PHN.

VZV infection-induced activation of neuronal iNOS may
contribute to spinal astrocytic activation

A key factor in the neural plasticity underlying neuropathic pain

is altered expression of neurotransmitters in sensory dorsal root

ganglion (DRG) neurons [42]. Previous studies have shown that

there was an increased expression of calcium channel, sodium

channels, the neuropeptide and activating transcription factor-3 in

DRG of VZV-infected rats [7]. In the present study, it was found

that iNOS but not nNOS expression was significantly increased in

DRG and spinal dorsal horn of VZV infected rats when compared

with control rats. Also, the number of iNOS-immunopositive

DRG neurons in VZV infected rats was significantly increased.

iNOS could produce an excessive amount of NO, a molecule

which is one of the important substances implicated in diverse

exaggerated pain states [43]. NO has been shown to regulate

expression of GFAP in primary cultured astrocytes [44,45,46].

Here, we hypothesized that VZV infection-induced activation of

iNOS may be a key mechanism for the development of spinal

astrocytic activation in VZV infected rat. Intrathecal treatment

with L-NIL (inhibitor of iNOS) or PTIO (scavenger of NO)

significantly reduced GFAP overexpression whereas 7-NINA

(selective inhibitor of nNOS) had no effect, which suggested that

NO originating from iNOS may function as an initiator of

astrocyte activation in VZV-infected rats. All these results indicate

that neuronal input and related chemical mediators may be

essential for triggering spinal astrocytic activation after VZV

infection.

Spinal astrocytic activation induced central sensitization
of spinal neurons in VZV infected rat

Spinal dorsal horn wide dynamic range (WDR) neurons are

more plastic following tissue injury and are believed to be

responsible for the spinally-organized nociceptive transmission

[42]. In this study, electrophysiological recording from WDR

neurons in the lumbar (L4–L5) spinal dorsal horn in VZV infected

rat showed significantly increased responsiveness to stimuli, which

indicated that spinal central sensitization occurred in VZV

infected rat, and this central sensitization contributed to the

allodynia seen in VZV infected rats. Most importantly, the

astrocytic specific toxin LAA significantly attenuated the increased

responsiveness of WDR neurons, which demonstrated that spinal

astrocytes play an important role in the mediation of excessively

increased activity of dorsal horn neurons. These results dictate a

necessity for subsequent detailed studies of signal coupling between

astrocytes and neurons in spinal dorsal horn of VZV infected rat.

The neural mechanism of astrocyte induced allodynia
may be ‘‘Astrocyte-Cytokine-NMDAR-neuron’’ pathway

Under pathological condition, activated astrocytes could release

proinflammatory cytokines, of which IL-1b has become the

research focus [12,15]. In the present study, IL-1b expression

was significantly increased in VZV infected rat compared to

control rat, and IL-1b was selectively localized in astrocytes. In

support of our findings, previous studies also reported selective

localization of increased IL-1b in spinal astrocytes in bone cancer

pain model [47] and Complete Freunds adjuvant-induced

inflammatory pain model [37]. Furthermore, intrathecally injected

pentoxifylline (cytokine inhibitor) or IL-1ra (interleukin-1 receptor

antagonist) could significantly attenuated the allodynia in this

study. Similar to our data, previous studies also showed that

intrathecally application of IL-1ra could exert significant analgesic

effect in Complete Freunds adjuvant-induced inflammatory pain

model [48] and L5 spinal nerve transection-induced neuropathic

Figure 4. Astrocytic activation contributed to spinal central
sensitization in VZV infected rats. Comparative recordings of
responsiveness of spinal dorsal horn wide dynamic range (WDR)
neurons to mechanical (brush, pressure and pinch) stimuli in Mock
infected group (A), VZV infected group (B), VZV+LAA group (C) and
VZV+minocycline group (D). (A–D) The responsiveness of WDR neurons
was gradedly increased with the increase in mechanical intensity (brush,
pressure and pinch). (E) Compared to Mock infected rats, the
responsiveness of WDR neurons was significantly enhanced with a
distinct leftward shift of the stimulus-response functional curve in VZV
infected rats. The astrocytic specific toxin LAA significantly attenuated
the increased responsiveness. However, the microglial specific inhibitor
minocycline did not have any effect. * P,0.05 vs. Mock infected rats;
DP,0.05 vs. VZV infected rats.
doi:10.1371/journal.pone.0023059.g004
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pain model [49]. Most importantly, intrathecally administered

