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abstract

 

Pore-blocking toxins are valuable probes of ion channels that underlie electrical signaling. To be ef-
fective inhibitors, they must show high affinity and specificity and prevent ion conduction. The 22-residue sea
snail peptide, 

 

�

 

-conotoxin GIIIA, blocks the skeletal muscle sodium channel completely. Partially blocking pep-
tides, derived by making single or paired amino acid substitutions in 

 

�

 

-conotoxin GIIIA, allow a novel analysis of
blocking mechanisms. Replacement of one critical residue (Arg-13) yielded peptides that only partially blocked
single-channel current. These derivatives, and others with simultaneous substitution of a second residue, were
used to elucidate the structural basis of the toxin’s blocking action. The charge at residue-13 was the most striking
determinant. A positive charge was necessary, though not sufficient, for complete block. Blocking efficacy in-
creased with increasing residue-13 side chain size, regardless of charge, suggesting a steric contribution to inhibi-
tion. Charges grouped on one side of the toxin molecule at positions 2, 12, and 14 had a weaker influence,
whereas residue-16, on the opposite face of the toxin, was more influential. Most directly interpreted, the data sug-
gest that one side of the toxin is masked by close apposition to a binding surface on the pore, whereas the other
side, bearing Lys-16, is exposed to an aqueous cavity accessible to entering ions. Strong charge-dependent effects
emanate from this toxin surface. In the native toxin, Arg-13 probably presents a strategically placed electrostatic
barrier rather than effecting a complete steric occlusion of the pore. This differs from other well-described chan-
nel inhibitors such as the charybdotoxin family of potassium channel blockers and the sodium channel-blocking
guanidinium toxins (tetrodotoxin and saxitoxin), which appear to occlude the narrow part of the pore.
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I N T R O D U C T I O N

 

Blocking toxins bind to the pores of ion channels and
prevent ions from passing through. Charybdotoxin
(Miller, 1995) and agitoxin-2 (MacKinnon et al., 1998)
have been shown to dock as a cap over the potassium
channel pore to inhibit ionic current. Tetrodotoxin and
saxitoxin block at the selectivity filter (Hille, 1992)
of a variety of sodium channels. 

 

�

 

-Conotoxin GIIIA
(

 

�

 

CTX)* is a rigid, highly basic, 22–amino acid peptide
toxin (see Fig. 1) which blocks voltage-gated sodium
channels only from skeletal muscle (Gray et al., 1988).
Although 

 

�

 

CTX’s solution structure is known (Fig. 1 A;
Cruz et al., 1985) and its binding site overlaps with that
of tetrodotoxin and saxitoxin (Moczydlowski et al.,
1986), its mechanism of block is unclear. Block by a
toxin involves two events: (1) binding to the channel
and (2) inhibition of the ionic current. 

 

�

 

CTX binding

relies on multiple interactions with the channel, and is
not absolutely dependent on any single toxin residue
(Sato et al., 1991; Becker et al., 1992; Wakamatsu et al.,
1992; Chahine et al., 1995, 1998; Dudley et al., 2000). In
contrast, completeness of block of current by 

 

�

 

CTX,
depends critically on a single toxin residue, Arg-13
(Becker et al., 1992; French et al., 1996). Arg-13 of

 

�

 

CTX interacts strongly with the domain II residue Glu-
758, which is located on the outer rim of the channel’s
outside vestibule (Chang et al., 1998). When this argin-
ine is replaced by neutral glutamine, the bound mutant
toxin allows a significant residual single-channel current

 

(I

 

res

 

), 

 

�

 

30% of the unblocked current (I

 

o

 

; Becker et al.,
1992). This and related partial blockers offer unique
opportunities to study molecular determinants of ion
channel function without mutating the channel protein
(French et al., 1996; French and Horn, 1997). Here, we
identify the electrostatic and steric requirements for

 

�

 

CTX block of the ionic current.

 

M A T E R I A L S  A N D  M E T H O D S

 

Peptide Synthesis

 

Peptide synthesis has been described in detail in Chang et al.
(1998). In brief, linear peptides were produced by solid phase
synthesis using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry.
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Abbreviations

 

 

 

used in this paper:

 

 

 

�

 

CTX, 

 

�

 

-conotoxin GIIIA; I

 

res

 

, re-
sidual single-channel current with channel bound by toxin; F

 

res

 

, frac-
tion of control single-channel current remaining with channel
bound by toxin.
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Coupling of Fmoc amino acids was performed using the HBTU/
HOBT/DIPEA method on a synthesizer (model 431A; Applied
Biosystems). The raw peptides were air-oxidized and purified as
previously described (Chang et al., 1998). During oxidation, cy-
clization was monitored by analytical HPLC and was usually com-
plete after 2–3 d at 4

 

�

 

C. After folding of the peptide by air oxida-
tion, toxin derivatives were purified to near homogeneity by
HPLC (

 

�

 

95%, based on analytical HPLC). Active toxin deriva-
tives were isolated as a single major peak. The identity of purified
peptides were confirmed by quantitative amino acid analysis and,
in some cases, by electrospray mass spectroscopy molecular
weight determination.

