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N E U R O S C I E N C E

Unsupervised experience with temporal continuity 
of the visual environment is causally involved 
in the development of V1 complex cells
Giulio Matteucci and Davide Zoccolan*

Unsupervised adaptation to the spatiotemporal statistics of visual experience is a key computational principle that 
has long been assumed to govern postnatal development of visual cortical tuning, including orientation selectivity 
of simple cells and position tolerance of complex cells in primary visual cortex (V1). Yet, causal empirical evidence 
supporting this hypothesis is scant. Here, we show that degrading the temporal continuity of visual experience 
during early postnatal life leads to a sizable reduction of the number of complex cells and to an impairment of 
their functional properties while fully sparing the development of simple cells. This causally implicates adaptation 
to the temporal structure of the visual input in the development of transformation tolerance but not of shape 
tuning, thus tightly constraining computational models of unsupervised cortical learning.

INTRODUCTION
It has long been proposed that the tuning of sensory neurons is de-
termined by adaptation to the statistics of the signals they need to 
encode (1, 2). In the visual domain, this notion has given rise to two 
broad families of unsupervised learning algorithms: those relying on 
the spatial structure of natural images, referred to as unsupervised 
spatial learning (USL) models (1–6), and those leveraging the spatio-
temporal structure of natural image sequences, referred to as un-
supervised temporal learning (UTL) models (7–15). Both kinds of 
learning have been applied to explain the ability of visual cortical 
representations to selectively code for the identity of visual objects, a 
property known as shape tuning, while tolerating variations in their 
appearance (e.g., because of position changes), a property known as 
transformation tolerance (or invariance) (16). These properties are 
built incrementally along the ventral stream (the cortical hierarchy 
devoted to shape processing), but the earliest evidence of shape tun-
ing and invariance in the visual system can be traced back to primary 
visual cortex (V1), where simple cells first exhibit tuning for nontrivial 
geometrical patterns (oriented edges) and complex cells first display 
some degree of position tolerance (17).

In sparse coding theories (arguably the most popular incarnation 
of USL), maximizing the sparsity of the representation of natural 
images produces Gabor-like edge detectors that closely resemble the 
receptive fields (RFs) of V1 simple cells (5, 6). Other USL models, 
by optimizing objective functions that depend on the combination 
of several linear spatial filters, also account for the emergence of 
position-tolerant edge detectors, such as V1 complex cells (3, 4). The 
latter, however, have been more commonly modeled as the result of 
UTL, where the natural tendency of different object views to occur 
nearby in time is used to factor out object identity from other faster- 
varying, lower-level visual attributes. While some UTL models pre-
suppose the existence of a bank of simple cells, upon which the 
complex cells’ representation is learned (7, 11–15), other models, 
such as slow feature analysis (SFA), directly evolve complex cells 

from the pixel (i.e., retinal) representation, thus simultaneously learn-
ing shape selectivity and invariance (8, 9).

To date, it remains unclear what role these hypothesized learning 
mechanisms play in the developing visual cortex, despite the influence 
that early visual experience is known to exert on cortical tuning. This 
is demonstrated (e.g.) by the impact of monocular deprivation on 
the development of ocular dominance (18, 19), by the bias in orienta-
tion tuning produced by restricting early visual experience to a single 
orientation (20, 21), and by the need, for ferret visual cortex, to ex-
perience visual motion to develop direction selectivity (22). However, 
none of these manipulations was designed to specifically test the role 
of USL and/or UTL in mediating the development of simple and 
complex cells. As a result, empirical support for the role of sparse 
coding in determining orientation selectivity is still indirect (23, 6), 
as no study has succeeded in abolishing (or at least interfering with) 
the development of simple cells with Gabor-like tuning through 
manipulations of the visual environment (24). Similarly, no clean 
causal evidence has been gathered yet to demonstrate the involvement 
of UTL in postnatal development of invariance and/or selectivity in 
visual cortex. The only experiments suggesting the involvement of 
UTL in fostering invariant visual object representations during 
development come from behavioral studies of chicks’ object vision 
(25). In mammals, a few studies based on strobe rearing did investi-
gate the effect of degrading the temporal continuity of the visual input 
on the developing cortex (26–30), but they did not quantitatively 
probe whether this manipulation led to a reduction of invariance 
(see Discussion). More critically, strobe rearing does not allow 
effectively and selectively altering the temporal statistics of the visual 
input while sparing the spatial statistics (or vice versa). Short light 
flashes (≤10 s) also severely limit the experience with the spatial 
content of the visual input, as well as the overall amount of light 
exposure during development, especially when combined with low 
strobe rates (0.5 to 2 Hz). Conversely, higher strobe rates (8 Hz) allow 
still experiencing a strongly correlated visual input over time, given 
the dense, ordered sampling of the visual space performed by the 
visual system across consecutive flashes. This makes it impossible to 
disentangle the contribution of USL, UTL, or simpler light-dependent 
plasticity processes to the changes of orientation and/or direction 
tuning reported in some of these studies. In summary, the lack of 
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conclusive evidence about the involvement of spatial and temporal 
learning processes in cortical development of selectivity and invari-
ance calls for new studies based on tighter, better controlled manip-
ulations of visual experience during postnatal development.

RESULTS
Our study was designed to causally test the involvement of UTL 
in the development of shape selectivity and transformation 
tolerance (i.e., simple and complex cells) in V1. To this aim, 
we took 18 newborn rats (housed in light-proof cabinets from birth) 
and, from postnatal day 14 (P14) [i.e., at eye opening (EO)] to P60 

[i.e., well beyond the end of the critical period (31)], subjected them 
to daily, 4-hour long exposures inside an immersive visual environ-
ment. This consisted of a rectangular, transparent basin, surrounded 
on each side by a computer-controlled liquid crystal display (LCD) 
monitor, and placed inside a light-proof cabinet (fig. S1). Eight animals 
(the control group) were exposed to a battery of 16 natural movies 
(lasting from a few minutes to half an hour), while the remaining 
10 rats (the experimental group) were exposed to their frame-scrambled 
versions (Fig. 1A). As a result of the scrambling, the correlation be-
tween the frames of a movie as a function of their temporal separation 
was close to zero at all tested time lags, while the image frames of 
the original movies remained strongly correlated over several seconds 

Fig. 1. Experimental design. (A) Two groups of rats, control (top) and experimental (bottom), were born in dark and housed in lightproof cabinets until EO (black bars). 
Afterward, the control rats were subjected to daily 4-hour-long exposures to natural videos inside the virtual cages (blue bar), while the experimental rats were subjected 
to the frame-scrambled versions of the same movies (orange bar). Starting from P60, neuronal recordings from V1 of both the control and experimental rats were per-
formed under anesthesia (gray bars), while the animals were exposed to drifting gratings and movies of spatially and temporally correlated noise. (B) Left: The mean 
correlation between the image frames of one of the natural movies [same as in (A)] is plotted as a function of their temporal lag (blue curve). The dashed line shows the 
best exponential fit to the resulting autocorrelation function ( is the time constant of the fit). Right: The autocorrelation function obtained for the frame-scrambled 
version of the movie (orange curve) is shown along with its best exponential fit (dashed line). (C) Left: The autocorrelation functions of all the natural movies used during 
postnatal rearing of the control rats (blue curves) are shown along with the autocorrelation functions of their frame-scrambled versions (orange curves) used during 
postnatal rearing of the experimental rats. Right: The time constants of the best exponential fits to the autocorrelation functions of the natural movies (blue dots) and 
their frame-scrambled versions (orange dots) were significantly different (P < 0.001, one-tailed, unpaired t test). Photo credit: Giulio Matteucci and Mattia D’Andola, SISSA 
(Trieste, Italy).
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(compare the orange versus blue curves in Fig. 1, B and C; the average 
time constants of the exponential fits to the correlation functions 
were 6.9 ± 1.3 ms and 1.47 ± 0.10 s, respectively, for the frame-scrambled 
and original movies; see Fig. 1C, right). All movies were played at 
15 Hz, which is approximately half of the critical flicker fusion fre-
quency (~30 to 40 Hz) of the rat (32). This ensured that, while the 
temporal correlation of the input was substantially broken, no fusion 
occurred between consecutive frames of a movie, thus allowing the 
rats of the experimental group to fully experience the spatial content 
of the individual image frames. This likely enabled the experimental 
rats to also experience some amount of continuous transformation 
(e.g., translation) of the image frames, as the result of spontaneous 
head or eye movements during the 66.7-ms presentation time of each 
frame. This, along with the presence of some stable visual features 
in the physical environment (e.g., the dark edges of the monitors) 
and the possibility for the rats to see parts of their own body, allowed 
for some residual amount of temporal continuity in the visual expe-
rience of the experimental group. This incomplete disruption of 
temporal continuity was unavoidable, given the constraints of (i) 
granting the animals full access to the spatial content of natural visual 
scenes and (ii) trying to foster visual cortical development and plas-
ticity by leaving the rats free to actively explore the environment (33), 
thus avoiding body restraint and head fixation. Crucially, despite 
these constraints, the temporal statistics of the visual stream experi-
enced by the two groups of animals at time scales larger than 66.7 ms 
was radically different (Fig. 1, B and C), while the spatial statistics 
and overall amount of light exposure were very well matched. This 
allowed isolating the contribution of temporal contiguity to the post-
natal development of V1 simple and complex cells.

