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Abstract

Dandy-Walker malformation (DWM) is a common prenatally diagnosed cerebellar malfor-
mation, characterized by cystic dilatation of the fourth ventricle, upward rotation of the hypo-
plastic vermis, and posterior fossa enlargement with torcular elevation. DWM is associated
with a broad spectrum of neurodevelopmental abnormalities such as cognitive, motor, and
behavioral impairments, which cannot be explained solely by cerebellar malformations.
Notably, the pathogenesis of these symptoms remains poorly understood. This study inves-
tigated whether fetal structural developmental abnormalities in DWM extended beyond the
posterior fossa to the cerebrum even in fetuses without apparent cerebral anomalies. Post-
acquisition volumetric fetal magnetic resonance imaging (MRI) analysis was performed in
12 fetuses with DWM and 14 control fetuses. Growth trajectories of the volumes of the corti-
cal plate, subcortical parenchyma, cerebellar hemispheres, and vermis between 18 and 33
weeks of gestation were compared. The median (interquartile range) gestational ages at the
time of MRI were 22.4 (19.4-24.0) and 23.9 (20.6—29.2) weeks in the DWM and control
groups, respectively (p = 0.269). Eight of the 12 fetuses with DWM presented with associ-
ated cerebral anomalies, including hydrocephalus (n = 3), cerebral ventriculomegaly (n = 3),
and complete (n = 2) and partial (n = 2) agenesis of the corpus callosum (ACC); 7 presented
with extracerebral abnormalities. Chromosomal abnormalities were detected by microarray
analysis in 4 of 11 fetuses with DWM, using amniocentesis. Volumetric analysis revealed
that the cortical plate was significantly larger in fetuses with DWM than in controls (p =
0.040). Even without ACC, the subcortical parenchyma, whole cerebrum, cerebellar hemi-
spheres, and whole brain were significantly larger in fetuses with DWM (n = 8) than in con-
trols (p = 0.004, 0.025, 0.033, and 0.026, respectively). In conclusion, volumetric fetal MRI
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analysis demonstrated that the development of DWM extends throughout the brain during
the fetal period, even without apparent cerebral anomalies.

Introduction

Dandy-Walker malformation (DWM) is a well-known congenital anomaly of the cerebellum
and posterior fossa. The prevalence of DWM at birth is reported to be 6.79 per 100,000 births
[1]. DWM is diagnosed based on several characteristic imaging features, including cystic dila-
tation of the fourth ventricle, upward rotation of the hypoplastic vermis, and enlargement of
the posterior fossa with elevated torcular herophili and tentorium [2-4]. Although not
included in the diagnostic criteria, hydrocephalus ultimately occurs in approximately 90% of
cases with DWM [1,5,6]. As hydrocephalus typically develops during early infancy, an increase
in head circumference is a common clinical presentation in infants with DWM [5,7].
Advances in imaging technology during pregnancy have enabled more cases with DWM to be
detected prenatally, using ultrasound examinations or fetal magnetic resonance imaging
(MRI) [1,8]. In particular, fetal MRI provides a detailed anatomical assessment of the posterior
fossa and supratentorial structure, thereby facilitating investigation of associated brain anoma-
lies [9]. Although a hypoplastic vermis and fourth ventricular cyst constitute core structural
abnormalities in DWM, coexisting cerebral abnormalities are presenting features in up to 67%
of cases [5,10]. These include agenesis of the corpus callosum (ACC), gray matter heterotopia,
and cerebral gyral anomalies [5,11-13]. Notably, fetuses with associated cerebral malforma-
tions, extracerebral malformations, or chromosomal abnormalities generally have poorer neu-
rodevelopmental outcomes compared to those without such anomalies [2,10]. Therefore,
investigation of associated cerebral anomalies is critical for predicting prognosis when a fetus
is diagnosed with DWM. However, prenatal counseling remains challenging due to the vari-
ability in neurodevelopmental outcomes in cases with DWM [10,11,14]. Indeed, even fetuses
without apparent associated cerebral anomalies may have significant neurodevelopmental
impairments [14]. Prior studies focusing on the association between the degree of vermian
hypoplasia and neurodevelopmental outcomes have suggested that dysplastic vermian fissures
may be associated with poor neurodevelopmental outcomes in patients with DWM [12,15]. A
previous study scored vermian lobulation with fetal MRI to subcategorize cystic posterior
fossa malformations [16]. However, cerebellar and posterior fossa anomalies cannot fully
explain the broad spectrum of developmental abnormalities in DWM. Fetuses with DWM
may share the feature of diffuse cerebral pathology, which is a common cause of cerebral func-
tional impairments such as cognitive, motor, and behavioral neurodevelopmental abnormali-
ties. To date, no study has evaluated whole-brain development in fetuses with DWM.
Accordingly, there is a need to comprehensively examine the development of the fetal brain in
patients with DWM.

We have previously compared volumetric analysis findings on fetal brain MRI in Down
syndrome and controls; volumetric analysis enabled quantification of the volume of each brain
structure and revealed subtle developmental abnormalities that could not be identified using
conventional qualitative visual assessment [17]. In this volumetric fetal MRI study, we assessed
whether the neuropathology of DWM extended beyond the posterior fossa, even in fetuses
without apparent cerebral anomalies.
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Materials and methods
Ethics statement

The Institutional Review Boards of the Tufts Medical Center (TMC) and Boston Children’s
Hospital (BCH) approved this study.