astrocytic specific inhibitor LAA could significantly down-regulate

IL-1b expression in the present study. Consistent with our data, a

recent study also reported that IL-1b overexpression could be

blocked by intrathecally administered LAA in a type 2 diabetes-

induced neuropathic pain [39]. Taken together, all these results

strongly suggest that activated astrocytes are the only source of IL-

1b release which contributed to mechanical allodynia in VZV

infected rat.

Recent studies indicate that spinal NMDA receptor activation

mainly involves phosphorylation of the NR1 (a subunit of NMDA

receptor), which is strongly correlated with induction and

maintenance of persistent pain [8,9]. Here, it was shown that

spinal phosphorylation of the NR1 was significantly enhanced in

VZV infected rat compared to control rat, and P-NR1-

immunoreactivity were only localized in spinal neurons. In

support of our findings, previous studies also reported significantly

enhanced phosphorylation of the NR1 subunit in spinal neurons in

peripheral heat stimulation-induced pain model [10], trigeminal

inflammation pain model [50] and partial sciatic nerve ligation-

induced neuropathic pain model [11]. Furthermore, intrathecally

injected AP5 (NMDA receptor antagonist) or MK-801 (non-

competitive NMDA receptor antagonist) could significantly

attenuated the allodynia in VZV infected rat in this study, which

indicated that NR1 phosphorylation induced activation of NMDA

receptor surely contributed to PHN. Similar to our data, previous

Figure 5. VZV infection induced spinal astrocytic activation depended on activation of iNOS. (A and B) Compared to Naive rats and Mock
infected rats, iNOS expression was significantly increased in dorsal root ganglion (DRG) and spinal cord of VZV infected rats. With regard to nNOS
expression in DRG and spinal cord, there was no difference among Naive rats, Mock infected rats and VZV infected rats. (C1–C4) The number of iNOS-
immunopositive but not nNOS-immunopositive DRG neurons in VZV infected rats was significantly increased compared to Naive rats. Bars = 100 mm
(C1) and 20 mm (C2). (D1) iNOS-immunoreactivity was localized in NeuN-immunopositive cells but not in GFAP-immunopositive cells or OX42-
immunopositive cells in spinal cord of VZV infected rats. Bar = 50 mm. (D2) Intrathecal treatment with L-NIL (selective inhibitor of iNOS) or PTIO
(scavenger of NO) significantly reduced GFAP overexpression in spinal cord of VZV infected rats. However, intrathecal treatment with 7- NINA
(selective inhibitor of nNOS) had no effect on GFAP overexpression in VZV infected rats. (D3) Intrathecal treatment with L-NIL or PTIO exerted
significant analgesic effect in VZV infected rats. However, intrathecal treatment with 7-NINA had no effect on pain behavior in VZV infected rats. All
data were calculated as mean 6 SEM (n = 10/group). ** P,0.01 vs. Naive rats and Mock infected rats in A–C. * P,0.05 vs. saline (vehicle) treated VZV
infected rats in D2.
doi:10.1371/journal.pone.0023059.g005
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Figure 6. IL-1b overexpression in spinal cord was related to mechanical allodynia in VZV infected rats, and activated astrocytes
were the only source of IL-1b. (A–C9) Double immunofluorescent staining showed that IL-1b-immunoreactivity was localized in GFAP-
immunopositive cells but not OX42-immunopositive cells in spinal cord of VZV infected rats. Bars = 20 mm. (D) IL-1b expression was significantly
increased in spinal cord of VZV infected rats compared to Naive rats and Mock infected rats. Intrathecal treatment with LAA (astrocytic specific toxin)
significantly reduced IL-1b overexpression in VZV infected rats. (E) Using real-time RT-PCR, it was found that the spinal mRNA expression of IL-1b was
significantly upregulated in VZV infected rats compared to naive rats and mock infected rats. (F) Intrathecal injection of Pentoxifylline (cytokine
inhibitor) or IL-1ra (interleukin-1 receptor antagonist) could significantly attenuated the allodynia. All data were calculated as mean 6 SEM (n = 10/
group). * P,0.05, ** P,0.01 vs. Naive rats and Mock infected rats; DP,0.05 vs. post-infection 2 weeks rats in D and E. * P,0.05, ** P,0.01 vs. saline
(vehicle) treated VZV infected rats in F.
doi:10.1371/journal.pone.0023059.g006
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Figure 7. IL-1b released from astrocyte induced NMDA receptor phosphorylation in spinal dorsal horn neurons in VZV infected rats,
which was related to mechanical allodynia. (A–C) Double immunofluorescent staining showed that P-NR1-immunoreactivity and IL-1RI-
immunoreactivity were totally double-labeled in spinal dorsal horn of VZV infected rats. Bar = 50 mm. (D) The phosphorylation of NR1 was significantly
increased in VZV infected rats compared to Naive rats and Mock infected rats. Intrathecal treatment with LAA (astrocytic specific toxin), PF (cytokine
inhibitor) or IL-1ra (interleukin-1 receptor antagonist) could significantly reduce the phosphorylation of NR1 in VZV infected rats. (E) Intrathecal
injection of AP5 (NMDA receptor antagonist) or MK-801 (non-competitive NMDA receptor antagonist) could significantly attenuated the allodynia. All
data were calculated as mean 6 SEM (n = 10/group). * P,0.05, ** P,0.01 vs. Naive rats and Mock infected rats; DP,0.05 vs. post-infection 2 weeks
rats in D. * P,0.05, ** P,0.01 vs. saline (vehicle) treated VZV infected rats in E.
doi:10.1371/journal.pone.0023059.g007
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studies also showed that intrathecally application of NMDA