Postnatal rearing in a temporal discontinuous visual 
environment leads to a reduction of V1 complex cells but 
leaves spatial tuning of V1 neurons unaltered
Shortly after the end of the controlled-rearing period, we performed 
multichannel extracellular recordings from V1 of each rat under 
fentanyl/medetomidin anesthesia (see Materials and Methods for 
details) (34). Our recordings mainly targeted layer 5, where complex 
cells are known to be more abundant (35), and layer 4, with the dis-
tributions of recorded units across the cortical depth and the cortical 
laminae being statistically the same for the control and experimental 
groups (fig. S2). During a recording session, each animal was pre-
sented with drifting gratings spanning 12 directions (from 0° to 
330° in steps of 30°) and with contrast-modulated movies of spatially 
and temporally correlated noise (34, 35). Responses to the noise 
movies allowed inferring the linear RF structure of the recorded 
units using the spike-triggered average (STA) analysis and the tem-
poral scale over which the stimulus representation unfolded (see 
Materials and Methods). Responses to the drifting gratings were used to 
estimate the tuning of the neurons with the standard orientation selectivity 
index (OSI) and direction selectivity index (DSI) (defined in Materials 
and Methods) and to probe their sensitivity to phase shifts of their 
preferred gratings, thus measuring their position tolerance (see 
Discussion) (34, 35).

This is illustrated in Fig. 2A, which shows a representative complex 
cell from the control group (left, blue lines) and a representative 
simple cell from the experimental group (right, orange lines). Both 
units displayed sharp orientation tuning (polar plots), but the STA 
method successfully recovered a sharp, Gabor-like RF only for the 
simple cell—as expected, given the nonlinear stimulus-response re-

lationship of complex cells (34). Consistently, the response of the 
complex cell was only weakly modulated at the temporal frequency 
(4 Hz) of its preferred grating (middle plots), with the highest power 
spectral density concentrated at frequencies of <4 Hz (bottom plot). 
By contrast, the response of the simple cell was strongly phase mod-
ulated, with a power spectrum narrowly peaked at the grating fre-
quency. Thus, by z-scoring the power spectral density of the response 
at the preferred grating frequency, it was possible to define a modu-
lation index (MI) that distinguished between complex (MI < 3) and 
simple (MI > 3) cells (see Materials and Methods) (34, 36).

We applied this criterion to the neuronal populations of 105 and 
158 well-isolated single units recorded from, respectively, the control 
and experimental group, and we found a significantly lower fraction 
of complex cells in the latter (39%, 61 of 158) with respect to the 
former (55%, 58 of 105; P < 0.01, Fisher’s exact test). Consistently, 
the median MI for the control population (2.69 ± 0.29) was signifi-
cantly smaller than for the experimental one (3.52 ± 0.25; P < 0.05, 
Wilcoxon test). Such a difference became very sharp after restricting 
the comparison to the neurons that, in both populations, were at least 
moderately orientation tuned (i.e., 50 control and 75 experimental 
units with an OSI of >0.4). The resulting MI distribution for the con-
trol group had a typical double-peak shape (34), featuring two maxima, 
at MI ~ 2 and MI ~ 5, corresponding to the two classes of the complex 
and simple cells (Fig. 2B, blue curve). Instead, for the experimental 
group, the peak at low MI was flattened out, leaving a single, prominent 
peak at MI ~ 5 (orange curve). This resulted in a large, significant dif-
ference between the two distributions and their medians (dashed lines), 
with the fraction of complex cells being almost half in the experi-
mental (35%; orange bar) than in the control group (60%; blue bar).

The lower incidence of complex cells in the experimental group 
was confirmed when a different metric (the F1/F0 ratio; see Materials 
and Methods) was applied to quantify the modulation of neuronal 
responses at the temporal frequency of the gratings (fig. S3; see Dis-
cussion for a thorough comparison among the MI and F1/F0 indices 
and an explanation of why our main analyses have been carried out 
using the MI). We also verified that the difference in the fraction of 
complex cells found between the two groups was not driven by a few 
outlier recording sessions. To this aim, we performed a bootstrap 
analysis in which (i) we obtained 100 surrogate MI distributions for 
the populations of control and experimental units by sampling with 
replacement the available sessions for the two groups and (ii) we 
computed the fraction of complex cells found in each surrogate dis-
tribution. This allowed estimating the spread of the fraction of com-
plex cells measured in each group, as a result of the variable sampling 
of the recorded sessions. The overlap between the spreads obtained 
for the two groups was minimal (fig. S4A) and not significant (fig. 
S4B; P < 0.05), thus showing that the lower incidence of complex 
cells in the experimental group was robust against the sampling of 
V1 units performed across different recordings/animals.

Conversely, no difference was observed between the two groups 
in terms of orientation tuning (Fig. 2C), with the OSI distributions 
(blue and orange curves) and their medians (dashed lines) being 
statistically undistinguishable, as well as the fraction of sharply 
orientation-tuned units (i.e., neurons with an OSI of >0.6; blue versus 
orange bar). A similar result was found for direction tuning (fig. S5; 
see Discussion for an interpretation of this finding). Together, these 
results suggest that our experimental manipulation substantially 
impaired the development of complex cells but not the emergence 
of orientation and motion sensitivity.
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This conclusion was confirmed by comparing the quality of the RFs 
inferred through STA for the experimental and control units. To ease 
the comparison, the pixel intensity values in a STA image were z-scored 
on the basis of the null distributions of STA values obtained for each 
pixel, after randomly permuting the association between frames of the 
movie and spike times, 50 times. This allowed reporting the intensity 
values of the resulting z-scored STA images in terms of their difference 
(in units of SD ) from what expected in the case of no frame-related 
information carried by the spikes. As illustrated by the examples shown 
in Fig. 3A, we found that STA was as successful at yielding sharp, 
linear RFs (often similar to Gabor filters) for the experimental units as 
for the control ones. The sharpness of the STA images, as assessed 
through an expressly devised contrast index (CI; see Materials and 
Methods) (34), was similar for the two groups, with the CI distributions 
and their medians being statistically undistinguishable (Fig. 3B, blue 
versus orange curve/line). As expected, for both groups, the mean CI 
was significantly larger for the simple than for the complex cells (dark 
versus light bars), reflecting the better success of STA at inferring the 
linear RFs of the former, but no difference was found between the mean 
CIs of the simple cells of the two groups (dark blue versus brown bar) 
and the mean CIs of the complex cells (light blue versus yellow bar).

To further explore the extent to which the spatial structure of the 
STA-based RFs was similar for the experimental and control units, 
we measured the size of the RFs and counted how many distinct lobes 
they contained (this analysis was applied only to the units with 

well-defined linear RFs, i.e., to STA images within the top quartiles 
of the CI distributions shown in Fig. 3B, left). To count the lobes, we 
binarized each STA image by applying a threshold to the modulus of 
its intensity values. This allowed identifying the lobes as distinct con-
nected regions that crossed the binarization threshold [a more detailed 
description of this procedure is provided in Materials and Methods, 
and a graphical illustration can be found in figure 5B of our previous 
study (34)]. Since these regions became progressively smaller and 
fewer as a function of the magnitude of the binarization threshold, 
we compared the distributions of lobe counts obtained for the ex-
perimental and control units across different thresholds—from 3.5 to 
6.5 . At every tested threshold, the distributions of lobe counts for the 
two populations were statistically indistinguishable (P > 0.05, Fisher’s 
exact test; compare matching rows in Fig. 3C). The same was true for the 
distributions of RF sizes (compare matching rows in Fig. 3D), with 
the RF size of a unit being defined as the mean of the lengths of the 
major and minor axes of the ellipse that best fitted the area covered by 
the detected lobes. These results confirmed that our experimental 
manipulation did not alter the spatial tuning properties of V1 units.