Participants

At TMC, written informed consent was obtained from pregnant women whose fetuses were
diagnosed with DWM at their visit to the center. At BCH, the need for informed consent from
the parents of fetuses with DWM was waived because the images were identified retrospec-
tively from archived data. The MRI diagnostic criteria for DWM were as follows: (1) cystic
dilatation of the fourth ventricle, (2) hypoplasia or agenesis of the cerebellar vermis with
upward rotation, and (3) enlargement of the posterior fossa with elevated torcular herophili
and tentorium. Fetuses with DWM were identified retrospectively at BCH between January
2011 and December 2018 from an archived radiology database (n = 12). Fetuses diagnosed
with DWM by fetal MRI between October 2012 and July 2018 were prospectively recruited at
TMC (n = 3). The inclusion criteria for pregnant women with DWM were as follows: maternal
age of 18-45 years, singleton pregnancy, and gestational age of 18-36 weeks. Associated cere-
bral or extracerebral malformations diagnosed using ultrasound and fetal MRI were recorded.
We also reviewed whether the pregnant women underwent amniocentesis for chromosomal
analysis (e.g., chromosomal microarray analysis) and recorded the genetic test results. The
exclusion criteria for quantitative fetal MRI analysis were as follows: (1) poor-quality raw MR
images, and (2) associated cerebral anomalies that were considered to be the primary pathol-
ogy (e.g., encephalocele or schizencephaly). Callosal anomalies were not excluded, as they are
frequently (5-55%) associated with DWM [2,13,18-21].

A total of 14 fetal brain MR images of controls were used for comparison. Healthy pregnant
women with uncomplicated pregnancies were recruited at the obstetric clinic at TMC; they
provided written informed consent. The inclusion criteria for pregnant women in the control
group were the same as those in the DWM group. Fetuses with dysmorphic features on sono-
graphic examination or known congenital infections were excluded. Participants were also
excluded from the control group if fetal MRI identified any abnormalities. Among 14 control
participants, 12 had participated in our previous study [17,22]. A pediatric neuroradiologist
(N.M.) and a pediatric neurologist (T.T.) reviewed all MR images.

MRI acquisition

Fetal MRI studies were performed using T2-weighted fast spin-echo sequences: half-Fourier
acquisition single-shot turbo spin-echo (HASTE, Siemens) at BCH and single-shot turbo spin-
echo (SSTSE, Philips) at TMC. The following MRI sequence was used in the Siemens 3 T scan-
ner: repetition time (TR) = 1.6 s, echo time (TE) = 120 ms, field of view (FOV) = 300-330 mm,
in-plane resolution = 1.15-1.29 mm?, slice thickness = 2-4 mm. The following MRI sequence
was used in the Phillips 1.5 T scanner: TR = 12.5 s, TE = 180 ms, FOV = 256 mm, in-plane res-
olution = 1 mm, slice thickness = 3 mm. HASTE acquisition was performed in three orthogo-
nal axes (axial, coronal, and sagittal). At the initial review, MRI studies without severe motion
or other artifacts in the brain were included in this study.

Post-acquisition processing for quantitative fetal MRI analysis

For detailed quantitative fetal MRI analysis, we employed the pipeline for fetal MR image
processing used in our previous studies [17,22,23]. This fetal MR image processing
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pipeline includes brain masking, bias field correction, and fetal head motion correction and
alignment.

Raw MR images contained motion artifacts and were not aligned, reflecting fetal head
motion, position, maternal breathing, and arterial pulsation at the time of scanning (Fig 1A).
To correct for motion between slices, multiple 2D slices of fetal brain MR images were com-
bined using a slice-to-volume registration technique [24]. However, rigid registration does not
consider changes in fetal head position relative to the mother. Therefore, to decrease alignment
errors in the rigid registration, we first created masks containing the fetal brain to delimit the
region of interest using FreeView (surfer.nmr.mgh.harvard.edu) and extracted brain regions.
Additionally, to improve reconstruction quality, we corrected the intensity inhomogeneity. In
the original MR images, the intensity changed smoothly across a slice due to a biased magnetic
field, which was affected by fetal motion and/or MRI acquisition settings. Thus, we performed
bias field correction on the extracted brain regions using ANTs N4BiasFieldCorrection [25].
After brain extraction and bias field correction, motion correction was performed using volu-
metric rigid registration implemented in IRTK software (www.doc.ic.ac.uk/~dr/software). Fol-
lowing reconstruction of the first estimated volume, the rigid slice-to-volume registration and
super-resolution reconstruction of the volume were repeated eight times. This algorithm ulti-
mately created a motion-corrected 3D volume with an isotropic resolution of 0.75 mm.

Fetal heads were subsequently aligned in the same direction along the anterior and poste-
rior commissures (Fig 1B) using AFNI software (afni.nimh.nih.gov/afni) [26]. When motion
correction resulted in volume images of poor quality due to insufficient quality or misalign-
ment in multiple planes, volumetric analyses were performed on selected high-quality raw MR
images in coronal or axial views with minimum motion artifacts.