receptor antagonists could exert antiallodynic effect in chronic

constriction injury-induced neuropathic pain model [8] and

peripheral heat stimulation-induced pain model [10].

IL-1R, a subfamily of the Toll/IL-1 receptor superfamily, is the

endogenous binding receptor for IL-1b. IL-1R contains two

subtypes: the type I IL-1R (IL-1RI) and the type II IL-1R. IL-1RI

is a transmembrane molecule and responsible for IL-1 signaling

and the type II IL-1R lacks an intracellular domain and is

incapable of signal transduction [51]. The present study showed

that IL-1RI-immunoreactivity were only localized in spinal

neurons. Similar to our finding, a previous study also reported

selective localization of IL-1RI in spinal dorsal horn neurons in a

inflammatory pain model [52]. In the present study, the time

course of the phosphorylation of the NR1 was similar to that of IL-

1b or GFAP expression, and neuronal P-NR1-immunoreactivity

and neuronal IL-1RI-immunoreactivity were totally double-

labeled, which strongly supported a close interaction of IL-1b
signaling with neuronal NMDA receptor. Thus, it was hypothe-

sized that IL-1b mediated allodynia in VZV infected rat may be

through binding its receptor IL-1RI on the neurons, and then

possibly via intracellular signal transduction leading to the

phosphorylation of NMDA receptor NR1 subunit. As expected,

subsequent data showed that intrathecally administered LAA,

pentoxifylline or IL-1ra each could blocked the phosphorylation of

the NR1 in this study. Similar to our finding, two previous studies

reported that IL-1ra could block the phosphorylation of the NR1

in inflammatiory pain models [30,50]. Also, a recent study showed

that phosphorylation of the NR1 could be alleviated by intrathecal

application of LAA in spinal nerve ligation-induced neuropathic

pain model [53]. Therefore, all the above results indicated that

spinal activated astrocytes dramatically increased the expression of

IL-1b which directly bind to its receptor IL-1RI to induce NMDA

receptor phosphorylation in spinal dorsal horn neurons, and

finally pain transmission was enhanced.

In summary, the present study suggestted that spinal activated

astrocytes may be one of the most important etiological factors of

PHN and ‘‘NO-Astrocyte-Cytokine-NMDAR-Neuron’’ pathway

may be the detailed molecular mechanisms underlying astrocyte

induced allodynia in PHN. These findings suggest that spinal

astrocytic inhibition may hold a therapeutic promise in the

treatment of postherpetic neuralgia.
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