Postnatal rearing in a temporal discontinuous visual 
environment reduces the ability of complex cells to represent 
stimulus orientation in a translation-invariant manner
Next, we tested the extent to which the experimental units that had 
been classified as complex cells fully retained the functional properties 

Fig. 2. Postnatal rearing in temporally discontinuous visual environments results in an impoverished population of V1 complex cells but spares the develop-
ment of orientation tuning. (A) A representative V1 complex cell of the control group (left, blue lines) is compared to a representative simple cell of the experimental 
group (right, orange lines). For each neuron, the graph shows, from top/left to bottom, (i) the linear RF structure inferred through STA, (ii) the direction tuning curve, 
(iii) the raster plot with the number of spikes (dots) fired across repeated presentations of the most effective grating stimulus, (iv) the corresponding peristimulus time histogram 
(PSTH) computed in 10-ms-wide time bins, and (v) its power spectrum with its mean (dotted line), its mean + SD (dashed line), and the 4-Hz frequency of the grating 
stimulus (vertical line) indicated. (B) Left: Distributions of the MI used to distinguish the poorly phase-modulated complex cells (MI < 3; gray-shaded area) from the strongly 
modulated simple cells (MI > 3), as obtained for the control (blue; n = 50) and experimental (orange; n = 75) V1 populations (only units with an OSI of >0.4 included). Both 
the distributions and their medians (dashed lines) were significantly different (P < 0.02, Kolmogorov-Smirnov test; ***P < 0.001, Wilcoxon test). Right: The fraction of units 
that were classified as complex cells (i.e., with an MI of <3) was significantly larger for the control than for the experimental group (***P < 0.001, Fisher’s exact test). (C) Left: 
Distributions of the orientation selectivity index (OSI), as obtained for the control (blue; n = 105) and experimental (orange; n = 158) V1 populations. No significant difference 
was found between the two distributions and their medians (P > 0.05, Kolmogorov-Smirnov test; P > 0.05, Wilcoxon test). Right: The fraction of sharply orientation-tuned 
units (i.e., units with an OSI of >0.6) did not differ between the two groups (P > 0.05, Fisher’s exact test). n.s., not significant.
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of this class of neurons. As already shown in the previous section, 
the key property of complex cells is their ability to fire more per-
sistently than simple cells in response to a continuous, spatiotem-
porally correlated visual input. This can be understood on the basis 
of intuitive considerations, i.e., the local invariance of complex cells 
to (e.g.) translations of their preferred oriented edges. In the original 
work of Hubel and Wiesel (17), this property emerged when static 
oriented bars matching the preferred orientation of a complex cell 
were shown in different RF positions and, despite these translations, 
were found to elicit strong responses in the recorded unit. More 
recent investigations of V1 have relied instead on moving stimuli, 
such as the full-field drifting gratings used in our study, which allow 
probing at once the invariance properties of all the units recorded 
with a multielectrode array. In these experiments, the translation 
invariance of complex cells manifests itself as the phase invariance of 
the response—despite the phasic alternation of light and dark oriented 
stripes, produced by the drifting of the preferred grating across its 
RF, a complex cell is able to respond to the stimulus with a more 
sustained, temporally persistent firing, as compared to a simple cell 
[compare the blue and orange rasters/peristimulus time histograms 
(PSTHs) in Fig. 2A]. More in general, these persistent, slowly changing 
responses should be expected every time a complex cell is probed 
with a spatiotemporally correlated stimulus, such as the noise movies 
used in our study to map the RFs through STA. From a theoretical 
point of view, this is consistent with the predictions of UTL models, 
such as SFA (8, 9), that are based exactly on maximizing the slowness 

(or persistence) of neuronal responses to learn invariance. Critically, 
the different persistency of the responses of complex and simple cells 
to spatiotemporally correlated stimuli is not expected to result from 
intrinsic differences in terms of membrane excitability, temporal 
integration of the synaptic inputs or firing dynamics. That is, com-
plex cells are not expected to fire more persistently than simple cells 
when probed with brief, static stimuli (e.g., a complex cell will not 
continue to fire persistently in the absence of the stimulus). It is the 
invariance of the stimulus representation afforded by complex cells 
that is at the origin of their slower responses. Hence, the more per-
sistent firing of complex cells can only emerge when V1 neurons are 
tested with spatiotemporally continuous stimuli.

To measure the persistence of neuronal responses in our recorded 
populations, we computed the time constants of the exponential 
fits to the autocorrelograms of the spike trains evoked by the noise 
movies. This analysis was restricted to those units whose firing was 
strongly modulated at the frequency of variation of the contrast in 
the noise movies (i.e., 0.1 Hz; see examples in Fig. 4A, top, and see 
Materials and Methods for details). This ensured that our analysis 
measured the stimulus-dependent amount of slowness in the neuronal 
responses, as determined by the interplay between the temporal 
continuity of the visual stimulus and the transformation invariance 
afforded by the recorded neurons. As expected, the average time 
constant was larger for the control than for the experimental units 
(Fig. 4B). This difference, however, was not merely driven by the 
larger fraction of complex cells in the control group (Fig. 2B). While 

Fig. 3. Unaltered spatial tuning of V1 neurons following the controlled rearing in temporally discontinuous visual environments. (A) Examples of linear RFs 
inferred through STA for the control (blue frame) and experimental group (orange frame). In every STA image, each pixel intensity value was independently z-scored on the 
basis of the null distribution of STA values obtained through a permutation test (see Materials and Methods). (B) Left: Distributions of the CI used to measure the sharpness 
of the STA images, as obtained for the control (blue; n = 105) and experimental (orange; n = 158) V1 populations. No significant difference was found between the 
two distributions and their medians (P > 0.05, Kolmogorov-Smirnov test; P > 0.05, Wilcoxon test). Right: Mean values (± SEM) of the CIs computed separately for the simple 
(dark bars; n = 20, control; n = 49, experimental) and complex (light bars; n = 30, control; n = 26, experimental) cells of the two groups (only units with an OSI of >0.4 included). 
Within each group, the mean CI was significantly larger for the simple than for the complex cells (**P < 0.01, two-tailed unpaired t test). (C) The color maps showing the 
distributions of lobe counts (abscissa) for the units with well-defined linear RFs [i.e., within the top quartiles of the CI distributions shown in (B)] in the control (blue; n = 27) 
and experimental (orange; n = 37) populations are plotted as a function of the binarization threshold (ordinate) used by the lobe-counting algorithm (see Materials and 
Methods). For every choice of the threshold, the control and experimental distributions were not significantly different (P > 0.05, Fisher’s exact test). (D) Same analysis as 
in (C) but applied to the distributions of RF sizes obtained for the control (blue; n = 27) and experimental (orange; n = 37) populations, as a function of the binarization 
threshold. Again, no significant difference was found between the two distributions at any threshold level (P > 0.05; Fisher’s exact test).



Matteucci and Zoccolan, Sci. Adv. 2020; 6 : eaba3742     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 15

the average time constants did not significantly differ between the 
simple cells of the two groups (Fig. 4C, dark blue versus brown bar), 
the responses of complex cells unfolded over a shorter time scale 
for the experimental than for the control units (yellow versus light 
blue bar).

To understand the functional implication of these abnormally 
fast-changing stimulus representations, we assessed the ability of the 
four distinct populations of simple and complex cells of the two groups 
to support stable decoding of stimulus orientation over time. To this 
aim, we randomly sampled 300 neurons from each population (after 
having first matched the populations in terms of OSI and orientation 
preference distributions; see Materials and Methods) so as to obtain 
four equally sized and similarly tuned pseudo-populations whose 
units homogenously covered the orientation axis. We then trained 
binary logistic classifiers to discriminate between 0°- and 90°-oriented 

gratings (drifting at 4 Hz) based on the activity of each pseudo- 
population. Each classifier was trained using neuronal responses 
(spike counts) in a 33-ms-wide time bin that was randomly chosen 
within the presentation epoch of the gratings. We then tested the 
ability of each classifier to generalize the discrimination to test bins at 
increasingly larger time lags (TLs) from the training bin (see Fig. 5A and 
Materials and Methods for details). As expected, given the strong 
phase dependence of their responses (see cartoon in Fig. 5A, top), 
the simple cells from both groups yielded generalization curves that 
were strongly modulated over time and virtually identical (Fig. 5B, 
dark blue and brown curves). The performance was high (≥80% 
correct) at test bins where the phase of the grating was close to that of 
the training bin (i.e., at TLs that were multiple of the 250-ms grating 
period), but it dropped to less than 30% correct (i.e., well below 
chance; dashed line) at test bins where the grating was in opposition 
of phase with respect to the training bin (e.g., at a TL of ~125 ms). 
By comparison, the complex cells of the control group, by virtue 
of their weaker phase dependence (see cartoon in Fig. 5A, bottom), 
afforded a decoding of grating orientation that was substantially 
more phase tolerant, with the performance curve never dropping 
below chance level at any TL (Fig. 5B, light blue curve). However, 
for the complex cells of the experimental group, the performance 
curve (in yellow) was not as stable—at most TLs, it was 5 to 10 per-
centage points smaller than the performance yielded by the control 
complex (CC) cells, dropping significantly below chance at test bins 
where the grating was in opposition of phase with respect to the 
training bin. That is, the ability of the experimental complex (EC) 
cells to support phase-tolerant orientation decoding was somewhat 
in between that of properly developed complex cells and that of 
simple cells. This shows that, even if some complex cells survived 
our experimental manipulation (i.e., the rearing in temporally 
broken visual environments), their functional properties were 
nevertheless impaired by the controlled rearing, as demonstrated 
by their reduced ability to support phase-invariant decoding of 
stimulus orientation.

DISCUSSION
The findings reported in our study show that breaking the temporal 
continuity of early visual experience severely interferes with the typical 
development of complex cells in V1, leading to a sizable reduction 
of their number (Fig. 2B) and an impairment of their functional 
properties (Figs. 4C and 5B). This implies that experience with the 
temporal contiguity of natural image sequences over time scales 
longer than 66.7 ms (i.e., the frame duration used during our con-
trolled rearing) plays a critical role in postnatal development of the 
earliest form of invariance found along the ventral stream. Such an 
instructive role of temporal continuity of visual stimuli, so far, has 
been empirically demonstrated only in adult monkeys, at the very 
last stage of this pathway, the inferotemporal cortex (37). At the same 
time, our experiments show that degrading the amount of the tem-
poral continuity experienced during development does not affect the 
emergence of orientation tuning (Fig. 2C), with simple cells exhib-
iting unaltered spatial (Fig. 3), temporal (Fig. 4C), and functional 
(Fig. 5B) properties. Interpreting these findings requires a careful 
discussion of our procedure to classify simple and complex cells, as 
well as of the strengths and limits of our protocol for controlled rear-
ing, along with a thorough review of the previous studies in which 
early visual experience was altered during postnatal development.