Fig 1. Post-acquisition processing for volumetric analysis of fetal MRI. Raw fetal MR images (A) were processed with motion correction and super-
resolution volume reconstruction. The rendered images were then aligned in the same direction along the anterior and posterior commissures (B). In
coronal and axial views of the reconstructed volume images (C), regional structures of the brain (i.e., the cortical plate, subcortical parenchyma,
cerebellar hemispheres, vermis, brainstem, and lateral, third, and fourth ventricles) were manually segmented on each slice (D).

https://doi.org/10.1371/journal.pone.0263535.9001
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Fetal brain tissue segmentation and volumetric analysis

The following substructures were manually segmented in the aligned 3D fetal brain volume
using FreeView: the cortical plate, subcortical parenchyma, cerebellar hemispheres, vermis,
brainstem, and lateral, third, and fourth ventricles (Fig 1C and 1D). Manual segmentation was
performed according to the intensity value ranges in each coronal slice and was confirmed on
orthogonal axial and sagittal views. Although automatic segmentation for fetal brain MRI has
been performed in previous studies [27], we did not employ it in this study owing to the chal-
lenges involved. First, shapes and appearance of fetal brain substructures vary owing to rapid
tetal brain development [27]. Second, the immature brain has lower tissue differentiation due
to higher water content compared to that in the adult brain [28]. For the same reasons, we seg-
mented developing white matter and subcortical gray matter as a single structure (subcortical
parenchyma). After completion of segmentation, the regional brain structures were recon-
structed three-dimensionally. The volume of each brain region was measured using a Slicer
(4.10.2, slicer.org). The volume of each of the following regions was calculated as the sum of
the whole cerebrum (cortical plate and subcortical parenchyma), whole cerebellum (cerebellar
hemispheres and vermis), and whole brain (whole cerebrum and whole cerebellum). Brain-
stem volume was excluded due to the difficulty in identifying the boundary between the brain-
stem and spinal cord.

Assessment of vermian lobulation

To explore the association between the presence of additional brain malformations (e.g., callo-
sal anomalies) and degree of vermian dysplasia, the development of vermian lobules was
scored according to previous studies [16,29]. High-resolution midsagittal T2-weighted images
of the fetal brain were used for scoring. Fetuses at less than 22 weeks’ gestation were excluded
from this analysis, due to the difficulty in identifying the small vermian lobules beyond the res-
olution of fetal MRI, as reported previously [29]. The number of differentiable lobules was
identified and quantified to assess the anatomical development of the vermis. Three raters
(S.A., T.T., and N.M.) independently scored the vermian lobulation.

Statistical analysis

The gestational ages of fetuses in the MRI studies are presented as medians (interquartile
ranges) and were compared using the two-tailed Wilcoxon rank-sum test. Maternal ages are
presented as means + SD and were compared using the two-tailed Welch t-test. Fetal sex ratio
was compared between groups using a two-tailed Fisher’s exact test.

During the fetal period, regional structural volume increases as gestational age progresses
[17,30,31]. During volumetric analysis, we did not perform pairwise comparison due to differ-
ences in the gestational age distribution of each group. Instead, we created scatter diagrams,
whereby the volumes of the segmented structures were expressed as a function of gestational
age to maximize the availability of the data. Previous volumetric fetal MRI studies have dem-
onstrated that the volumes of brain substructures increase exponentially [17,32]. Additionally,
as the SD of brain substructures increases with advancing gestational age, prior studies have
used natural log-transformed volume data to achieve a normal distribution [31,32]. In this
study, we observed that the linear regression model with a natural logarithmic transformation
of the volume data was the best fit for both DWM and control groups. The quality of fit in
these models was assessed by calculating the adjusted coefficient of determination (R,). Dif-
ferences in the slopes and y-intercepts were compared between the DWM and control groups
using analysis of covariance (ANCOVA). We first tested for differences between slopes; if no
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significant differences between slopes were identified, we tested for differences between y-
intercepts.

To assess the quality of manual segmentation, the Dice similarity coefficient (DSC) was
computed to test the inter-rater reliability of MR image segmentation by two raters. Based on
the kappa statistic, DSC > 0.75 was considered excellent agreement [33]. Additionally, to
ensure the reliability of segmentation using raw MR images in small structures such as the ver-
mis and cerebellar hemispheres, measured volumes on both reconstructed volume images and
raw MR images in the same brain were compared using the two-tailed Wilcoxon signed-rank
test. During vermian lobulation analysis, the mean value of the three raters was used as the ver-
mian lobulation score. Intergroup comparisons of the number of lobules were performed
using ANCOVA.

Statistical analysis was performed using JMP Pro version 14.0 (SAS Institute Inc., Cary, NC,
USA) and GraphPad Prism version 8 (GraphPad Software, San Diego, CA, USA). Statistical
significance was set at p < 0.05.

