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Abstract: A desirable photographic reproduction method should have the ability to compress high-
dynamic-range images to low-dynamic-range displays that faithfully preserve all visual information.
However, during the compression process, most reproduction methods face challenges in striking a
balance between maintaining global contrast and retaining majority of local details in a real-world
scene. To address this problem, this study proposes a new photographic reproduction method that
can smoothly take global and local features into account. First, a highlight/shadow region detection
scheme is used to obtain prior information to generate a weight map. Second, a mutually hybrid
histogram analysis is performed to extract global/local features in parallel. Third, we propose a
feature fusion scheme to construct the virtual combined histogram, which is achieved by adaptively
fusing global/local features through the use of Gaussian mixtures according to the weight map.
Finally, the virtual combined histogram is used to formulate the pixel-wise mapping function. As both
global and local features are simultaneously considered, the output image has a natural and visually
pleasing appearance. The experimental results demonstrated the effectiveness of the proposed
method and the superiority over other seven state-of-the-art methods.

Keywords: photographic reproduction; vision sensing technique; feature fusion; human visual
system; virtual combined histogram; histogram equalization

1. Introduction

In the real world, the luminance intensity of environmental scenes has a very wide
range. From glimmer starlight to blazing sunlight, the luminance variation could span
over ten orders of magnitude. The human visual system (HVS) has an outstanding ability
to adapt and perceive about 5~6 orders of magnitude. Previously, most consumer cameras
can only capture nearly 2~3 orders of luminance variation. Due to the limited dynamic
range, the captured image severely suffers from detail loss, especially in highlight and
shadow regions [1].

With advancements in optical sensing, high dynamic range (HDR) sensors that can
capture the entire luminance range of a real-world scene have been developed [2]. For
example, some latest high-end digital single-lens reflex cameras, or some devised sensors
including multiple sensor elements with different exposure levels, are able to capture entire
details of both dark and bright parts of the scene simultaneously. Although the cost of such
HDR sensors is high, the captured HDR images can contain a larger bit depth of the image
than 24-bit depth per pixel. Typically, HDR images are stored in floating point and require
32-bit depth per pixel.

Despite the increasing availability of HDR images, presenting HDR scenes on tra-
ditional low dynamic range (LDR) or standard dynamic range (SDR) displays remains
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problematic because an SDR display can only display 256 brightness levels. The high
cost and the under-developing display technology remain major obstacles to the mass
production of HDR display devices. To solve this problem, the photographic reproduction
method becomes an essential technique and has been a prominent subject in the field of
image sensing research or the image-based applications [3].

2. Related Work

A photographic reproduction method should not only provide contrast adjustment
but also the preservation of the luminance, details, and even the vividness of the colors
of the original image. According to their modeling characteristics, most photographic
reproduction methods are usually divided into the following three categories. First, the
global-based photographic reproduction methods perform the same mapping function
for all image pixels based on the global features of the input HDR image. In other words,
an input pixel value produces a specific output value, regardless of its position. Both
linear mapping functions and different nonlinear mapping functions are used to mimic
the HVS. Reinhard and Devlin [4] proposed a global-based reproduction method using
electrophysiology and the photoreceptor model that reflects human perception. It is
a fast algorithm; however, the detail preserving is not considered. Mantiuk et al. [5]
presented a piece-wise linear reproduction method that minimizes visible distortions by
considering the penalty using the HVS contrast perception model. To reproduce optimal
scene-referred images on a range of display devices, their method can adjust the image
content by considering the display characteristics and surrounding illumination. However,
the local operation, such as sharpening, is not considered. In [6], Kim et al. proposed
integrating a modified weighted least square filter with mapping, which can preserve
detail and maintain the global contrast through the competitive learning neural network.
Furthermore, the color shift issue is solved by utilizing the Helmholtz–Kohlrausch effect in
the light correction stage. Gommelet et al. [7] designed a global-based reproduction method
to address the optimal rate-distortion problem, which typically occurs in the reconstruction
of an HDR signal. In [7], a novel distortion model was built that takes the image gradient
into account. Khan et al. [8] proposed a reproduction method that uses the features of
HVS and the threshold versus intensity curve to adjust the individual bin-widths of the
input image histogram. A global-based reproduction function is built using the modified
histogram; however, the local information of an image is not used during the reproduction.

The overall pros of the global-based photographic reproduction methods are the
capability to preserve the global contrast of the original images, and in addition, the
computational complexity is low. However, the global compression of the dynamic range
is typically accompanied by the suppression of local contrast, which is the inevitable con
of the global-based methods. Moreover, especially for the scenes with a large difference
in brightness, the bright and dark regions are the most severely sacrificed by detail loss
because, compared to the entire dynamic range, the local intensity variation in such regions
are almost ignorable.