Fig. 4. Postnatal rearing in temporally discontinuous visual environments leads 
to the development of complex cells with abnormally fast response dynamics. 
(A) Top: PSTHs showing the average responses of the two example neurons of 
Fig. 2A to the contrast-modulated noise movies (see Materials and Methods). For 
both neurons, the firing rate was strongly modulated at the frequency of variation 
of the contrast of the movies (i.e., 0.1 Hz). Bottom: Distributions of interspike intervals 
(ISIs) of the spike trains evoked by the noise movies for the two example neurons. 
The resulting autocorrelograms were fitted with exponential decaying functions 
(dashed lines) to measure the slowness (i.e., the time constant  of the exponential 
fit) of the responses. In this example, the complex cell (blue curve) displays slower 
dynamics (i.e., larger ) than the simple cell (orange curve). The two units also differ 
in the number of counts at low ISIs, which is much larger for the simple cell, as ex-
pected for a unit firing tightly packed trains of spikes (see Fig. 2A). (B) Mean values 
(± SEM) of the time constants  computed for the control (blue; n = 92) and experi-
mental (orange; n = 143) populations (***P < 0.001, two-tailed unpaired t test). 
(C) Mean values (± SEM) of the time constants  computed separately for the simple 
(dark bars; n = 43, control; n = 89, experimental) and complex (light bars; n = 49, con-
trol; n = 54, experimental) cells of the two groups. While the simple cells had equally 
fast dynamics, the complex cells were significantly slower in the control than in the 
experimental group (**P < 0.01, two-tailed unpaired t test).
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Distinguishing simple from complex cells
The original definition of simple cells provided by Hubel and Wiesel 
(17) was based on the subjective assessment of distinct, elongated 
ON and OFF flanking regions in the RF of this class of neurons, 
which endowed them with the property of being both orientation 
selective and very sensitive to the position of their preferred oriented 
edges. By contrast, no clearly defined ON and OFF regions could be 
found for complex cells, which retained the ability to selectively 
respond to specific orientations, but in a locally position-invariant 
way—a complex cell would still respond vigorously despite displace-
ments of the preferred oriented edge within its RF. Later studies 
proposed more objective measures to distinguish simple from com-
plex cells (38, 39) by relying instead on the level of modulation of 
the neuronal response during the presentation of a drifting grating. 
This approach has gained increased popularity with the advent of 
multielectrode arrays. Recording many tens of neurons in parallel 
does not allow probing each individual unit with cell-specific stimuli 
[such as the oriented bars originally used by Hubel and Wiesel (17)]—
full-field stimuli (such as drifting gratins) are necessary to simulta-
neously test the recorded population (34, 35, 40). However, assessing 
the level of modulation of neuronal firing to distinguish simple from 
complex cells raises two important issues. The first is methodological 
and concerns the definition of the most suitable metric to measure 
response modulation (36). A second, deeper issue concerns the validity 
itself of the classification of V1 neurons into distinct functional cell 
types, with some authors proposing that a continuum of cell prop-
erties, rather than a segregation into discrete cell classes, better de-
scribes the organization of visual cortex (41).

With regard to the first issue, the traditional metric that has been 
proposed, and is still often used, to characterize response modula-
tion is the so-called F1/F0 ratio, i.e., the ratio between the amplitude 
of the Fourier spectrum at the temporal frequency of the drifting 
grating and the mean spike rate of the neuron (see Materials and 
Methods for details). This metric, however, has been criticized in a 
recent study (36), which quantitatively demonstrated the already- 
known drawbacks of the F1/F0 ratio in terms of consistency and 
reliability. This ratio, in fact, is very sensitive to the relative magnitude 
of the evoked and background firing rate of a neuron. Specifically, it 
tends to yield low values not only in the absence of modulation but 
also when the amplitude of the modulation is weak, relative to the 
background rate. In this scenario, the F1/F0 ratio tends to under-
estimate the level of modulation, thus misclassifying as complex cells 
units that exhibit clearly modulated activity in their PSTHs. In ad-
dition, the F1/F0 ratio is not a standardized metric, and the threshold 
traditionally used to distinguish complex from simple cells (i.e., 
F1/F0 = 1) is arbitrary and not based on statistical considerations. 
This led Wypych et al. (36) to define a new modulation metric (which 
they named standardized F1 or zF1), in which the spectral intensity at 
the temporal frequency of the drifting grating (i.e., F1) is referred to 
the mean spectral intensity and divided by its SD. As shown in (36), 
this metric is more reliable in capturing the level of modulation of 
neuronal firing that is apparent from the PSTHs. In addition, being a 
standardized metric, a criterion to distinguish highly modulated (i.e., 
simple) from poorly modulated (i.e., complex) cells can be defined 
on statistical grounds, i.e., by measuring how distant F1 is from the 
mean spectral intensity in units of SD.

Fig. 5. Postnatal rearing in temporally discontinuous visual environments reduces the ability of complex cells to support phase-tolerant discrimination of 
grating orientation. (A) The cartoon illustrates the expected outcome of the decoding analysis to test the ability of simple and complex cells to support phase-tolerant 
discrimination of grating orientation. In the case of simple cells (top), a linear classifier built at time t0 (middle; light gray shading) to successfully discriminate a vertical 
from a horizontal drifting grating (left; the filled and empty dots are well separated, within the neuronal representational space, by the linear decision boundary) will 
generalize poorly when tested at a later time t1 (middle; dark gray shading), with the accuracy dropping even below chance (right; the filled and empty dots swap sides 
of the linear decision boundary) due to the strong phase dependency of the responses ri (middle; some neurons firing at t0 will stop firing at t1, while some other units 
that are silent at t0 will respond at t1). By contrast, for a population of complex cells (bottom), given the greater stability of the responses ri (middle), the decision boundary 
resulting from the training at t0 (left) will generalize better at t1 (right; the filled and empty dots are still mostly on the original side of the decision boundary). (B) Decoding 
accuracy yielded by the four populations of control simple (dark blue), control complex (light blue), experimental simple (brown), and experimental complex (orange) 
cells in the vertical (i.e., 90°) versus horizontal (i.e., 0°) grating discrimination task in 33-ms-wide test bins located at increasingly larger time lags from the training bin (i.e., 
bin with a lag of 0). The solid curves are the averages of many resampling loops of the neuronal population vectors and the training bins (see Materials and Methods). The 
shaded regions are the bootstrap-estimated 95% confidence intervals of the solid lines (see Materials and Methods).
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In our study, we also used a standardized F1 metric to quantify 
the level of modulation of neuronal responses to drifting gratings 
(simply referred to as the MI; see Materials and Methods). This 
choice was motivated by the considerations explained in the previous 
paragraph and by having verified, in an earlier study, the effectiveness 
and robustness of this index at quantifying the level of response 
modulation not only in rat V1 and higher-level visual cortical regions 
but also across the layers of deep, artificial neural networks for image 
classification, such as HMAX and VGG16 (34). Notably, following 
our adoption of this metric, the key advantages of the standardized 
F1 index were recently acknowledged by the Allen Institute, which 
used it for its large-scale surveys of mouse visual cortex (42, 43).

In our current study, for completeness, we have also assessed the 
modulation of neuronal firing using two different instances of the 
F1/F0 ratio—the most commonly applied definition (38, 39) and a 
modified version that has the advantage of being bounded between 
0 and 2 (see Materials and Methods) (44). As expected, both F1/F0 
ratios tended to inflate the proportion of units falling below the 
F1/F0 = 1 threshold that is typically used to classify a cell as complex 
(fig. S3). Despite this reduced sensitivity to capture variations in the 
level of modulation of the firing rate, the experimental units still 
displayed a significantly larger response modulation than the control 
units (orange versus blue curves; P < 0.05, Wilcoxon test). As a result, 
a significantly lower proportion of experimental cells was classified 
as complex (orange versus blue bars; P < 0.05, Fisher’s exact test), 
thus confirming the impact of rearing newborn rats in visually dis-
continuous environments on the development of complex cells.

As mentioned above, the debate about the best choice of the modula-
tion metric relates to the deeper issue of whether it is appropriate in the 
first place to segregate visual cortical neurons into discrete functional 
classes. Critically, the decoding analysis presented in our study (see 
Fig. 5) addresses both questions. From a computational perspective, 
the key functional property distinguishing simple from complex cells 
is the larger translation invariance that the latter are supposed to 
afford in the representation of stimulus orientation (16). Modulation 
metrics measure this ability only indirectly and with a variable degree 
of reliability. On the other hand, reading-out stimulus orientation 
using a linear classifier directly quantifies the amount of translation- 
invariant information that can be easily (i.e., linearly) extracted from 
the underlying neuronal representation (16). Hence, our decoding 
analysis (Fig. 5) validates at once the existence of two functionally 
distinct subpopulations of visual cortical neurons and the metric 
(i.e., the MI) we used to distinguish them. The radically different 
degree of phase invariance in the representation of stimulus orien-
tation afforded by the two populations of units classified as simple 
and complex in the control group (dark versus light blue curves) 
demonstrates that (i) these populations are indeed functionally dis-
tinct, with respect to their ability to code invariantly stimulus orien-
tation; (ii) the MI provides a measure of response modulation that 
is highly consistent with the degree of translation invariance of the 
recorded units; and (iii) the 3  threshold used to distinguish simple 
from complex cells effectively partitions the range of measured MI 
values into distinct functional classes.