Results
Participants

This study used MR images from 15 fetuses with DWM (Table 1, SI Fig) and 14 control fetuses
(Table 2). Two fetuses were excluded from the DWM group due to the presence of other sig-
nificant primary brain malformations (encephalocele and schizencephaly). In addition, one
fetus was excluded due to poor-quality raw MR images. Among the remaining 12 fetuses with
DWM, motion correction and volume reconstruction were performed successfully for 10
fetuses. For the other two fetuses for whom volume reconstruction failed, high-quality raw MR
images with minimal motion artifacts in axial planes were still eligible for volumetric analysis.
Consequently, brain MR images of 12 fetuses with DWM and 14 control fetuses were subjected
to volumetric analysis.

The median (interquartile range) gestational ages of the 12 fetuses with DWM and 14 con-
trol fetuses were 22.4 (19.4-24.0) and 23.9 (20.6-29.2) weeks, respectively (z-score = -1.106,

p = 0.269, Wilcoxon rank-sum test). The mean (+ SD) maternal ages in the DWM and control
groups were 29.8 + 7.7 and 29.9 * 4.6 years, respectively (t-value = -0.042, degrees of free-
dom = 17.355, p = 0.967, Welch t-test).

The sex of 11 fetuses with DWM was determined using karyotyping. The sex of one fetus
that did not undergo karyotyping was determined based on the observation of male external
genitalia on MRI. Among 12 fetuses in the DWM group, 7 (58%) were male. No significant dif-
ference was observed in the proportion of male fetuses between the DWM and control groups
(male: n = 8, 57%; p = 1.0, Fisher’s exact test).

Eight of the 12 fetuses with DWM presented with abnormal MRI findings, that were con-
sidered to be secondary pathology to DWM: these included hydrocephalus (n = 3), cerebral
ventriculomegaly (n = 3), complete ACC (n = 2), and partial ACC (n = 2). Ultrasound exami-
nation detected extracerebral abnormalities in seven fetuses, including congenital heart disease
(n = 4), congenital anomalies of the kidney and urinary tract (n = 3), skeletal anomalies
(n = 2), and congenital diaphragmatic hernia (n = 1). Chromosomal microarray analysis using
amniocentesis revealed chromosomal abnormalities in 4 of the 11 fetuses, including trisomy 9
(n = 1), additional material on chromosome 6q25 (n = 1), an interstitial deletion of 3g21-25
(n = 1), and absence of heterozygosity in 6q and 14q (n = 1). Three of the 12 fetuses with
DWM had isolated DWM (Table 1).
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Table 1. Demographics of fetuses with Dandy-Walker malformation.

Participant | Volumetric Maternal | Fetal sex Chromosomal GA of MRI Associated cerebral Extracerebral Number of
analysis age abnormalities [weeks] anomalies anomalies vermian lobules
BCH_CMO01 Y 24 M Negative 19.29 Hydrocephalus Cystic kidneys N/A
BCH_CMO02 Y 19 F Negative 2343 None None 3.67
BCH_CMO03 Y* 37 F 46,XX,add(6)(p25) 23.29 Hydrocephalus Hypertelorism 1.00
partial ACC CoA
BCH_CMO05 Y 38 F Negative 19.00 None None N/A
BCH_CMO06 Y 30 F Negative 24.14 Hydrocephalus None 4.00
BCH_CMO07 Y 24 M Negative 19.86 Ventriculomegaly None N/A
BCH_CMO08 Y 31 M Negative 22.14 None TOF 1.00
BCH_CMO09 Y* 20 F 46,XX,del(3)(q21q25) 33.14 Ventriculomegaly partial | CDH 1.00
ACC VSD
hypoplastic LV
Hydronephrosis
FGR
BCH_CM10 Y 23 M absence of 28.00 Ventriculomegaly Craniofacial 3.67
heterozygosity in 6q and disproportion
14q Hydronephrosis
BM69 Y* 42 M* N/A 20.14 ACC AVCD N/A
PA
BMS83 Y 37 M Negative 19.14 None None N/A
BM84 Y* 32 M 47,XY,+9 22.57 ACC Skeletal anomalies 1.33
DORV
FGR
BCH_CMO04 N 33 M Negative 20.00 None None N/A
BCH_CM11 N 23 N/A N/A 27.71 Encephalocele ACC None N/A
BCH_CM12 N 39 Unknown | Negative 19.29 Schizencephaly Nodular | None N/A
heterotopia

Three participants (rows highlighted in grey) were excluded from volumetric analysis and assessment of vermian lobulation due to associated central nervous system
anomalies or poor imaging quality. The maximum number of differentiable vermian lobules was defined as seven. The number of vermian lobules represents the mean
value among the three raters.

Y, eligible for volumetrics; Y?, eligible for volumetrics but excluded from the subgroup analysis due to callosal anomalies; N, ineligible for volumetric analysis; M*, male
external genitalia on fetal MRI; ACC, agenesis of the corpus callosum; AVCD, atrioventricular canal defect; CoA, coarctation of the aorta; CDH, congenital
diaphragmatic hernia; DORV, double outlet right ventricle; FGR, fetal growth restriction; GA, gestational age; LV, left ventricle; PA, pulmonary atresia; TOF, tetralogy
of Fallot; VSD, ventricular septal defect.

https://doi.org/10.1371/journal.pone.0263535.t001

Volumetric analysis

In this study, we performed both whole-group and subgroup analyses, which included all 12
fetuses in the DWM group and excluded 4 fetuses with callosal anomalies from the DWM
group, respectively. Subgroup analysis was performed to eliminate the effects of associated cal-
losal anomalies, that may have affected cortical plate development.