As a check that the folded structures did not deviate qualita-
tively from that of the native toxin, for some derivatives 1-dimen-
sional proton NMR spectra were recorded at 15

 

�

 

C in aqueous so-
lution containing 5% D

 

2

 

O at 500 MHz. The proton chemical shifts
of the R13X derivatives were generally similar to those for the na-
tive toxin, with the exception of the shifts of Asp-12 and Gln-14,
for which some change would be expected in response to substitu-
tion at the adjacent position 13. Qualitative NOE data indicate
that the basic secondary structure remained the same in all cases
tested. Others (Sato et al., 1991; Wakamatsu et al., 1992) also have
reported that the R13A and R13K derivatives fold normally.

 

Membrane Vesicle Preparation and Bilayer Setup

 

Sodium channel-containing plasmalemmal vesicles were isolated
as described before (Becker et al., 1992), sonicated, and incu-
bated with 50 

 

�

 

M batrachotoxin (BTX) in a 0.3-M sucrose, 20-
mM HEPES solution, pH 7.4, and kept at 

 

�

 

20

 

�

 

C for at least 1 d
before use to inhibit channel inactivation (Khodorov, 1985).
1–5 

 

�

 

l of incubated vesicles was pipetted into one well of a bi-
layer chamber containing a bathing solution of 200 mM NaCl
(BHD), 10 mM MOPS (Sigma-Aldrich), 0.1 mM Na

 

2

 

EDTA
(Sigma-Aldrich), pH 7.0 (NaOH; BHD) in both wells. Bilayers
were formed from a 4:1 mixture of phosphatidylethanolamine and

 

phosphatidylcholine (Avanti Polar-Lipids) solution dissolved in
decane (Fisher Scientific) before vesicle injection. Saturated 3-M
KCl salt bridges linked the bathing solutions in each well to a 3-M
KCl reservoir with which contact was made via Ag/AgCl electrodes.

 

Data Acquisition

 

After incorporation, channel orientation was determined from
its voltage dependence of gating. Current measurements were
taken with an Axopatch-1B patch amplifier (Bessel filtered at 5
kHz, 80dB/decade; Axon Instruments), digitized with a Neuro
Data digitizer (model DR-384; Instruments Corp.), 8-pole low-
pass Bessel filtered at 200 Hz (

 

�

 

3dB; model 902LPF; Frequency
Devices), monitored on a digital oscilloscope (model 2090-IIIA;
Nicolet Instrument), and recorded onto videotape (model AG-
2200; Panasonic). Data were transcribed onto a computer during
the recording or through the videotape, sampled at 1 kHz
(Fetchex 5.5.1; Axon Instruments, Inc.).

 

Data Analysis

 

Data were analyzed by determining the single-channel amplitude
directly from the current traces (Fetchan 6.04; Axon Instruments,
Inc.). Records taken in the absence of conotoxin were used to dis-
tinguish between partially blocked, toxin-bound events (I

 

res

 

) and
open-channel (I

 

o

 

) events. The fractional residual current is de-
fined as F

 

res

 

 

 

�

 

 I

 

res

 

/I

 

o

 

. Because of the voltage dependence of I

 

res

 

,
F

 

res

 

(0 mV), determined by linear interpolation, was used to de-
scribe the degree of current block (see 

 

results

 

 and Fig. 2, B and
C). For each experiment, the voltage was corrected for the net
junction potential offset using the apparent reversal potential de-
termined under symmetric ionic conditions. In all but four exper-
iments, offsets were 

 

�

 

5 mV. In I-E plots, data from multiple exper-
iments were combined in voltage bins 5 mV in width. For the four
experiments with offsets 

 

�

 

5 mV, after offset correction, the cur-
rent values were in agreement with the other experiments.