To overcome the shortcomings of global-based methods, local-based photographic
reproduction methods are proposed. For the local-based reproduction methods, different
reproduction functions are designed to each pixel based on the pixel position and its
surrounding pixels. Different pixel positions can share the same intensity but may relate to
different reproduced values. Ahn et al. [9] proposed a local-based reproduction method,
which utilizes center/surround retinex theory to adapt the local contrast. This work
demonstrates superior contrast enhancement in the scenes with low log-average luminance.
Nevertheless, in [9], sometimes over-enhancement occurs in the details. Tan et al. [10]
proposed a halo-free reproduction method, which applies using an L0 smoothing filter to
mimic the adaptability of the HVS mechanism. Cyriac et al. [11] presented a two-stage
reproduction method, where the first stage is a simple gamma curve for global compression,
and the second stage is a local-based reproduction scheme using psychophysical models for
the visual cortex. However, the local-based processing in the second stage tends to degrade
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the overall naturalness. Croci et al. [12] proposed a reproduction method to reproduce the
HDR video, where a tone-curve-space alternative is used as a substitute for the temporal
per-pixel coherency to increase the computational efficiency. Li et al. [13] presented a
clustering-based content and color adaptive reproduction method, which divides the input
image into patches. By analyzing the local content information (e.g., patch mean, color
variation, and color structure), the patches are formed into clusters, and the tone mapping
is performed via a more compact domain. However, the patch-based processing tends to
ignore the image information as a whole.

Due to considering local features, the typical pro of the local-based photographic
reproduction methods is to provide more local details in dark and bright regions compared
with global-based reproduction methods. Therefore, the local-based methods are suitable
to the scenes where a large brightness difference exists. However, they are vulnerable to
artifacts such as halo effects and block effects, which cause an unnatural overall appearance.
Moreover, the global contrast decreases because of the lack of global features.

As both global- and local-based photographic reproduction methods have some draw-
backs, some researchers have proposed decomposition-based photographic reproduction
methods, which use decomposition techniques to obtain large-scale image structures
(i.e., base layers) and small-scale image textures (i.e., detail layers), and thus, global-based
(and local-based) approaches can be used for specific layers accordingly. Gu et al. [14]
designed a local edge-preserving filter that has a locally adaptive property. Based on
the filter, a retinex-based approach is presented, where the image is decomposed into
one base layer and three detail layers for the reproduction manipulation. Barai et al. [15]
proposed an HVS-inspired reproduction method, where the saliency map information is
fed into the guided filter for image decomposition. Then, global compression and detail
enhancement are performed in the base layer and the detail layer, respectively. Mezeni
and Saranovac [16] presented an enhanced reproduction method, which decomposes the
image into base/detail layers. Then, the base layer is scaled partially in the linear domain
and partially in the logarithmic domain, and a detail enhancement is performed in the
dark areas of the detail layer. However, when generating the output image, it is hard to
fuse individual layers suitably. Liang et al. [17] presented a hybrid layer decomposition
model for photographic reproduction, where a sparsity term is used to model the piecewise
smoothness of the base layer, and the other sparsity term with a structural prior is used to
model the piecewise constant effect of the detail layer. Miao et al. [18] presented a macro–
micro-modeling reproduction method, in which multi-layer decomposition is utilized from
the perspective of the micro model, and content-based global compression is utilized from
the perspective of the macro model. The representative pro of the decomposition-based
photographic reproduction methods is the flexibility to deal with different base and detail
layers separately. However, the con of such a method is the difficulty of blending individual
layers smoothly. That is, some blurs tend to occur in the final layer fusion process.

To exemplify the superiority of this work, Figure 1 shows a visual comparison
among the global-based, local-based, decomposition-based methods, and our proposed
method. In view of the abovementioned shortcomings of the global-based, local-based,
and decomposition-based methods, this paper presents a new photographic reproduction
method, which has the following three main advantages:

• We propose using a hybrid histogram analysis scheme to extract mutually compatible
global/local features in parallel, and a feature fusion scheme to construct the virtual
combined histogram, which allows us to inherit the superiority of the global-based
(and the local-based) methods smoothly.

• Instead of performing late fusion (i.e., finally fusing all the processed layers as the
decomposition-based methods do), the proposed virtual combined histogram equal-
ization scheme can fuse global/local features in an earlier stage, which increases the
naturalness of the output image.
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• Owning to the difference between the dark/bright regions and normal-luminance
regions, we propose using the weight map to adaptively modify the weights locally in
the feature fusion.
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Figure 1. A rough comparison among a global-based reproduction method [8] (bottom left), a local-
based reproduction method [9] (top left), a decomposition-based reproduction method [18] (right),
and our proposed method (middle). This example shows that our method inherits the advantages
of both global- and local-based reproduction method, while avoiding the unnaturalness issue of
decomposition-based reproduction method (due to processing different layers separately.

3. Proposed Approach
3.1. Pre-Processing for the Highlight/Shadow Detection

Figure 2 shows the overall framework of this study. The proposed method is designed
due to the strategy of improving the visibility of highlight and shadow areas, while
maintaining the global naturalness of the original image. In the pre-processing stage, a
quick photographic reproduction method [19] is applied to the original HDR signal to
obtain a pilot image (IPilot), which is a preliminary reproduced result with a simple global
compression. Although the pilot image might suffer from detail loss locally, it is good
enough for us to distinguish the dark/bright regions from the normal-luminance regions.
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Subsequently, we modify the work of [20] for highlight/shadow detection as follows.
First, a specular-free image (ISF) is defined as follows:

ISF
c (i, j) = IPilot

c (i, j)− IDark(i, j), (1)

where the subscript c ∈ R, G, B indicates one of the RGB color channels, and the dark
channel (IDark) is defined as follows:

IDark(i, j) = min
c∈R,G,B

IPilot
c (i, j) . (2)

As ISF is obtained by subtracting the minimum of RGB values from IPilot, at least
one of the three channels in ISF equals zero at each pixel position. Then, the modified
specular-free (MSF) image is obtained by adding the average of the dark channel image to
the specular-free image as follows:

IMSF
c (i, j) = IDark

+ ISF
c (i, j), (3)

In [20], the difference between the MSF image and the pilot image can be used to
detect the highlight regions in the image. With this feature, we find that if we multiply a
correction parameter (θ) with the threshold and compare it with the pilot image, we can
also detect shadow regions. Therefore, the proposed highlight/shadow detection scheme
can be expressed as follows:

pixel ε


highlight, if δc(i, j) > thr for all c
shadow, if IPilot

c (i, j) < θ·thr for all c
midtone, otherwise

. (4)

where δc = IPilot
c − IMSF

c , θ = 0.8 is an empirical value (from our experiments, 0.75 ≤ θ ≤ 0.85
would produce accurate detection result), and the threshold value (thr) is obtained by applying
the Otsu method in the pilot image. The Otsu method is an automatic way of creating
binarization in image processing, and we find that it is suitable to determine the threshold in
Equation (4). Figure 3 shows an example of the highlight/shadow detection results, which will
be used as the estimate of the steering weight coefficients in the feature fusion stage (described
later in Section 3.4).
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3.2. Luminance Separation and Initial Logarithmically Normalization

As luminance information is mainly affected by the dynamic range, distinguishing
luminance and chrominance from the original HDR signal is a common approach in photo-
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graphic reproduction. In this study, luminance information was extracted by converting
from RGB color space to CIE XYZ color space through the ITU-R BT.709 standard.

Lin = 0.2126·IH
R + 0.7152·IH

G + 0.0722·IH
B , (5)

where IH indicates the input HDR signal and Lin indicates the corresponding luminance,
which contains no chromatic information.

For different scenes, their dynamic range may vary quite greatly. To avoid the incon-
sistent dynamic range issue, the logarithmic function is a typical process to compress the
luminance domain according to the following Weber–Fechner theory:

Llog(i, j) = log10

(
Lin(i, j) + 10−6

)
, (6)

where 10−6 is added to avoid the singularity error occurring as the input pixel luminance
equals zero. Furthermore, to match the property that perceived brightness is proportional
to the logarithm of the actual luminance intensity, its logarithmically normalized value can
be expressed as follows:

Llog _n(i, j) =
Llog(i, j)−min

(
Llog(i, j)

)
max

(
Llog(i, j)

)
−min

(
Llog(i, j)

) , (7)

where max
(

Llog(i, j)
)

and min
(

Llog(i, j)
)

represent the maximum and minimum values
of Llog(i, j), respectively. To adapt various lighting conditions, the normalized logarithmic
luminance value (Llog _n(i, j)), which always ranges between 0 and 1, are analyzed in the
following steps.

3.3. Feature Extraction through Mutually Hybrid Histogram Analysis

The main challenge in photographic reproduction is to preserve both the global and
local features of the original image, i.e., maintaining both the entire luminance balance
and local detail information. In this study, the abovementioned features are neither the
feature points used in computer vision, nor the feature vectors used in machine learning.
The feature represents the general property of the entire image (i.e., global feature) or of
individual local regions (i.e., local features) that are needed in the proposed photographic
reproduction procedure.

Some proposed reproduction methods perform the global-based (and local-based)
processes separately; in other words, they first apply a global luminance adaption and
then perform local detail enhancement. However, we argue that this type of two-step
strategy may not be the optimal solution because the goals of these two steps are inherently
conflicting: one is to enhance the global features, and the other one is to enhance the
local features.

As shown in Figure 4, we propose a parallel framework to simultaneously analyze the
global histogram (constructed by the entire image) and local histogram (constructed by individ-
ual local image patches). The underlying concept of the proposed mutually hybrid histogram
analysis is to extract the mutually compatible features from two statistical approaches.
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ously using different statistical methods, i.e., Gaussian mixture model for the former and stratified sampling for the latter.
Although different statistical methods are applied, we aim to extract the mutually compatible features to form a virtual
combined histogram (introduced later in Section 3.4).

3.3.1. Global Region Analysis and Global Feature Extraction

In global region analysis, the logarithmically normalized luminance plane is first
transformed into a global histogram of K levels with equal bin width, where K is empirically
set as one thousand. When divided by the total number of pixels in the image, the global
histogram hG(xk) can be viewed as a probability density function of pixels. A parametric
statistical method called the Gaussian mixture model (GMM) can then be used to structure
hG(xk) as a weighted summation of three Gaussian functions as follows:

hG(xk) =
3

∑
n=1

αG
n ·g
(

xk, µG
n , σG

n

)
, (8)

g
(

xk, µG
n , σG

n

)
=

1
σG

n
√

2π
exp

[
−
(
xk − µG

n
)2

2
(
σG

n
)2

]
, (9)

where {xk, k = 0, 1, . . . , K− 1} indicates the quantized reproduced levels of Llog _n, and
αG

n , n = 1, 2, 3 is the weight of the n-th Gaussian function. The reason for using three
Gaussian functions to approximate hG(xk) is because in photographic reproduction, we
normally concern the following three main parts: the highlight area, midtone area, and
shadow area. From Equation (8), we refer to the global feature set as the following:

θG =
{

αG
n , µG

n , σG
n

∣∣∣n = 1, 2, 3
}

. (10)

The expectation-maximization (EM) algorithm [21] was adopted to solve the GMM
estimation problem, which is used to find the maximum likelihood estimates of parameters
in the statistical models involving unobserved latent variables. In this study, the likelihood
function is defined as follows:

Likelihood
(

θG
)
= ln

[
K−1

∏
K=0

hG(xk)

]
=

K−1

∏
K=0

ln hG(xk) . (11)
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To efficiently find the optimal θG, the derivatives of the log-likelihood with respect
to the initial αG

n , µG
n , and σG

n are, respectively, set as zero (i.e., the expectation step), which
yields a new parameter set of GMM (i.e., the maximization step). The EM algorithm itera-
tively switches between the expectation step and the maximization step until it converges
(Please refer to [21] for the details of EM).