On whole-group analysis, a logarithmic transformation of regional brain structural volume
revealed a linear increase between 18 and 33 weeks of gestation in both the DWM and control
groups (R?, = 0.32-0.84 and 0.80-0.94, respectively) (Fig 2). We confirmed vermian hypopla-
sia as decreased vermian volume (p-value for the y-intercept = 0.001) (Fig 2A), which is a key
feature of DWM. Fetuses with DWM exhibited reduced growth trajectories in the cerebellar
hemispheres and whole cerebellum compared to control fetuses (p = 0.031 and 0.036, respec-
tively) (Fig 2B and 2C). Furthermore, fetuses with DWM exhibited an accelerated growth pat-
tern of the whole cortical plate compared to control fetuses (p = 0.040) (Fig 2F). Assessment of
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Table 2. Demographics of control fetuses.

Participant

BM-10
BM-18
BM-26
BM-28
BM-37
BM-38
BM-39
BM-42
BM-47
BM-54
BM-92
BM-97
BM-142
BM-143

Maternal age

23
30
31
32
22
33
34
30
34
27
22
31
34
35

Fetal sex

M

mEIRmIRIRmIRImmm|E|R

CVS/AC/postnatal karyotype | GA of MRI [weeks] | MRI review | Other anomalies | Number of vermian lobules

N/A 20.00 Unremarkable None N/A
N/A 29.57 Unremarkable None 7.00
N/A 18.57 Unremarkable None N/A
N/A 22.86 Unremarkable None 5.67
N/A 29.14 Unremarkable None 5.67
N/A 25.57 Unremarkable None 6.00
N/A 32.00 Unremarkable None 7.00
N/A 33.29 Unremarkable None 6.67
N/A 24.71 Unremarkable None 6.00
N/A 19.71 Unremarkable None N/A
N/A 20.86 Unremarkable None N/A
N/A 25.71 Unremarkable None N/A
46, XY 23.00 Unremarkable None 5.67
N/A 20.86 Unremarkable None N/A

No dysmorphic features were detected on obstetric sonography or fetal MRI. The maximum number of differentiable vermian lobules was defined as seven. The number

of vermian lobules represents the mean value for the three raters. CVS, chorionic villi sampling; AC, amniocentesis; GA, gestational age.

https://doi.org/10.1371/journal.pone.0263535.t1002

the cortical plate separately in the right and left hemispheres revealed that the left hemispheric
cortical plate was larger in fetuses with DWM than in control fetuses (p-value for the y-inter-
cept = 0.028) (Fig 2E), although no significant difference was observed for the right hemi-
spheric cortical plate (p-value for the y-intercept = 0.061) (Fig 2D). No significant differences
were observed in the growth patterns of the subcortical parenchyma, whole cerebrum, and
whole brain (p-values for the slope = 0.207, 0.239, and 0.220; p-value for the y-intercept = 0.667,
0.454, and 0.490, respectively) (Fig 2G-2I).

In the subgroup analysis that excluded 4 fetuses with callosal anomalies from the DWM
group, we also excluded 2 fetuses with a gestational age > 30 weeks from the control group to
match the distribution of gestational age between groups. Subgroup analysis revealed a stronger
correlation between logarithmic-transformed regional structural volume and gestational age in
the DWM group (R?, = 0.63-0.98) (Fig 3) compared to that in the whole-group analysis. Similar
to the results of the whole-group analysis, fetuses with DWM had a smaller vermis compared to
control fetuses (p-value for the y-intercept = 0.002) (Fig 3A). Between 18 and 30 weeks of gesta-
tion, fetuses with DWM had a significantly larger cortical plate in the whole hemisphere and in
both the right and left hemispheres (p-value for the y-intercept = 0.012, 0.014, and 0.011,
respectively), compared to control fetuses (Fig 3D-3F). Notably, after excluding fetuses with
callosal anomalies, the analysis revealed that fetuses with DWM had larger subcortical paren-
chyma, whole cerebrum, cerebellar hemispheres, and whole brain (p = 0.004, 0.025, 0.033, and
0.026, respectively) compared to control fetuses (Fig 3B and 3G-3I). On subgroup analysis, no
significant differences were observed between groups in terms of the whole cerebellum (p-value
for the slope = 0.654; p-value for the y-intercept = 0.210) (Fig 3C). The full results of the linear
regression analysis are provided in the supplementary tables (S1 and S2 Tables).