Figure 1. Structure of
�CTX. (A) Aqueous solution
tertiary structure of �CTX at
pH 2. The two views differ by
a rotation of �180� around
an axis defined by the R13
side chain, which is thought
to enter the channel roughly
parallel to the pore axis. Al-
though the tertiary structure
of �CTX is held rigidly by dis-
ulfide bonds, all charged resi-
dues point outwards from a
discoidal structure of �20-Å
diameter and are likely flexi-
ble in solution. In this study,
amino acid substitutions were
made at positions 2, 12, 13,
14, and 16, as labeled. Coor-
dinates from the Protein Data
Bank (structure 1TCG; Lan-
celin et al., 1991). (B) Pri-
mary sequence of �CTX.

�CTX is a 22–amino acid peptide toxin found naturally in the venom of the Conus geographus cone snail (Gray et al., 1988). The toxin con-
tains seven basic (�) and two acidic (�) residues. With the amidated COOH-terminal (asterisk), nominal net charge of the toxin at neu-
tral pH is �6. The structure is held rigid by three disulfide bonds (connecting brackets) between paired cysteine residues (Price-Carter et
al., 1998; Kaerner and Rabenstein, 1999) and contains three modified amino acids, all hydroxyprolines (Hy; Gray et al., 1988). (C) Amino
acid substitutions into position-13. Nominal side chain charge at pH 7 is indicated. Side chains are shown in space-filling representation,
starting at C	, without their backbone atoms.
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Molecular Modeling and Electrostatic Calculations

 

The Na channel outer vestibule was modeled as previously de-
scribed (Lipkind and Fozzard, 2000). Briefly, the pore-lining P
loops of the Na channel were modeled as an 

 

	

 

-helix-turn-

 




 

-strand
motif, which preserves the relationships required for channel in-
teractions with tetrodotoxin and saxitoxin that have been found
experimentally. The outer vestibule was completed by docking the
P loops of domains I-IV into the extracellular part of the inverted
teepee structure, formed by the S5 and S6 

 

	

 

-helices, that were spa-
tially located by homology modeling based on the backbone coor-
dinates of the KcsA potassium channel (Doyle et al., 1998)

Electrostatic difference potentials (

 

��

 

) were calculated inside
the model of the sodium channel outer vestibule, containing a
docked conotoxin (Chang et al., 1998), using the DelPhi module
of Insight II (MSI, Inc.). The DelPhi module calculates the elec-
trostatic potentials in and around molecules using a finite differ-
ence solution to the nonlinear Poisson-Boltzmann equation (Gil-
son and Honig, 1987; Sharp and Honig, 1990). The dielectric
constants were set to 10 for the protein interior (for review see
Antosiewicz et al., 1994) and 80 for the solvent water region. The
carboxylates groups of Glu and Asp, the amino group of Lys, and
the guanidinium group of Arg were assumed to be unit charges.
The difference potentials are given with respect to the potential
in the complex of the WT toxin docked in the pore (see Figs. 5
and 6 B and Tables I and II) or with respect to the complex of
R13Q with the channel (Table II). For doubly substituted deriva-
tives (R13Q/XnY), difference potentials were initially calculated
with respect to the R13Q complex, and then expressed with re-
spect to the WT complex by addition of 

 

��

 

(R13Q-WT). Differ-
ence potentials are given in units of kT/e, where k is Boltz-
mann’s constant, T is temperature in degrees Kelvin, and e rep-
resents the elementary positive charge.

 

R E S U L T S

 

Residue-13 Charge Is a Critical Determinant of Block

 

We measured currents through single, batrachotoxin-
activated channels, in the presence and absence of vari-
ous 

 

�

 

CTX derivatives. R13Q was the only point mutant
of 

 

�

 

CTX previously found to allow an I

 

res 

 

� 

 

0 (Becker et
al., 1992). Residue-13 is known to interact, at least elec-
trostatically, with several residues along the permeation
pathway (Dudley et al., 1995; Chang et al., 1998), espe-
cially Glu-758 (interaction energy interaction energy

 

�

 

2.5 kcal/mol), a residue important for high sodium
conductance (Terlau et al., 1991; Chiamvimonvat et al.,
1996a,b). In Fig. 2, we compare the fractional residual
current at 0 mV (F

 

res

 

(0 mV); see 

 

materials and meth-
ods

 

) for three R13X derivatives of 

 

�

 

CTX with different
residue-13 charges but similar size: R13E, R13Q, and
R13O (ornithine-13; see Fig. 1 C for all residue-13 sub-
stitutions). These charge-changing substitutions show
residue-13 charge to be critical for current block. In
comparison to R13Q, a negative substitution (R13E) en-
hanced F

 

res

 

(0 mV), whereas a positive one (R13O) re-
duced it (Fig. 2 C). The results suggest a strong electro-
static contribution to current block by 

 

�

 

CTX.