3.3.2. Local Region Analysis and Local Feature Extraction

In local region analysis, a sliding window scheme is adopted to visit each individual
local region in raster scan order. Figure 5 illustrates the local region analysis, where a
local region is of size M × M (M = 129 as the default) and is centered at the current
processing position (i, j). Each local region is first divided into sixteen units with a size of
32 × 32 pixels, and 2 × 2 units constitute a partially overlapped subblock, e.g., the orange
(or the green) square shown in Figure 5.
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With consideration of the estimation accuracy and computation cost, each local region
is subsampled into nine partially overlapping subblocks (Bsub

n ) that correspond to the two
corner sets. First, the top-left (TL) corner set can be expressed by the following:{

CTL
n , n = 1, 2, . . . , 9

}
. (12)

where CTL
1 = (i− bM/2c, j− bM/2c), CTL

2 = (i− bM/2c, j− bM/4c),
CTL

3 = (i− bM/2c, j + 1), CTL
4 = (i− bM/4c, j− bM/2c),

CTL
5 = (i− bM/4c, j− bM/4c), CTL

6 = (i− bM/4c, j + 1), CTL
7 = (i + 1, j− bM/2c),

CTL
8 = (i + 1, j− bM/4c), and CTL

9 = (i + 1, j + 1). Second, the bottom-right (BR) cor-
ner set can be expressed by the following:{

CBR
n , n = 1, 2, . . . , 9

}
. (13)

where CBR
1 = (i− 1, j− 1), CBR

2 = (i− 1, j + bM/4c), CBR
3 = (i− 1, j + bM/2c),

CBR
4 = (i + bM/4c, j− 1), CBR

5 = (i + bM/4c, j + bM/4c),
CBR

6 = (i + bM/4c, j + bM/2c), CBR
7 = (i + bM/2c, j− 1),

CBR
8 = (i + bM/2c, j + bM/4c), and CBR

9 = (i + bM/2c, j + bM/2c). Each pair of(
CTL

n , CBR
n
)

specifies the n-th subblock. To generate mutually compatible features (compat-
ible to the global features) similar to Equation (8), this subsection aims to simulate each
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local histogram hL(xk) as a set of nine Gaussian functions g
(
xk, µL

n , σL
n
)

and to find the local
feature set as the following:

θL =
{

αL
n , µL

n , σL
n

∣∣∣n = 1, . . . , 9
}

. (14)

Instead of using GMM, we adopt another statistical method called stratified sampling,
in which the entire block is divided into homogeneous subblocks (defined as strata). The
reason for partially overlapping is to avoid image artifacts such as the blocking effect and
the halo effect. The distribution of each subblock is intentionally simulated as a Gaussian
function, where the subblock mean and the subblock standard deviation are treated as the
corresponding µL

n and σL
n in Equation (14), respectively. In addition, a spatial kernel (K) is

used to weight the spatial correlation as follows:

K =

 αL
1 αL

2 αL
3

αL
4 αL

5 αL
6

αL
7 αL

8 αL
9

 =
1

51

 5 6 5
6 7 6
5 6 5

 . (15)

Inspired by [22], we adopted a summed-area table approach [23] to reduce the compu-
tation complexity of local region analysis as follows. First, the summed-area table (TSA)
was generated by calculating the sum of all the pixels above and to the left of the current
position as the following:

TSA(i, j) = ∑
i′≤i,j′≤j

Llog _n
(
i′, j′

)
, (16)

Similar to Equation (16), the square summed-area table (T2
SA) was generated by calcu-

lating the sum of all pixel squares as the following:

T2
SA(i, j) = ∑

i′≤i,j′≤j
L2

log _n
(
i′, j′

)
(17)

Notably, both TSA and T2
SA could be efficiently computed through a one-pass proce-

dure over the image by the following:

Tp
SA(i, j) = Lp

log _n(i, j) + Tp
SA(i, j− 1)

+Tp
SA(i− 1, j)− Tp

SA(i− 1, j− 1),
(18)

where p = 1 and 2.
Once the two summed-area tables were generated, the mean and standard deviation

of each subblock could be quickly obtained by looking up TSA and T2
SA because of the

following closed-form solutions:

(Mean) µ = 1
N [TSA(i1, j1) + TSA(i0 − 1, j0 − 1)
−TSA(i0 − 1, j1)− TSA(i0, j1 − 1)],

(19)

(Standard Deviation) σ =

√
1
N

[
S− µ2

N

]
, (20)

where N is the number of pixels in the subblock, and S = T2
SA(i1, j1) + T2

SA(i0 − 1, j0 − 1)−
T2

SA(i0 − 1, j1)− T2
SA(i0, j1 − 1). The four positions (i0, j0), (i0, j1), (i1, j0), and (i1, j1) in-

dicate the top-left, the top-right, the bottom-left, and the bottom-left corners of the sub-
block, respectively.