Breaking temporal continuity of early visual experience: 
A comparison with strobe rearing studies
The development of complex cells in the animals reared with the 
temporally discontinuous movies (i.e., the experimental group) was 
strongly impaired, with the experimental animals showing a median 

MI that was almost twice as large as that of the control rats and a 
fraction of complex cells that was almost half (Fig. 2B). However, it 
was not fully abolished—a small amount of complex cells survived 
the experimental manipulation, although with a diminished capa-
bility of supporting translation-invariant decoding of stimulus 
orientation (Fig. 5B). At first glance, this may seem at odd with the 
hypothesis that temporal continuity is strictly necessary for the de-
velopment of transformation tolerance in V1. However, it should be 
considered that, as explained in Results, the disruption of temporal 
continuity achieved with our controlled rearing was not complete. 
Even if the frame-scrambled rearing videos lacked temporal structure 
at time scales longer than 66.7 ms (Fig. 1, B and C), the experimental 
rats could still experience some residual amount of temporal conti-
nuity in the visual experience because of head and/or eye movements. 
Specifically, the visual features that the animals may have experienced 
as continuously transforming (e.g., translating) include (i) structural 
parts of the physical environment (e.g., the edges of the monitors; 
see fig. S1), (ii) parts of their own bodies, and (iii) the content of 
individual movie frames, although over very short temporal spans 
(≤66.7 ms). As already explained, this residual temporal continuity 
was not accidental but intentional. It was dictated by the need of 
allowing the rats full access to the spatial content of the individual 
image frames, which prevented using frame rates higher than rat 
flicker fusion frequency (~30 to 40 Hz) (32). In addition, although 
experience with the motion of physical features and/or body parts 
may have been strongly limited by the use of head fixation, we preferred 
to avoid this procedure. In fact, head fixation would have prevented 
a natural and active exploration of the visual environment, which, 
in rodents, has been shown to strongly affect the plasticity and de-
velopment of visual cortex (33)—a phenomenon that is consistent 
with the tight relationship between the encoding of visual and 
locomotory/positional signals recently reported in rodent V1 (45). The 
concern that head fixation could limit the impact of controlled visual 
rearing on the developing visual cortex was reinforced by the failure 
of a previous study (performed on head-fixed ferrets) to causally 
demonstrate that experience with oriented visual patterns is necessary 
for the development of orientation tuning in V1 (24). On the basis 
of these considerations, we reasoned that the rearing would have 
been more effective if the newborn rats were left unrestrained inside 
the immersive visually environments, even at the cost of allowing 
some residual temporal continuity in their visual experience. The fact 
that, despite this residual continuity, the development of complex 
cells was strongly impaired in the experimental rats testifies to the 
paramount importance of experiencing a fully continuous visual 
environment for the development of translation tolerance. At the 
same time, the residual temporal continuity experienced during rear-
ing can easily explain why the development of complex cells was not 
fully abolished.

The incomplete disruption or temporal continuity during post-
natal rearing can also explain why the development of direction 
selectivity was unaffected by our experimental manipulation (fig. S5). 
This finding was somewhat unexpected, given that, in agreement 
with the temporal extension of the sparse coding principle (46), 
postnatal rearing under stroboscopic illumination has been found 
to produce a substantial loss of direction selectivity in V1 (26–30). 
This discrepancy with our result can be understood by considering 
that strobe light flashes in these earlier studies had a much shorter 
duration (typically, ~10 s) than the frame duration in our movies. 
Thus, in strobe rearing studies, the animals were fully deprived of 
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experience with smooth motion signals, while our controlled rear-
ing allowed the content of individual image frames to be experienced 
as smoothly moving (e.g., translating) over time scales of ≤66.7 ms. 
On the other hand, our rearing ensured that the temporal correla-
tion of the visual stream delivered through the displays was close to 
zero over time scales of >66.7 ms (see Fig. 1, B and C). By contrast, 
strobe rearing, especially at high rates (8 Hz), allowed for such a 
high-frequency sampling of the visual environment to resemble a 
“normal patterned input” (29), leading to “human subjective expe-
rience […] of a series of jerky images, reminiscent of the early motion 
picture” (26). This implies that, despite the disruption of smooth 
motion signals at the microsecond time scale, the animals subjected 
to strobe rearing likely experienced a strongly correlated visual input 
at time scales as large as several hundreds of milliseconds or a few 
seconds (i.e., of the order of what experienced by our control rats; 
see blue curves in Fig. 1, B and C). This likely explains why several 
studies based on strobe rearing at 4 to 8 Hz mention the existence of 
complex cells in the strobe-reared animals without explicitly report-
ing any loss of these neurons (26, 27, 30), with one study, in particular, 
reporting no qualitative differences in the sampling of simple and 
complex cells between the strobe-reared and control subjects (28).

In summary, when our results are considered together with those 
of earlier strobe rearing studies, an intriguing double dissociation 
emerges with regard to the instructive role of temporal continuity 
during cortical development. The temporal learning mechanisms 
leading to the development of invariance appear to be distinct and 
independent from those supporting the development of direction 
tuning, with the former operating over time scales that are several 
orders of magnitude longer than the latter. As a result, successful 
disruption of temporal continuity at the microsecond time scale but 
preservation of temporal correlations at time scales of the order of 
tens/hundreds of milliseconds (as in most strobe rearing studies) 
interferes with the development of direction tuning but spares the 
development of complex cells. Vice versa, preserving time contiguity 
at the microsecond/millisecond level but destroying correlations at 
longer time scales (as in our study) impairs the development of com-
plex cells without preventing the emergence of direction selectivity.

Another finding of our study that is worth discussing in the con-
text of the limitations of our rearing procedure and previous strobe 
rearing studies is the typical development of orientation tuning 
(Fig. 2C) and spatial RF properties (Fig. 3) observed in the experi-
mental rats. Given that the access to the image content of the indi-
vidual movie frames was the same as for the control animals, this 
result strongly suggests that development of shape tuning depends 
on the exposure to the spatial statistics of natural images, rather than 
on the temporal continuity of the visual stream. Thus, our results 
would add to the indirect evidence in favor of the role played by 
USL during development (23, 6). However, given the residual amount 
of temporal continuity allowed by our rearing procedure, we cannot 
exclude that, as for the case of direction tuning, development of 
orientation tuning too may rely on UTL mechanisms working at 
smaller temporal scales than those required to support the develop-
ment of invariance. The fact that strobe rearing at 4 to 8 Hz impairs 
the development of direction tuning but not of orientation selectivity 
makes this scenario unlikely (26–28, 30). Nevertheless, this does not 
fully exclude the possibility that an intermediate time scale of tem-
poral continuity exists that is necessary for the development of spatial 
selectivity but is neither sufficiently long to support the development 
of invariance nor sufficiently short to sustain the development of 

direction tuning. To settle this question, future studies will need to 
rear newborn animals with purely static images, possibly varying 
image duration from a few tens of milliseconds to a few tens of 
microseconds in different experimental groups. This will require 
combing head fixation with eye tracking in closed-loop experiments, 
where initiation of a saccade should abort stimulus presentation so 
as to fully deprive the subjects of the experience of continuous trans-
formations of the visual input at any time scale.

Nature versus nurture
While our findings, as those of previous strobe rearing studies, point 
to a pivotal, instructive role of early visual experience in determining 
the tuning properties of visual cortical neurons, the residual amount 
of complex cells in our experimental animals, as well as the unim-
paired tuning for orientation and direction, could also be explained 
as the result of genetically encoded, experience-independent devel-
opmental programs. Support for this “hardwiring” hypothesis comes 
from studies in which orientation and direction selectivity in various 
species was found to be already highly developed at the onset of 
visual experience, i.e., right after EO (19). However, this does not 
seem to apply to rat V1 whose functional properties have been 
reported to remain immature after postnatal rearing in complete 
darkness (31). This may point to differences not only among species 
but also among experimental manipulations, since, in many studies, 
the animals were kept in a normal dark-light cycle before EO. Dif-
ferently from dark rearing (DR), this procedure allows for a very 
blurred and dimmed stimulation of the retina through the closed 
eyelids, which could drive the development of cortical tuning in an 
experience-dependent way, either by directly evoking neuronal 
responses or by fostering the generation of waves of spontaneous 
activity (see next paragraph) (47). In addition, even a few hours of 
visual experience after EO may be enough to drive fast development 
of cortical tuning properties, as demonstrated in juvenile ferrets (22). 
To date, the most convincing demonstration of experience- and 
activity-independent formation of orientation and direction tuning 
comes from a mouse study in which DR was paired with genetic silencing 
of spontaneous cortical activity during development (48) (unfortunately, 
the study did not test whether complex cells developed normally).