To test inter-rater reliability, we calculated the DSC for the substructure segmentation in
the brains of two fetuses (BM-42 and BM-92). DSCs for the substructures were 0.935-0.951,
0.985-0.989, and 0.956-0.984 in the cortical plate, subcortical parenchyma, and cerebellar
hemispheres, respectively. These results were similar to those reported in our previous study
[17], and were considered to be in excellent agreement. To assess the reliability of
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Fig 2. Regional growth trajectories in fetuses with DWM (n = 12) and control fetuses (n = 14). Growth patterns of each regional volume were
modeled and compared between fetuses with DWM and control fetuses. A logarithmic transformation of the volume data was performed before fitting
the linear regression model in both the DWM and control groups. The growth trajectory of the vermis (A) was significantly smaller in fetuses with
DWM than in control fetuses. Fetuses with DWM exhibited reduced rate of growth in the cerebellar hemispheres (B) and whole cerebellum (C)
compared to controls. In contrast, growth trajectories of the left cortical plate (E) and whole cortical plate (F) were significantly larger in fetuses with
DWM than in control fetuses. No significant differences were observed between fetuses with DWM and control fetuses in growth patterns of the right
cortical plate (D), whole subcortical parenchyma (G), whole cerebrum (H), and whole brain (I).

https://doi.org/10.1371/journal.pone.0263535.9002

segmentation using raw MR images in small structures, the volumes of vermis and cerebellar
hemispheres on both reconstructed volume images (3D images) and raw MR images (2D
images) in the same brain were compared among five participants (BM84, BCH_CMO01,
BCH_CMO02, BCH_CMO06, and BCH_CMO09) using the Wilcoxon signed-rank test. There were
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Fig 3. Regional growth trajectories in fetuses with DWM (n = 8) and control fetuses (n = 12) in subgroup analysis that excluded fetuses with
agenesis of the corpus callosum (ACC). A logarithmic transformation of the volume data was performed before fitting the linear regression model in
both the DWM and control groups. Similar to results of the whole-group analysis (Fig 2), the growth trajectory of the whole cortical plate (F) was
significantly larger in fetuses with DWM than in control fetuses. In the subgroup analysis, both the right (D) and left (E) cortical plate were significantly
larger in fetuses with DWM than in control fetuses. Further, the growth trajectories of the cerebellar hemispheres (B), subcortical parenchyma (G),
whole cerebrum (H), and whole brain (I) were significantly larger in fetuses with DWM than in control fetuses. No significant differences were
observed in growth trajectories of the whole cerebellum (C) between fetuses with DWM and control fetuses in the subgroup analysis.

https://doi.org/10.1371/journal.pone.0263535.g003

no significant differences between the 3D images and 2D images in the volumes of vermis and
cerebellar hemispheres (p = 1.0 and 1.0, respectively). The axial T2-weighted images of the
fetal brain MRI with the overlapping segmentation map in the DWM group are provided in
the supplementary figure (S2 Fig).
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Assessment of vermian lobulation

For assessment of vermian lobulation, we excluded 5 fetuses with DWM and 6 control fetuses
due to poor-quality mid-sagittal images (2 in the control group) or earlier gestational age, i.e.,
< 22 weeks of gestation (4 in the control group and 5 in the DWM group); this was because
the vermian lobules were almost unidentifiable on visual inspection. As a result, the number of
vermian lobules was quantified in 8 of 14 control fetuses and 7 of 12 fetuses with DWM.
Although the cerebellar vermis consists of nine separable lobules [34], we counted up to seven
lobules as the maximum number of differentiable lobules, in accordance with previous reports
[16,29]. Three posterior lobules (declive, folium, and tuber) were counted as a single structure,
because they could not be well-differentiated on 1.5 T or 3 T T2-weighted fetal brain MRI.

The findings on quantification of vermian lobules in fetuses with DWM and control fetuses
are presented in Table 3. Vermian lobulation scores were classified into the following three
groups in accordance with a previous study [16]: (1) three or fewer lobules, (2) four or five lob-
ules, and (3) six or more lobules. In the DWM group, 6 of 7 fetuses (85.7%) had 3 or fewer dif-
ferentiable lobules, and the remaining 1 (14.3%) had more than 4 differentiable lobules. In
contrast, in the control group, 5 of 8 fetuses (62.5%) had 6 or more differentiable lobules, and
3 of 8 fetuses (37.5%) had 4 to 5 differentiable lobules. After adjusting for gestational age,
fetuses with DWM had significantly fewer differentiable lobules compared to controls
(ANCOVA, F-value = 24.699, degrees of freedom =2, 12, p < 0.001). A previous study that
analyzed vermian lobulation in DWM and other cystic posterior fossa malformations reported
that there was no significant intra-group difference between individuals with and without
additional body and brain malformations [16]. Thus, we compared intra-group differences
between patients with and without callosal anomalies. No significant intragroup differences
were observed in lobulation scores between fetuses with and without callosal anomalies
(p = 1.0, Fisher’s exact test).

Discussion

In this study, volumetric analysis of fetal MRI revealed that regardless of heterogeneous etiolo-
gies, fetuses with DWM had a larger cortical plate volume compared to control fetuses. More-
over, after excluding fetuses with ACC, our analysis revealed that fetuses with DWM had
larger subcortical parenchyma, whole cerebrum, and cerebellar hemispheres compared to con-
trol fetuses. These results suggest that even without apparent cerebral abnormalities, fetuses
with DWM have altered development that extends throughout the brain, and these subtle
alterations in brain development can be detected using quantitative fetal MRI analysis.

Demographics of fetuses with DWM

The clinical demographics of 15 fetuses with DWM in this study confirmed heterogeneous eti-
ologies and variable cerebral/extracerebral anomalies of the disorder. Hydrocephalus is the

Table 3. Distribution of the number of vermian lobules in the DWM (n = 7) and control groups (n = 8).