3.4. Virtual Combined Histogram Construction Based on Feature Fusion

Histogram equalization (HE) is a well-known method that by analyzing the histogram,
pixel intensities can be arranged for enhancing the global contrast while maintaining image
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details by pursuing maximum entropy. As shown in the bottom row of Figure 4, both
the global histogram and the highlight/shadow local histogram can be approximated
(or characterized) as Gaussian mixtures. In this study, we propose a virtual combined
histogram construction scheme based on nominally fusing the local/global Gaussian
mixtures as follows.

First, considering that there is minor detail loss in the normal-luminance regions
and more detail loss in the under-luminance (or over-luminance) regions during the
reproduction process, the highlight/shadow detection result of Equation (4) is adopted to
generate a binary map, where the highlight/shadow pixels are recorded as “1”, and the
midtone pixels are recorded as “0”. A weight map function (τi,j) is generated by convolving
the binary map with a Gaussian low-pass filter (the Matlab inbuilt imgaussfilt function)
to smooth the weighting difference. By doing so, we aim to make greater use of the local
features (i.e., increase the weight map value in bright/dark regions) because the details of
such regions are generally vulnerable to loss. The weight map function varies in different
pixel positions because the weighting of local features should be region independent.
Therefore, a virtual combined histogram is constructed by fusing global and local features
through the following:

hComb
i,j (xk) =

(
ω1 − τi,j

)
·hG(xk) +

(
ω2 + τi,j

)
·hL

i,j(xk), (21)

where the subscript (i, j) indicate the pixel position, ω1 and ω2 represent the initial fusion
weights (we set ω1 = 0.4 and ω2 = 0.6 empirically), and hG(xk) and hL

i,j(xk) indicate the
global and the local Gaussian mixtures, respectively. Moreover, we set an upper bound to
constrain the maximum τi,j value as 0.2. That is, the minimum weight to the global Gaussian
mixtures in Equation (21) is guaranteed to be 0.2 to preserve the overall naturalness.

3.5. Luminance Modification and Color Recovery

Through the virtual combined histogram, a look-up table is generated in the traditional
HE manner with linear interpolation. That is, the output luminance plane was modified by
the following:

Lout(i, j) = min(Lout) + (max(Lout)−min(Lout))·CDFi,j(xk), (22)

where Lout is the adjusted luminance and CDFi,j(xk) is the Cumulative Distribution Func-
tion (CDF), which corresponds to the virtual combined histogram in Equation (21).

Overall, the pixel-wise modification function was controlled by manipulating both
the global and local features through the virtual combined histogram. As each combined
histogram was a summation of weighted Gaussian functions, the property of the Gauss
error function was used to simplify the calculation by using the following:

Φ(xk | µ, σ) =
1
2
+

1
2

Er f
(

x− µ√
2σ

)
, (23)

where Φ(xk | µ, σ) is the Gaussian CDF with parameters (µ, σ). The beauty of the proposed
virtual combined histogram scheme is that during the luminance modification process,
only the global (and local) feature sets are used. Actually, the construction of an entire
histogram is not needed.

Moreover, the Gauss error function Er f (x) can be approximated from [24] as the
following:

tanh
(

77x
75

+

(
116
25

)
tanh

(
147x

73
−
(

76
7

)
tanh

(
51x
278

)))
, (24)



Sensors 2021, 21, 6038 11 of 22

where tanh is the hyperbolic tangent function. Finally, the output reproduced LDR image
was obtained from restoring the color information by the following:

LDRR,G,B(i, j) =
(

HDRR,G,B(i, j)
Lin(i, j)

)s
·Lout(i, j), (25)

where HDRR,G,B represents the three channel values of the original HDR image, Lin and
Lout represent the luminance before and after the proposed method, and s is the saturation
factor (set as 0.6 in this study).

4. Experimental Results

In this section, we subjectively and objectively compare the effectiveness of the pro-
posed method with those of the other photographic reproduction methods to confirm
whether it affords more advantages than these methods. We selected seven classical and
state-of-the-art methods for our experiments, including the following global-based repro-
duction method: Reinhard et al. [4] (published in 2005); the following three local-based
reproduction methods: Ahn et al. [9] (published in 2013), Li et al. [13] (published in 2018),
and Gao et al. [25] (published in 2020); and the following three decomposition-based repro-
duction methods: Gu et al. [14] (published in 2013), Liang et al. [17] (published in 2018),
and Miao et al. [18] (published in 2019). For a comparison of the computational complexity,
taking the image memorial (with size of 768 × 512) as an example, the processing time
needed to generate a reproduced image is 0.252 s (in [4]), 0.533 s (in [9]), 5.301 s (in [13]),
0.627 s (in [25]), 0.788 s (in [14]), 2.189 s (in [17]), 0.733 s (in [18]), and 2.201 s (in the
proposed method). All the methods are adjusted with the default parameters based on the
suggestion of the original papers. In addition, the software and CPU are MATLAB R2016a
and Intel Core i7, respectively.