The possible role played by spontaneously generated activity in 
instructing the development of cortical tuning is yet another expla-
nation for the residual fraction of complex cells and the unaltered 
orientation and direction selectivity found in our study. Key to this 
concept, often referred to as “innate learning” (49), is the idea that, 
during development, neural circuits, by virtue of their genetically 
determined structure, could self-generate activity patterns that are 
able to act as “training examples” to sculpt and refine their own wiring 
or the wiring of other downstream circuits. This activity-dependent 
structuring may be driven by the same unsupervised plasticity rules 
(such as USL and UTL) that would later act on stimulus-evoked 
activity after the onset of sensory experience. An example of innate 
learning is the role played by the spatiotemporally correlated patterns 
of activity evoked by retinal waves in driving the development of 
topographic visual maps (50). From a theoretical standpoint, com-
putational studies have shown that these spontaneous activity pat-
terns could also support the development of simple and complex 
cells via, respectively, sparse coding (49, 51) and temporal learning 
mechanisms (52). This may explain the finding of a recent study, 
where the presence of complex cells in mouse V1 was reported at 
EO already (40). However, the animals included in that study were 
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not subjected to DR and were also allowed normal visual experience 
for several hours before the neuronal recordings. This makes it dif-
ficult to infer what developmental mechanism was at the origin of 
the complex cells reported by (40)—whether experience-dependent 
or independent and, in the latter case, whether activity-driven (innate 
learning) or purely genetically encoded.

Conclusions and implications
In summary, it is difficult to fully reconcile the conclusions of the 
studies reviewed in the previous two sections, especially given the 
variability found across species and the variety of experimental 
approaches that have been devised to manipulate visual experience 
and/or retinal/cortical activity during early postnatal development. 
This makes it hard to know whether our altered rearing acted on 
visual cortical circuits in a “blank,” immature state or rather reshaped 
the wiring of circuits that had already been structured by innate 
developmental programs, possibly combined with the effect of 
internally generated activity. Nevertheless, what our data causally 
demonstrate is that a form of plasticity based on UTL must be at 
work in the developing visual cortex to build up (or maintain) in-
variance in a way that is highly susceptible to the degree of temporal 
correlation of visual experience.

From a theoretical standpoint, this result causally validates the 
family of UTL models (7–15) at the neural level, albeit strongly sug-
gesting that their scope is limited to the development of invariance 
and not of shape selectivity. More in general, since slowness has been 
related to predictability (53–55), our results are also consistent with 
normative approaches to sensory processing that are based on tem-
poral prediction (56). On the other hand, our findings, by showing 
that exposure to the spatial structure of natural images alone is not 
enough to enable proper development of complex cells, reject com-
putational accounts of invariance based exclusively on USL (3, 4) 
while leaving open the possibility that the latter may govern the 
development of shape tuning (1, 2, 5, 6). As a result, our study tightly 
constrains unsupervised models of visual cortical development, sup-
porting theoretical frameworks where the objectives of sparseness 
and slowness maximization coexist to yield, respectively, shape 
selectivity and transformation tolerance (13, 14, 57).

MATERIALS AND METHODS
All animal procedures were in agreement with international and 
institutional standards for the care and use of animals in research 
and were approved by the Institutional Animal Care and Use Committee 
of the International School for Advanced Studies (SISSA) and by 
the Italian Ministry of Health (project DGSAF 22791-A, submitted 
on 7 September 2015 and approved on 10 December 2015, approval 
1254/2015-PR).

Animal subjects and controlled rearing protocol
Data were obtained from 18 Long-Evans male rats that were born 
and reared in our facility for visually controlled rearing. The facility 
consists of a small vestibule, where the investigators can wear the 
infrared goggles that are necessary to operate in total darkness, and 
a larger, lightproof room containing a lightproof housing cabinet 
(Tecniplast) and four custom cabinets (Tecniplast) for exposure of 
the rats to controlled visual environments.

Pregnant mothers (Charles River Laboratories) where brought 
into the housing cabinet about 1 week before delivery. Pups were 

born inside the cabinet and spent the first 2 weeks of their life in 
total darkness with their mothers. Starting from P14 (i.e., at EO) until 
P60 (i.e., well beyond the end of the critical period), each rat, while 
still housed in full darkness (i.e., inside the housing cabinet) with his 
siblings, was also subjected to daily 4-hour-long exposures inside an 
immersive visual environment (referred to as the virtual cage), con-
sisting of a transparent basin (480 mm by 365 mm by 210 mm; 
Tecniplast 1500 U), fully surrounded by four computer-controlled 
LCD monitors (one per wall; 20″ HP P202va; see fig. S1), and placed 
on the shelf of one of the custom cabinets (each cabinet had four 
shelves, for a total of 16 rats that could be simultaneously placed in 
the visually controlled environments). These controlled rearing 
environments, which are reminiscent of those used to study the 
development of object vision in chicks (25), were custom-designed 
in collaboration with Videosystem, which took care of building and 
installing them inside the custom cabinets.

Different visual stimuli were played on the monitors, depending 
on whether an animal was assigned to the experimental or the con-
trol group. Rats in the control group (n = 8) were exposed to natural 
movies, including both indoor and outdoor scenes, camera self- 
motion, and moving objects. Overall, the rearing playlist included 
16 videos of different duration, lasting from a few minutes to half an 
hour. The playlist was played in random order and looped for the 
whole duration of the exposure. Rats from the experimental group 
(n = 10) were exposed to a time-shuffled version of the same movies, 
where the order of the frames within each video was randomly per-
muted so as to destroy the temporal continuity of the movie (see 
Fig. 1, B and C) while leaving unaltered the natural spatial statistics 
of the individual image frames. All movies were played at 15 Hz, 
which is approximately half of the critical flicker fusion frequency 
(~30 to 40 Hz) that has been measured for the rat (32), to make sure 
that the animals could experience the image content of the individual 
frames of the movies. Animal care, handling, and transfer operations 
were always executed in absolute darkness using night vision goggles 
(Armasight NXY7) in such a way to prevent any unwanted exposure 
of the animals to visual inputs different from those chosen for 
the rearing.

Quantification of the temporal correlations  
in the rearing videos
To assess the level of temporal structure in the videos that were 
administered to the control and experimental rats during the con-
trolled rearing inside the virtual cages, we computed the average 
pixel-level temporal autocorrelation function for each movie. This 
function was then fitted with an exponential decay model whose time 
constant provided a measure of the time scale of temporal continuity 
in the movie.

The first step to compute the temporal autocorrelation function 
was to chunk each frame in a movie into blocks of 6 × 6 pixels and 
then average the pixel intensity values inside each block so as to 
lower the resolution of the movie frames. This downsampling was 
necessary to ease the computational load of the analysis. Each movie 
frame was then unrolled into a vector, and the correlation matrix of 
the ordered ensemble of frame vectors was computed. Last, all the 
elements of the correlation matrix that were located along the kth 
diagonal (where k denotes the distance from the main diagonal) were 
averaged to obtain the value of the mean temporal autocorrelation 
function at lag k (with k ranging from 1 to the maximal separation 
between two frames in a movie).



Matteucci and Zoccolan, Sci. Adv. 2020; 6 : eaba3742     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 15

The following exponential model was used to fit the mean tem-
poral autocorrelation function obtained for each movie

  f (t ) =  Ae   − t _     + C  

where ∆t is the TL (obtained by multiplying the frame lag k by 
the frame duration of 66.7 ms) and  is the time constant of the ex-
ponential decay whose value was taken as a measure of the amount 
of temporal structure in a movie. A and C are free parameters. Only 
the first 4.95 s of the mean temporal autocorrelation functions were 
taken into account for the fitting procedure (see Fig. 1, B and C).

Surgery and recordings
Acute extracellular recordings were performed between P60 and P90 
(last recording). During this 30-day period, the animals waiting to 
undergo the recording procedure were maintained on a reduced 
visual exposure regime (i.e., 2-hour-long visual exposure sessions 
every second day; see previous section).

The surgery and recording procedure was the same as described in 
(34). Briefly, the day of the experiment, the rat was taken from the 
rearing facility and immediately (within 5 to 10 min) anesthetized 
with an intraperitoneal injection of a solution of fentanyl (0.3 mg/kg; 
Fentanest, Pfizer) and medetomidin (0.3 mg/kg; Domitor, Orion 
Pharma). A constant level of anesthesia was then maintained through 
continuous intraperitoneal infusion of the same aesthetic solution 
used for induction, but at a lower concentration [fentanyl (0.1 mg/kg 
per hour) and medetomidine (0.1 g/kg per hour)], by means of a 
syringe pump (NE-1000, New Era Pump Systems). After induction, 
the rat was secured to a stereotaxic apparatus (SR-5R, NARISHIGE) in 
flat-skull orientation (i.e., with the surface of the skull parallel to the 
base of the stereotax), and following a scalp incision, a craniotomy 
was performed over the target area in the left hemisphere (typically, 
a 2 mm by 2 mm window), and the dura was removed to allow the 
insertion of the electrode array. The coordinates of penetration used 
to target V1 were ∼6.5 mm posterior from bregma and ∼4.5 mm left 
to the sagittal suture (i.e., anteroposterior, 6.5; mediolateral, 4.5). 
Once the surgical procedure was completed, and before probe in-
sertion, the stereotax was placed on a rotating platform, and the rat’s 
left eye was covered with black, opaque tape, while the right eye 
(placed at 30-cm distance from the monitor) was immobilized using 
a metal eye-ring anchored to the stereotax. The platform was then 
rotated in such a way to bring the binocular visual field of the right 
eye to cover the left side of the display.