 

Residue-13 Size Affects Block

 

Residue-13’s binding interaction with Glu-758 on the

Figure 2. �CTX block of so-
dium channel current depends
on toxin residue-13 charge, and
the residual current shows out-
ward rectification. (A) Single so-
dium channel current traces in
the presence of three size-similar
�CTX mutants, 100 �M R13E, 10
�M R13Q, and 4 �M R13O (orni-
thine-13), at �60 mV and �60
mV from one experiment for
each mutant. Solid line at bottom
of traces is 0-pA current. Large
deflections away from the solid
line (�1 pA) are channel open-
ings. Intermediate deflections
represent current through the
open channel, when bound by a
toxin mutant (residual current).
(B) Current-voltage plots of
R13E, R13Q, and R13O averaged
from six, five, and four experi-
ments, respectively. Io, the un-
blocked single channel current,
is averaged from the lumped
R13E, R13Q, and R13O experi-
ments (n � 15). As previously ob-
served, at extreme voltages (be-
yond 50 mV) the current-volt-

age plot of Io deviates slightly from linearity (Ravindran et al., 1992); however, the Ires plots of the residual currents for toxin mutant blocking
events deviate significantly from linearity even at low voltages. (C) Fractional residual current of R13E, R13Q, and R13O from part B. Fres �
Ires/Io. A linear fit was used to determine Fres(0 mV). The standard error in the fit of Fres(0 mV) was used as the error in plots of Fres(0 mV).
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channel is not only electrostatic (Chang et al., 1998),
suggesting that its influence on conduction also may in-
volve other factors. To test whether residue-13 can steri-
cally inhibit the current, we substituted residue-13 with
amino acids of variable length and volume (e.g., gluta-
mine in Fig. 2 A, asparagine and tryptophan in Fig. 3 A,
and alanine were used as neutral substitutions of differ-
ent sizes). With the substitutions grouped by their nom-
inal elementary charge, F

 

res

 

(0 mV) showed a similar de-
pendence on residue-13 length within each group (Fig.
3 B), as reflected in the “steric attenuation” for each
charge group (Fig. 3 C). Shorter residue-13 length re-
sulted in lesser block. A comparable correlation was
seen when side chain volume, instead of length, was
used as an index of side chain size. The only exception
to this pattern was R13A, which showed a smaller F

 

res

 

(0
mV) than expected for its size, based on the data for
the other substitutions. In general, decreases in resi-
due-13 length allow an increased residual current, but
there may be no further increase when the substituent
is made sufficiently small.

 

Other Charges can Contribute to Block

 

Regardless of the size or charge of the residue-13 sub-
stituent, I

 

res

 

 shows outward rectification (Fig. 2, A and
B, and Fig. 3 A), i.e., inward current is smaller than out-
ward for equal and opposite driving voltages under
symmetric ionic conditions. This contrasts with the lin-
ear I-V relation for the unblocked channel, and sug-

gests that, in addition to residue-13, other toxin resi-
dues interact with ions that enter the channel. To de-
termine the extent of contribution by other residues,
we constructed several double mutants, based on the
partial blocker (R13Q), with additional charge changes
at positions 2, 12, 14, or 16. At first glance, charge
changes at positions 2, 12, and 14 showed little influ-
ence on I

 

res

 

 (compare R13Q [Fig. 2 A] with D12N/
R13Q and R13Q/Q14R [Fig. 4 A]). However, system-
atic examination of F

 

res

 

(0 mV) shows that charge-
changing substitutions near residue-13 (positions 12
and 14) have a greater effect on block than more dis-
tant substitutions (e.g., position 2; Fig. 4 B). The impor-
tance of each position was quantified by defining an
“electrostatic attenuation” as stated in the figure legend
(Fig. 4 C). This analysis also suggests that residue-16
charge has a more dramatic influence than residues 2,
12, or 14 (see 

 

Modeling Electrostatic Effects

 

). These results
reveal two important points about current block by

 

�

 

CTX: (1) the position of a charge on the toxin is an
important determinant of its contribution to block;
and (2) block by residue-13 can mask the effects of
other toxin residues (individual neutralizations of nei-
ther residue-2, 12, nor 16, allowed any residual current;
Becker et al., 1992).