4.1. Subjective Analysis

In subjective analysis, the performance of different methods can be judged through
side-by-side visual comparison, such as according to the amount of regional detail infor-
mation, the naturalness, etc. The simple baseline LDR images shown in Figure 6 indicate
that a large luminance difference exists between the highlight and shadow areas of these
test images; thus, many details are lost.
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Sensors 2021, 21, 6038 14 of 22

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22 
 

 

rectangle) areas are visible; nevertheless, the image is somewhat unnatural due to the lack 
of global contrast. In Figure 9h, our method demonstrates favorable visual richness 
because both the global and local characteristics are simultaneously considered through 
the construction of a virtual combined histogram. Consequently, the details in the 
highlight and shadow areas are clearly presented and the contrast and color naturalness 
of the entire image are improved. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Visual comparison using the test image C33_Store. (a) Result of [4]. (b) Result of [9].
(c) Result of [13]. (d) Result of [25]. (e) Result of [14]. (f)Result of [17]. (g) Result of [18]. (h) Result of
the proposed method.



Sensors 2021, 21, 6038 15 of 22

Figure 7 shows the reproduced results obtained using the Synagoguei test image. In
Figure 7a, although the global brightness is balanced, the appearance of details is restricted
by the global-based model. In Figure 7b, the regional scene performances in both the red
and blue rectangles are poor and indistinct for the human eyes. In Figure 7c, the details
of the shadow areas are preserved, whereas those of the bright area (such as the white
dome) are almost imperceptible, and the tone of the entire image is monotonous and flat.
In Figure 7d, the details of the red and blue rectangles are visible; however, the color of sky
is oversaturated, resulting in a poor visual experience. In Figure 7e,f, although the details
of the red and blue rectangles can be clearly seen, the naturalness is inevitably lost. As such
methods are based on detail and base layer decomposition, image information tends to be
overemphasized during decomposition and merging procedures. In Figure 7g, the details
of the shadow areas (red and blue rectangles) are clear. However, the global contrast is
unnatural: the highlight sky region is darkened, whereas the shadow areas are brightened,
thus degrading the overall visual quality. In Figure 7h, our method shows advantages
in preserving the details of the highlight and shadow areas because the proposed virtual
combined histogram increases the pixel weights of local features for the highlight and
shadow areas.

Figure 8 shows the reproduced results obtained using the Cadik_Desk02 test image. It
is an indoor scene in which the lamp causes an extreme luminance difference in the captured
image. In Figure 8a, the text on the book is barely perceptible because of the strong lighting.
In Figure 8b,c, the detailed texture of the book is maintained; however, the global contrast
in both figures is unbalanced, and the color tone is flat. In Figure 8d, the details are slightly
preserved; however, some color shading occurs. In Figure 8e, the details are well retained;
however, the overall appearance is over-sharpened (e.g., lampshade in red rectangle). This
is because in the method of [14], the detail layer and base layer are processed separately,
thereby overamplifying the detail information. In Figure 8f, the details are not evident (blue
rectangle), and the global contrast is insufficient. In Figure 8g, although details are visible,
the overall image appears unreal owing to the imbalance between the macro- and the micro-
models. In Figure 8h, our method exhibits excellent naturalness of the image. Furthermore,
because of the improved visibility of the highlight and shadow areas, more visual content is
retained, and the overall color naturalness is satisfactory.

Figure 9 shows the reproduced results obtained using the C33_Store test image. In
Figure 9a, the detailed information of the red and blue rectangles is lost as a result of
global-based processing. In Figure 9b, although the details on the right side are more
visible than those in Figure 9a, the regional details of the red rectangle are lost as a result of
insufficient brightness. In Figure 9c,e, detailed information is perceptible but the degree
of naturalness is low and the visual effects are not rich enough. In Figure 9e, enhanced
smoothing is performed without consideration of the spatial correlation of the detail layer,
leading to sharper and less-natural images. In Figure 9d, the detailed information of the red
rectangle is slightly visible; however, the color is not vivid enough and lacks global contrast.
In Figure 9f, although the overall appearance is natural, the visibility and sharpness in the
red and blue rectangles areas are insufficient. In Figure 9g, the global contrast is good and
the details of the highlight (i.e., blue rectangle) and shadow (i.e., red rectangle) areas are
visible; nevertheless, the image is somewhat unnatural due to the lack of global contrast. In
Figure 9h, our method demonstrates favorable visual richness because both the global and
local characteristics are simultaneously considered through the construction of a virtual
combined histogram. Consequently, the details in the highlight and shadow areas are
clearly presented and the contrast and color naturalness of the entire image are improved.

4.2. Objective Analysis

In addition to the described subjective analysis, several objective quality indices were
also applied to evaluate whether our method outperforms the other algorithms. The first
quality index is called the tone-mapped image quality index (TMQI) [26]. The TMQI
evaluates the quality of the reproduced images in terms of the following three aspects:
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structural similarity (TMQI-S), naturalness (TMQI-N), and overall quality (TMQI-Q) as
follows. The TMQI-S value can be expressed by the following:

S =
2σx·σy + C1

σ2
x + σ2

y + C1
·

σxy + C2

σx·σy + C2
, (26)

where σx, σy, and σxy are the local standard deviations and the cross-correlation between the
corresponding HDR and LDR patches; and C1 and C2 are the positive stabilizing constants.
As suggested in [26], the local window size is set as 11× 11. The TMQI-N value can be
expressed by the following:

N = PmPd/ρ, (27)

where ρ is a normalization factor, and Pm and Pd are the Gaussian and the Beta probability
density functions, respectively. The TMQI-Q value can be expressed by the following:

Q = a·Sα + (1− a)·Nβ, (28)

where a is a weighting used to adjust the relative importance of the two terms (a is set as
0.8011, as suggested in [26]); S and N indicate TMQI-S and TMQI-N values, respectively;
and α and β indicate their sensitivities (α = 0.3046 and β = 0.7088, as suggested in [26]).