Extracellular recordings were performed using either single- (or 
double-) shank 32- (or 64-) channel silicon probes (NeuroNexus 
Technologies) with a site recording area of 775 m2 and an intersite 
spacing of 25 m. After grounding (by wiring the probe to the animal’s 
head skin), the electrode was manually lowered into the cortical tissue 
using an oil hydraulic micromanipulator (typical insertion speed, 
5 m/s; MO-10, NARISHIGE), up to the chosen insertion depth 
(800 o 1000 m from the cortical surface), either perpendicularly or 
with a variable tilt, between 10° and 30°, relative to the vertical to the 
surface of the skull. Extracellular signals were acquired using a 
System 3 Workstation (Tucker Davis Technologies) with a sampling 
rate of 25 kHz.

Since, in rodents, the largest fraction of complex cells is found in 
layer 5 of V1 (35), our recordings aimed at sampling more densely 
that layer. This was verified a posteriori (fig. S2) by estimating the 
cortical depth and laminar location of the recorded units, based on 

the patterns of visually evoked potentials (VEPs) recorded across 
the silicon probes used in our recording sessions. More specifically, 
we used a template-matching algorithm for laminar identification 
of cortical recording sites that we recently developed and validated 
in an appositely dedicated methodological study (58). Briefly, the 
method finds the optimal match between the pattern of VEPs re-
corded in a given experiment across a silicon probe and a template 
VEP profile, spanning the whole cortical thickness, that had been 
computed by merging an independent pool of 18 recording sessions in 
which the ground-true depth and laminar location of the recording 
sites had been recovered through histology. The method achieves a 
cross-validated accuracy of 79 m in recovering the cortical depth 
of the recording sites and a 72% accuracy in returning their laminar 
position, with the latter increasing to 83% for a coarser grouping 
of the layers into supagranular (L1 to L3), granular (L4), and infra-
granular (L5 and L6).

Visual stimuli
During a recording session, each animal was presented with (i) 
20 repetitions (trials) of 1.5-s-long drifting gratings, made of all possible 
combinations of two spatial frequencies (0.02 and 0.04 cycles/degree), 
two temporal frequencies (2 and 4 Hz), and 12 directions (from 0° 
to 330°, in 30° increments); and (ii) 20 different 60-s-long spatially 
and temporally correlated, contrast modulated, noise movies (34, 35). 
All stimuli were randomly interleaved, with a 1-s-long interstimulus 
interval, during which the display was set to a uniform, middle- 
gray luminance level. To generate the movies, random white noise 
movies were spatially correlated by convolving them with a Gaussian 
kernel having full width at half maximum corresponding to a spatial 
frequency of 0.04 cycles/degree. Temporal correlation was achieved 
by convolving the movies with a causal exponential kernel with 
a 33-ms decay time constant. To prevent adaptation, each movie 
was also contrast modulated using a rectified sine wave with a 10-s 
period from full contrast to full contrast (35).

Stimuli were generated and controlled in MATLAB (MathWorks) 
using the Psychophysics Toolbox package and displayed with gamma 
correction on a 47-inch LCD monitor (SHARP PNE471R) with 
1920 × 1080–pixel resolution, a maximum brightness of 220 cd/m2, 
and spanning a visual angle of 110° azimuth and 60° elevation. 
Grating stimuli were presented at 60-Hz refresh rate, whereas noise 
movies were played at 30 Hz.

Single-unit isolation
Single units were isolated offline using the spike sorting package 
KlustaKwik-Phy (59). Automated spike detection, feature extraction, 
and expectation maximization clustering were followed by manual 
refinement of the sorting using a customized version of the Phy 
interface. Specifically, we took into consideration many features 
of the candidate clusters: (i) the distance between their centroids 
and their compactness in the space of the principal components 
of the waveforms (a key measure of goodness of spike isolation); 
(ii) the shape of the auto- and cross-correlograms (important to 
decide whether to merge two clusters or not); (iii) the variation, 
over time, of the principal component coefficients of the waveform 
(important to detect and take into account possible electrode drifts); and 
(iv) the shape of the average waveform (to exclude, as artifacts, clearly 
nonphysiological signals). Clusters suspected to contain a mixture of 
one or more single units were separated using the “reclustering” feature 
of the graphical user interface (GUI). After the manual refinement step, 



Matteucci and Zoccolan, Sci. Adv. 2020; 6 : eaba3742     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 15

we included in our analyses only units that were (i) well-isolated, 
i.e., with less than 0.5% of “rogue” spikes within 2 ms in their auto-
correlogram and (ii) grating-responsive, i.e., with the response to 
the most effective grating condition being larger than 2 spikes/s 
(baseline-subtracted) and being larger than six z-scored points 
relative to baseline activity. The average baseline (spontaneous) 
firing rate of each well-isolated unit was computed by averaging 
its spiking activity over every interstimulus interval. These criteria 
led to the selection of 105 units for the control group and 158 units 
for experimental group.

Quantification of selectivity
The response of a neuron to a given drifting grating was computed 
by counting the number of spikes during the whole duration of the 
stimulus, averaging across trials and then subtracting the sponta-
neous firing rate (see previous section). To quantify the tuning of a 
neuron for the orientation and direction of drifting gratings, we 
computed two standard metrics, the OSI and DSI, which are defined 
as OSI = (Rpref − Rortho)/(Rpref) and DSI = (Rpref − Ropposite)/(Rpref), 
where Rpref is the response of the neuron to the preferred direction, 
Rortho is the response to the orthogonal direction, relative to the pre-
ferred one (i.e., Rortho = Rpref + /2), and Ropposite is the response to 
the opposite direction, relative to the preferred one (i.e., Ropposite = 
Rpref + ). Values close to one indicate very sharp tuning, whereas 
values close to zero are typical of untuned units.

Quantification of phase modulation (i.e., position tolerance)
Since phase shifts of a grating are equivalent to positional shifts of 
the whole, two-dimensional sinusoidal pattern, a classical way to 
assess position tolerance of V1 neurons (thus discriminating between 
simple and complex cells) is to probe the phase sensitivity of their 
responses to optimally oriented gratings. Quantitatively, the phase- 
dependent modulation of the spiking response at the temporal fre-
quency f1 of a drifting grating was quantified by the MI adapted 
from (36) and used in (34), defined as

   MI =  ∣     PS(  f  1   ) − 〈  PS  f   〉  ─  
 √ 

____________
   〈  PS   2  〉  f   −  〈PS〉 f  

2   
   ∣     

where PS indicates the power spectral density of the stimulus- 
evoked response, i.e., of the PSTH, and 〈 〉f denotes the average over 
frequencies. This metric measures the difference between the power 
of the response at the stimulus frequency and the average value of 
the power spectrum in units of its SD. The power spectrum was 
computed by applying the Blackman-Tukey estimation method to 
the baseline-subtracted, 10-ms binned PSTH. Since the MI is a standard-
ized measure, values greater than 3 can be interpreted as signaling a 
strong modulation of the firing rate at the stimulus frequency (typical 
of simple cells), whereas values smaller than 3 indicate poor modu-
lation (typical of complex cells). On this ground, we adopted MI = 3 
as a threshold for classifying neurons as simple or complex. The 
choice of this classification criterion and the use of the MI itself were 
determined before seeing the data collected for the current study, 
exclusively on the basis of our experience with the same metric and 
criterion in a previous study (34).

We also quantified the phase sensitivity of the recoded neurons 
using two other popular metrics of response modulation: the stan-
dard F1/F0 ratio and a modified version of this metric that has the 

advantage of being bounded between 0 and 2 (we will refer to this 
metric as F1/F0*). The F1/F0 ratio (38, 39) is typically defined as

  F1 / F0 =   F1 ─ F0    

where F1 is the value of the amplitude of the Fourier spectrum at the 
stimulus frequency f1, whereas F0 is its value at the zero frequency 
f0 (i.e., the “DC” or constant component of the response), that is

  F1 = AS(  f  1  ) F0 = AS(  f  0   = 0)  

On the other hand, the F1/F0* ratio (44) has been defined as

  F1 / F0 * =   2 ⋅ F1 ─ (F0 + F1)    

This allows obtaining an index that is bounded to have a maximum 
value of 2 rather than infinity (as in the case of the F1/F0 ratio). The 
amplitude spectra used to compute the F1/F0 and F1/F0* ratios were 
obtained by subjecting each trial of the preferred grating orientation 
of a neuron to Fourier analysis. Trials with a firing rate of <2 Hz 
were excluded from the analysis. Specifically, Fourier amplitude 
spectra were obtained by applying the fast Fourier transform algo-
rithm to the baseline-subtracted, 10-ms binned PSTH of the steady-
state grating response (i.e., from 250 to 1500 ms after stimulus onset). 
As done in previous studies (39, 44), the threshold we adopted 
to classify neurons as simple or complex via these ratios was 1 for 
both indices.