1-3 lobules 4-5 lobules 6-7 lobules LS mean + SE
Control (n = 8) 0 (0%) 3 (37.5%) 5 (62.5%) 6.15 + 0.40 p < 0.001*
DWM (n=7) 6 (85.7%) 1 (14.3%) 0 (0%) 2.30 +0.42

The number of vermian lobules in each fetus was calculated as the mean value of the 3 raters, and was divided into 3 categories: 1-3 lobules, 4-5 lobules, and 6-7
lobules. The values indicate the number of fetuses in each category. The numbers in parentheses represent the proportion of fetuses in each category within the DWM
or control groups. The mean number of vermian lobules adjusted for gestational age differed significantly between the DWM and control groups.

LS mean, least-squares mean; SE, standard error.

https://doi.org/10.1371/journal.pone.0263535.t003
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most common complication (90%) in DWM [5]. In our study, only 3 of 15 fetuses presented
with hydrocephalus in the second trimester; this is consistent with previous observations that
hydrocephalus may develop later in pregnancy or early infancy [5-8]. We observed callosal
anomalies, nodular heterotopia, schizencephaly, and occipital encephalocele as coexisting con-
ditions, in agreement with previous reports [12,15,35-37]. We were unable to fully assess cere-
bral gyral anomalies, such as focal cortical dysplasia or polymicrogyria, which are more
accurately identified later in gestation. In this regard, prominent gyral development occurs
after 25 weeks [38] while the gestational ages of fetuses with DWM at the time of MRI were
mostly less than 25 weeks in this study. We also observed associated extracerebral anomalies,
including congenital heart diseases, urinary tract malformations, and craniofacial abnormali-
ties, as previously reported [39,40]. Fetuses with chromosomal abnormalities tend to have mul-
tiple anomalies; the results from this study indicate that fetuses presented with typical clinical
demographics that are observed in children with DWM.

To date, only a few genes and loci associated with DWM have been identified, including
FOXCI on 6p25 and ZICI and ZIC4 on 3q24 [41]. In this study, three of four fetuses had previ-
ously reported chromosomal abnormalities associated with DWM [39,41-44], i.e., trisomy 9,
additional material on 6p25, and 3q24 deletion. The fetus with additional material on 6p25
presented with a similar phenotype to that previously reported for 6p25 deletions [42,45].
Thus, we speculate that copy number variations in this locus are associated with DWM.

Cerebral development in DWM

To date, cerebral developmental features in DWM have remained obscure. DWM is thought
to involve defects in the development of the rhombencephalic roof and vermis, and its primary
pathology is limited to the posterior fossa [5,46]. Associated cerebral malformations, such as
callosal anomalies or malformations of cortical development have also been identified [5,11-
13]. Associated cerebral malformations may share the same developmental timing and/or reg-
ulatory genes with cerebellar development. The timing of primitive corpus callosum connec-
tivity (approximately 9-12 weeks postconception) [47-49] and start of cortical plate formation
(approximately 7-16 weeks postconception) [50,51] overlap with the evolution of the rhom-
bencephalic roof and vermis at 6-12 weeks postconception [5,52,53]. This coincidental timing
may at least partly explain the commonly observed association of callosal dysgenesis and mal-
formations of cortical development with DWM. In addition, mutations in certain genes may
result in both, DWM and cerebral anomalies. Mice with a FoxcI hypomorphic mutation
exhibit cerebellar vermis hypoplasia [42] and cortical abnormalities that resemble cobblestone
cortical malformation [54]. This may partly explain the abnormal cerebral development in
individuals with DWM. Recently, a large exome sequencing study of children and adults with
DWM and cerebellar hypoplasia expanded the list of genes associated with DWM to include
TUBAIA, BRAF, SETD2, FOXP1, PUS3, ARMC9, and PIBFI [55]. Some of these genes play
critical roles in cerebral development [56,57]. These findings may reveal novel genotype-phe-
notype correlations and mechanistic explanations of cerebral pathology in DWM.

To date, one case-control study has reported altered cerebral volume in children with iso-
lated cerebellar malformations [58]. However, only 1 of 20 children who participated in the
study were diagnosed with DWM, and individual data were unavailable. Therefore, to the best
of our knowledge, this is the first study to quantify cerebral volume in a series of fetuses with
DWM. Our volumetric analysis revealed that between 18 and 33 weeks of gestation, fetuses
with DWM had a larger cortical plate compared to control fetuses. Moreover, growth trajecto-
ries of the subcortical parenchyma and whole cerebrum were larger in fetuses without appar-
ent cerebral anomalies (i.e., when fetuses with ACC were excluded) than in control fetuses.
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These results suggest that DWM is associated with diffuse cerebral overgrowth in the fetal
period, even when apparent coexisting cerebral anomalies are not observed. The developmen-
tal disorders that exhibit cerebral and cerebellar overgrowth include megalencephaly, ventricu-
lomegaly, and autism [32,59,60]. Although we have no confirmatory histopathological data,
the possible pathology of overgrowth includes increased proliferation or decreased apoptosis
of neuron and/or glia, as is believed to occur in megalencephaly [51,60]. The dysregulation of
the AKT-mTOR pathway, which plays a critical role in the regulation of cell proliferation dur-
ing development, has been associated with megalencephaly, hemimegalencephaly, and focal
cortical dysplasia [61]. A lack of normal developmental apoptosis in the developing brain also
could lead to brain overgrowth. The entire brain was found to be larger and hyperplastic in
caspace-3- [62], caspace-9- [63], and Apafl- [64] deficient mice due to reduced apoptosis of
progenitor cells. This dysregulation of neuronal proliferation and apoptosis could have an
impact on cerebral function. Therefore, a larger cerebrum in fetuses with DWM may be associ-
ated with a variety of postnatal neurodevelopmental abnormalities, including cognitive,

motor, and behavioral impairments, which may be underpinned by cerebral dysfunction.