As shown in Equation (26), the TMQI-S is calculated using the standard deviations
and cross-correlation between the HDR images and the reproduced results. As shown
in Equation (27), the TMQI-N is calculated using Gaussian and Beta probability density
functions that model the histograms of the means and standard deviations in the statistics
conducted on massive natural images. As shown in Equation (28), the TMQI-Q is obtained
from the weighted indices of structural similarity (S value) and naturalness (N value) by
using a power function to adjust these two indicators. For the TMQI-S, the TMQI-N, and
the TMQI-Q, a larger index value indicates a better quality of the reproduced result. Table 1
lists the results of comparisons using Figures 7–9; apparently, the proposed method not
only generates more visually pleasing reproduced results (as shown in Figures 7–9), but
also outperforms the other seven algorithms in terms of the average TMQI-S, TMQI-N,
and TMQI-Q.

Table 1. Comparison of TMQI-S, TMQI-N, and TMQI-Q using the test images shown in Figures 7–9.

TMQI-S (Structural Similarity)

Method [4] [9] [13] [25] [14] [17] [18] Ours

Synagoguei 0.8724 0.8414 0.8254 0.7177 0.8266 0.7906 0.8191 0.9241

Cadik_Desk02 0.7338 0.7465 0.8116 0.7883 0.8516 0.7815 0.8037 0.9049

C33_Store 0.9342 0.9326 0.8924 0.9235 0.8972 0.9255 0.9090 0.9072
Average 0.8468 0.8402 0.8431 0.8098 0.8584 0.8326 0.8439 0.9121

TMQI-N (Naturalness)

Synagoguei 0.5045 0.5690 0.2826 0.8492 0.3186 0.5785 0.7930 0.9113

Cadik_Desk02 0.1387 0.0615 0.8236 0.1790 0.8517 0.3349 0.7084 0.7269

C33_Store 0.3809 0.6014 0.9239 0.8563 0.6999 0.9555 0.9104 0.9278
Average 0.3414 0.4106 0.6767 0.6282 0.6234 0.6230 0.8039 0.8554

TMQI-Q (Overall Quality)

Synagoguei 0.8910 0.8934 0.8369 0.9013 0.8444 0.8808 0.9226 0.9683

Cadik_Desk02 0.7781 0.7605 0.9251 0.8039 0.9403 0.8348 0.9251 0.9358

C33_Store 0.8851 0.9230 0.9633 0.9601 0.9295 0.9750 0.9642 0.9663
Average 0.8514 0.8590 0.9084 0.8884 0.9048 0.8969 0.9373 0.9568

To further evaluate whether the proposed method is more effective than the other
methods, we selected twenty-two test images from the datasets online [27–30]. Figure 10



Sensors 2021, 21, 6038 17 of 22

shows some thumbnails of the test images, and Table 2 lists their names with the corre-
sponding dynamic ranges. Moreover, four more objective quality metrics were added
for conducting a thorough discussion. The first one was the feature similarity index for
tone-mapped images (FSITM-TMQI) [31], an improved version of the TMQI that is based
on a comparison of the phase-derived feature maps of the original HDR and the reproduced
images. As in the case of the TMQI, a larger FSITM-TMQI value indicates a higher image
quality. The second one was the dubbed blind/referenceless image spatial quality evaluator
(BRISQUE) [32]. Unlike the TMQI and FSITM-TMQI, the BRISQUE is a no-reference quality
assessment that evaluates the possible loss of naturalness in the spatial domain through
scene statistics. The third one is the Blind TMQI (BTMQI) [33], another type of no-reference
quality assessment that evaluates image quality by introducing features of statistical nat-
uralness, structural preservation, and information entropy. For both the BRISQUE and
BTMQI, lower values indicate less loss of overall naturalness, that is, better quality. The
fourth one is the Integrated Local Natural Image Quality Evaluator (IL-NIQE) [34], which
is a non-reference quality evaluation based on integrating multiple image statistics such as
texture, color, and contrast. The IL-NIQE value reflects the global naturalness of the output
image. The lower the IL-NIQE value is, the more natural it is.
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Figure 10. Thumbnails of partial test images with corresponding information provided in Table 2. First row from left to
right: test images no. 1, no. 4, no. 6, and no. 5. Second row from left to right: test images no. 21, no. 17, and no. 3. Right
side: test images no. 22. All the images are processed using the proposed method.

Table 2. List of twenty-two test images and their dynamic ranges (D).