Estimation of linear RFs through STA and characterization 
of their properties
We used the STA method (60) to estimate the linear RF structure of 
each recorded neuron. The method was applied to the spike trains 
fired by neurons in response to the spatiotemporally correlated and 
contrast modulated noise movies described above. To account for 
the correlation structure of our stimulus ensemble and prevent arti-
factual blurring of the reconstructed filters, we “decorrelated” the 
raw STA images by dividing them by the covariance matrix of the 
whole stimulus ensemble (60). We used Tikhonov regularization to 
handle covariance matrix inversion. Statistical significance of the 
STA images was then assessed pixel-wise by applying the following 
permutation test. After randomly reshuffling the spike times, the 
STA analysis was repeated multiple times (n = 50) to derive a null 
distribution of intensity values for the case of no linear stimulus- 
spike relationship. This allowed z-scoring the actual STA intensity 
values using the mean and SD of this null distribution. The temporal 
span of the spatiotemporal linear kernel we reconstructed via STA 
extended until 330 ms before spike generation (corresponding to 
10 frames of noise at 30-Hz frame rate). The STA analysis was per-
formed on downsampled noise frames (16 × 32 pixels), and the re-
sulting filters were later spline-interpolated at higher resolution for 
better visualization.

To estimate the amount of signal contained in a given STA im-
age, we used the CI metric that we have introduced in a previous 
study (34) (see the method section and figure 5A of that study). 
The CI is a robust measure of maximal local contrast in a z-scored 
STA image. Since the intensity values of the original STA images 
were expressed as z scores (see above), a given CI value can be inter-
preted in terms of peak-to-peak (i.e., white-to-black) distance in 
sigma units of the z-scored STA values. For the analysis shown 
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in Fig. 3B, the STA image with the highest CI value was selected for 
each neuron.

We also characterized the structural complexity of the RFs yielded 
by STA by counting the number of excitatory/inhibitory lobes that 
were present in a STA image and measuring the overall size of the 
resulting RF. The procedure is the same described in our previous 
study (34) (see the method section and figure 5B of that study). 
Briefly, we applied a binarization threshold over the modulus of the 
z-score values of the image (ranging from three to six units of SDs). 
We then computed the centroid positions of the simply connected 
regions within the resulting binarized image (i.e., the candidate lobes) 
and their center of mass (i.e., the candidate RF center). Last, we 
applied a refinement procedure, which is detailed in (34), to prune 
spurious candidate lobes (often very small) that were far away from 
the RF center. Obviously, the number of lobes and the size of the RF 
(computed as the mean of the major and minor axes of the ellipse 
that best fitted the region covered by the detected lobes) depended 
on the binarization threshold. For this reason, in Fig. 3 (C and D), 
we have compared the lobe number and the RF size of the recorded 
populations of experimental (orange) and control (blue) units over 
a range of possible choices of this threshold.

Quantification of response slowness
For each neuron, we quantified the slowness of its response to the 
same noise movies used to estimate its RF by computing the time 
constant of the autocorrelogram of the evoked spike trains [i.e., the 
probability density function of interspike intervals (ISI)]. Being the 
noise movies composed of richer visual patterns than drifting grat-
ings (i.e., richer orientation and spatial frequency content), this was 
a way to assess the response properties of the recorded population 
in a slightly more naturalistic stimulation regime. The time constants 
 were computed by fitting autocorrelograms with the following 
exponential function

  f  (t ) =  Ae   − t _     + C  

where ∆t is the ISI (see Fig. 4A, bottom) and  is the time constant 
of the exponential decay whose value was taken as a measure of 
the slowness of the response of each neuron to the noise movies. 
A and C are free parameters. Only the first 200 ms of the ISI 
distributions were taken into account for the fitting procedure 
(see Fig. 4A, bottom).

Only neurons that were strongly modulated at the frequency of 
variation of the contrast in the movies (i.e., 0.1 Hz) were included in 
the analysis. To select the neurons that met this criterion, the level 
of response modulation was quantified by a standardized contrast 
MI (MIc). The MIc was defined exactly as the MI that was used to 
assess the phase sensitivity of the responses to the gratings (see 
above), with the only difference that the target frequency to measure 
PS(f1) (i.e., the power spectral density at the frequency of the modulated 
input) was now the frequency of the contrast modulation in the 
noise movies (i.e., 0.1 Hz). To this aim, we built PSTHs for the noise 
movies by considering each of the 20 different movies we presented 
as a different trial of the same stimulus so as to highlight the effect 
of contrast modulation (see examples of highly contrast modulated 
neurons in Fig. 4A, top). The MIc for each unit was computed over 
these PSTHs, and only units with a MIc of >3 (i.e., units that were 
significantly contrast modulated) were included in the analysis. 
Furthermore, to ensure a robust estimation of the response time con-

stants, we rejected units for which the R2 (coefficient of determination) 
of the fit with the best exponential model was lower than 0.5.

Orientation decoding analysis
The goal of this analysis was to build four pseudo-populations of 
neurons—i.e., control simple (CS), control complex (CC), experimental 
simple (ES), and experimental complex (EC) cells—with similar 
distributions of orientation tuning and orientation preference and 
then compare their ability to support stable decoding of the orienta-
tion of the gratings over time. The pseudo- populations were built as 
follows. We first matched the control and experimental populations 
in terms of the sharpness of their orientation tuning. To this aim, 
we took the OSI distributions of the two populations (i.e., the blue 
and orange curves in Fig. 2C), and for each bin b in which the OSI 
axis had been divided (i.e., 10 equispaced bins of size = 0.1), we took 
as a reference the population with the lowest number of units Nb in 
that bin. For this population, all the Nb units were considered, while 
for the other population, Nb units were randomly sampled (without 
replacement) from those with OSI falling in the bin b. Repeating this 
procedure for all the 10 bins, we obtained two downsampled pop-
ulations of control and experimental units, having all the same OSI 
distribution and the same number of units (n = 92). When consid-
ering separately the pools of simple and complex cells within these 
downsampled populations, the resulting mean OSIs were very similar 
(CS: 0.44 ± 0.04, n = 43; CC: 0.42 ± 0.03, n = 49; ES: 0.46 ± 0.03, 
n = 57; EC: 0.38 ± 0.04, n = 35) and not statistically different pairwise 
(P > 0.05, two-tailed unpaired t test). Matching the four populations 
in terms of the OSI was essential, but not sufficient, to make sure 
that they had approximately the same power to support discrimina-
tion of the oriented gratings. The populations could still differ in 
terms of the distributions of orientation preference. To also equate 
them in this sense and make sure that all possible orientations were 
equally discriminable, we replicated each unit 11 times by circularly 
shifting its tuning curve of 11 incremental steps of 30°. This yielded 
four final pseudo-populations of 473 (CS), 539 (CC), 627 (ES), and 
385 (EC) units, with matched orientation tuning and homogeneous 
orientation preference to be used for the decoding analysis.

The latter worked as follows. From each pseudo-population, we 
sampled (without replacement) 300 units (referred to as decoding 
pool in what follows) and built 300-dimensional population vectors 
having as components the responses (i.e., spike counts) of the sam-
pled units in randomly selected presentations (i.e., trials) of either 
the 0°- or the 90°-oriented grating (drifting at 4 Hz), with each re-
sponse computed in the same, randomly chosen 33-ms-wide time 
bin within the presentation epoch of the grating. More specifically, 
this time bin was chosen under the constraint of being between 561 
and 957 ms from the onset of stimulus presentation so that the 
drifting grating continued for at least two full cycles (i.e., 561 ms) 
after the selected bin. The random sampling of the trial to be used in 
a given population vector was performed independently for each 
neuron (and without replacement) so as to get rid of any noise cor-
relation among the units that were recorded in the same session. 
Given that 20 repeated trials were recorded per neuron and stimulus 
condition, a set of 20 population vectors was built for the 0°-oriented 
grating and another set for the 90°-oriented gratings. These vectors 
were used to train a binary logistic classifier to discriminate the two 
stimuli. The resulting classifier was then tested for its ability to dis-
criminate the gratings in 33-ms-wide test bins that were increasingly 
distant (in time) from the training bin, covering two full cycles of 
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the drifting gratings (i.e., from 33 to 561 ms following the training 
bin; see abscissa in Fig. 5B). This analysis was repeated for 50 random 
samplings (without replacement) of the decoding pools and, given a 
decoding pool, for 10 independent random draws (without replace-
ment) of the training time bin. The resulting 500 accuracy curves 
were then averaged to yield the final estimate of the stability of the 
classification over time (solid curves in Fig. 5B).

To obtain 95% confidence intervals (shaded regions in Fig. 5B) 
for these average classification curves, we run a bootstrap analysis 
that worked as follows. For each of the four pseudo-populations, we 
sampled (with replacement) 50 surrogate populations and used those 
to rerun the whole decoding analysis described in the previous 
paragraph. This yielded 50 bootstrap classification curves that were 
used to compute SEs for the actual generalization curve. The SEs 
were then converted into confidence intervals by multiplying them 
by the appropriate critical value of 1.96.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaba3742/DC1

View/request a protocol for this paper from Bio-protocol.
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