Cerebellar development in DWM

DWM involves variable degrees of cerebellar hemispheric hypoplasia [5,65,66]. Our study did
not identify hemispheric cerebellar hypoplasia as a common feature of DWM. Whole-group
volumetric analysis revealed a reduced growth pattern in the cerebellar hemispheres of fetuses
with DWM compared to that in control fetuses. However, this result may have been affected
by syndromic cases (i.e., BCH_CMO03, BCH_CMO09, and BM 84). After excluding fetuses with
ACC, the analysis revealed that fetuses with DWM had larger cerebellar hemispheres com-
pared to controls. These results suggest that hemispheric hypoplasia may exist in syndromic
cases. Moreover, apparent non-syndromic DWM may exhibit overgrowth in the cerebellar
hemispheres as well as in the cerebrum, suggesting a widespread pathology of DWM in the
developing brain.

This study identified lower vermian lobulation scores in fetuses with DWM than in control
fetuses. Our results are in accordance with those of a study, which demonstrated that fetuses
with DWM had the lowest number of vermian lobules compared to control or cystic posterior
fossa malformation groups [16]. In this regard, a semi-quantitative analysis of vermian lobula-
tion enabled assessment of the severity of vermian hypoplasia. However, we did not identify a
significant difference in lobulation scores between the groups with and without callosal anom-
alies. This result is in agreement with that of a previous report, which did not find a significant
difference in the number of lobules between groups with and without additional body and
brain malformations [16].

Previous studies have reported that the degree of vermian hypodysplasia is associated with
neurodevelopmental outcomes in children with DWM [12,15] and cerebellar malformations
[67]. In particular, Boddaert et al. [12] and Klein et al. [15] reported that the majority of cases
with DWM having two major vermian fissures and three lobes had normal intelligence quo-
tients, whereas all cases with one or no vermian fissures had low intelligence quotients. How-
ever, in these case series, all cases with poor vermian lobulation also had associated cerebral
anomalies, whereas those with normal vermian lobulation did not have any associated cerebral
anomalies. Thus, coexisting supratentorial anomalies may be confounding factors for out-
comes related to intellectual capabilities. We previously reported that patients with isolated
inferior vermian hypoplasia generally exhibited favorable long-term neurodevelopmental out-
comes during school age [68]. Therefore, vermian hypoplasia per se is not associated with poor
neurodevelopmental outcomes. Prospective fetal-to-childhood cohort studies are warranted to
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elucidate the association between comprehensive measures of fetal brain development and
neurodevelopmental outcomes in DWM.

Limitations

This study had several limitations. First, we were unable to exclude the potential effects of
chromosomal abnormalities, associated anomalies, fetal sex, or scanner differences due to the
small number of subjects. Second, we were unable to evaluate whether the cortical volume
increase was due to a thicker cortical plate or larger surface area. We are conducting cerebral
surface analysis including surface area analysis and 3D cortical thickness measurement to elu-
cidate the precise cerebral developmental features in DWM. A recent fetal MRI study reported
that fluid-attenuated inversion recovery (FLAIR) sequences improved visualization of the sub-
plate compared with T2-weighted sequences [69]. Analysis of the subplate may provide addi-
tional information on cerebral development and the role of the subplate in cortical
development [70-72]. Further, we were unable to evaluate the association between fetal brain
growth and neurodevelopmental outcomes because almost all pregnancies were terminated.
Large-scale prospective and retrospective studies are needed to overcome these limitations.
Nevertheless, our volumetric analysis can be applied to fetal MR images scanned using a stan-
dard clinical protocol, thus enabling widespread application in clinical settings.

Conclusion

In this study, we observed that fetuses with DWM commonly exhibited altered brain develop-
ment, even in the absence of coexisting cerebral malformations, as early as the second trimes-
ter. These subtle brain developmental alterations may contribute to cognitive, motor, and/or
behavioral impairments in DWM that cannot be explained by cerebellar malformations. Our
findings can be applied to improve prenatal diagnosis and prognosis counseling for parents
expecting a baby with DWM.

Supporting information

S1 Fig. The midsagittal T2-weighted images of the fetal brain MRI in the DWM group.
(TIF)

S2 Fig. The axial T2-weighted images of the fetal brain MRI with overlapping segmenta-
tion map in the DWM group.
(TIF)

S1 Table. Full results of the linear regression analysis on whole-group analysis.
(TIF)

S2 Table. Full results of the linear regression analysis on subgroup analysis.
(TIF)
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