No. Name D No. Name D

1 Belgium 5.87 12 Cadik_Window 5.10

2 Fop_map 4.12 13 C19_Casement 2.46

3 Mt. Tam West 4.06 14 C21_Studio 2.88

4 Napa_Valley 5.36 15 C22_Fort 2.79

5 Rend01 5.84 16 C29_Buildings 3.52

6 Still_Life 3.91 17 C31_Parasol 3.57

7 Spheron_Siggraph 5.01 18 C33_Store 2.57

8 Synagogue 2.58 19 C37_Sculptures 4.17

9 Design Center 5.25 20 C38_Cross 3.65

10 Cadik_Desk01 5.68 21 Spheron_PriceWestern 3.73

11 Cadik_Desk02 4.26 22 Memorial 5.53

The scatter plot in Figure 11 shows the detailed information of all twenty-two test
images with each of the seven objective quality indices—TMQI-S, TMQI-N, TMQI-Q,
FSITM-TMQI, BRISQUE, BTMQI, and IL-NIQE. This figure shows that the performance
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of the proposed method was among the top three for most evaluation indicators. Table 3
lists the average scores of the twenty-two test images obtained using different methods.
With regard to the full-reference quality assessments (TMQI-S, TMQI-N, TMQI-Q, and
FSITM-TMQI), our method obtained the best scores for these four assessments. The
proposed method achieved the highest scores for the average TMQI-S, TMQI-N, and TMQI-
Q, indicating that it achieved a strong balance between image structure and naturalness.
In addition, our method also obtained the highest score for the average FSITM-TMQI,
indicating that it generated more visually pleasing images based on the evaluation using
phase-derived feature maps.
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Figure 11. Comparison of scatter plots using the twenty-two test images, where the horizontal
axis indicates the image order, and the vertical axis indicates the objective quality index. (a) Result
of TMQI-S. (b) Result of TMQI-N. (c) Result of TMQI-Q. (d) Result of FSITM-TMQI. (e) Result of
BRISQUE. (f) Result of BTMQI. (g) Result of IL-NIQE.

With regard to the no-reference quality assessments (BRISQUE, BTMQI, and IL-NIQE),
our methods all obtained the best scores of the average BRISQUE, BTMQI, and IL-NIQE. By
considering both global and local features to generate a virtual combined histogram, this
method maintains the naturalness of an image and produces an output reproduced image
with high image quality. Compared with global- and local-based reproduction methods that
consider only global features (or only local features), our method can simultaneously take
advantage of global and local features. Compared with the decomposition-based methods,
our method does not need to process the base and detail layers separately, thus avoiding
unnaturalness when blending different image layers. Overall, in Table 3, our method
achieved the highest score in all seven assessments, indicating its excellent performance
with natural-looking and rich information.

For the subjective analysis and evaluation, we invited 20 participants (10 males and
10 females) to take a subjective visual quality test. The participants were asked to rate the
visual subjectiveness of all the images without knowing the applied method on the output
images of twenty-two scenes using the eight comparative algorithms. The score ranges
from 1 to 10 points, where 1 point means “unsatisfied” and 10 points means “excellent”.
The mean and standard deviation of the mean opinion scores (MOS) of the subjective
users are shown in Figure 12, where the proposed method is significantly better than the
other methods.

Table 3. Overall comparison of average TMQI, FSITM-TMQI, BRISQUE, BTMQI, and IL-NIQE using the twenty-two
test images.

Method [4] [9] [13] [25] [14] [17] [18] Ours

TMQI-S 0.8144 0.7946 0.8085 0.7737 0.8197 0.8066 0.8199 0.8606

TMQI-N 0.3631 0.2765 0.6334 0.6143 0.5898 0.5689 0.7258 0.7805

TMQI-Q 0.8464 0.8185 0.8906 0.8734 0.8838 0.8776 0.9046 0.9308

FSITM-TMQI 0.8314 0.8265 0.8462 0.8340 0.8475 0.8487 0.8571 0.8784

BRISQUE 28.9897 23.6616 28.2828 23.6827 22.9164 26.2905 18.9477 18.9413

BTMQI 4.5153 4.0962 3.4366 4.3851 3.5776 3.6170 3.1737 2.7792

IL-NIQE 27.0699 24.0626 25.6440 25.1176 22.0920 22.9561 22.8037 21.6186

In addition, the abovementioned FSITM-TMQI is actually obtained by averaging the
scores of RGB channels, i.e., the FSITM-R, FSITM-G, and FSITM-B, respectively. The FSITM
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quality evaluation index is based on using the local phase similarity to construct a noise-
independent feature map in the R, G, and B planes. In view of this, we further compare the
average FSITM-R, FSITM-G, and FSITM-B using the twenty-two test images. As shown
in Figure 13, our improved method performs better than the other seven reproduction
methods in all the RGB channels of the FSITM, indicating that our method is not only
really close to the real-world scene but also has an attractive visually pleasing character
and natural color appearance.
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5. Conclusions

Although HDR cameras are popularized in the digital photography industry, the cur-
rent price of an HDR display is unaffordable to common people. Therefore, photographic
reproduction techniques have great commercial potential due to the limited availability
of HDR displays. This paper presented a new reproduction method, which considers
global/local features simultaneously to achieve both global contrast-maintenance and local
detail-preservation. Instead of performing the global-based and local-based processes
separately, we combined two statistical approaches to extract the mutually compatible
features to form a virtual combined histogram. In the feature fusion stage, a weight map
is used to modify the importance between the global and local features. Moreover, with
the integration of Gauss error function and global/local feature sets, the construction of
an entire histogram is not actually needed in the luminance modification stage. From the
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experimental results, the proposed method outperforms other state-of-the-art methods in
terms of various visual comparisons (Figures 7–9) and objective evaluations (Tables 1 and 3,
Figures 11 and 13). In the future, we plan to conduct the Wilcoxon test and the Friedman
test to check whether the experimental results are statistically significant.
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