 

Modeling Electrostatic Effects

 

The prominent role of charge in the magnitude of par-
tial block implies a possible role for electrostatic exclu-

Figure 3. Single-channel
current block by �CTX deriv-
atives depends on toxin resi-
due-13 length. (A) Single so-
dium channel current traces
in the presence of �CTX mu-
tants with a neutral residue-
13: 10.5 �M R13N or 25 �M
R13W, at �60 mV and at �60
mV from one experiment for
each mutant. As with the
charge-substitution mutants,
the residual currents for resi-
due-13 size-changing mu-
tants show outward rectifica-
tion. General features of
traces are as described in Fig.
2 A. (B) In all charge-conser-
vative substitution groups,
Fres(0 mV) is linearly depen-
dent on the length of the sub-
stitution �3.7 Å. The R13A

mutant shows an Fres(0 mV) almost identical to R13Q, but smaller than R13N (see discussion). Data averaged from five, six, eight, four,
five, four, four, seven, and four experiments for R13D, R13E, R13A, R13N, R13Q, R13W, R13O, R13K, and R13R (wild type), respectively.
Length was determined in Chem3D (Cambridge Soft) as the distance between the centers of C	 and the most distant heavy atom in the
stretched out form of the amino acid side chain. (C) The steric attenuation of single-channel current, defined as the slope of the plot of
Fres(0 mV) versus length-13 (B), for all charge-conservative substitution groups �3.7 Å is nearly identical at approximately �0.05 Å�1, sum-
marizing the effect of length, independent of the influence of charge.
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sion as a mechanism for block. In Fig. 5, we show a mo-
lecular model of the pore vestibule–lining residues of
the channel (Lipkind and Fozzard, 2000; see also Lip-
kind and Fozzard, 1994; Chang et al., 1998; Dudley et
al., 2000), with �CTX held rigidly in place by the inter-
actions of several toxin residues. The outer vestibule is
thought to be a truncated funnel with a volume of
�300–400 A3, large enough for 30–40 water molecules.
In the model, Arg-13 intrudes into the outer vestibule
and binds to its rim, but it does not sterically occlude
the path leading to the selectivity filter. Instead, its posi-
tive charge energetically induces a “cation-excluded”
volume that fills the narrow part of the pore, thereby
preventing sodium permeation.

To explore the of role residue-13 charge in block of
single-channel current, we calculated the change in
electrostatic potential inside of the pore in the cases
of substitution of Arg-13 by Lys, Gln, or Glu, with re-
spect to the potential in the presence of Arg-13. Elec-
trostatic difference potentials (��) were calculated
inside the model of the sodium channel outer vesti-
bule, composed of the P loops and the S5 and S6
transmembrane helices of domains I–IV (materials
and methods). The difference potential calculation

avoids the much more problematic estimation of ab-
solute potentials and focuses the modeling on the ex-
perimentally defined differences among different
toxin derivatives.

For substitution of Arg by Lys, the electrostatic poten-
tial became relatively more negative in the vicinity of the
carboxylate group of the side chain of Glu-758 (�� �
�1kT; Fig. 5 A). The shorter side chain of lysine inter-
acts more weakly with Glu-758 than Arg-13, yielding a
relatively negative potential in the vicinity and an associ-
ated increase of residual current. Neutralization or
charge reversal at residue-13 produces a more dramatic
effect. The R13Q substitution abolishes electrostatic
screening of the negative charge of Glu-758, creating a
strongly negative potential nearby (Fig. 5 B, see the
�4.5kT contour). The surface corresponding to �� �
�1.0kT almost fills the lumen of the outer vestibule. A
further drop in �� occurs when Glu is placed in position
13 (Fig. 5 C). Thus, the observed increase in residual
current correlates well with the increasingly negative po-
tential within the pore and with the decrease in the
electrostatic neutralization by residue-13 of the nega-
tive electrostatic field generated by the carboxylate of
Glu-758.

Figure 4. �CTX block of single-channel current is influenced by charges on the toxin. Data are shown for single substitutions of Arg-13
or for double mutants in which substitution of one of the residues Asp-2, Asp-12, Gln-14, or Lys-16 is paired with the R13Q substitution to
give a measurable residual current. (A) Single sodium channel current traces in the presence of double mutants at �60 mV: 4 �M
D12N/R13Q or 5 �M R13Q/Q14R. General features of traces are as described in Fig. 2 A. (B) Plot of Fres(0 mV) at five toxin positions
(2, 12, 13, 14, and 16) shows that the greatest effect occurs with charge-changes at positions 13 and 16. The scatter, at each charge, in the
residue-13 plot reflects the length dependence described in Fig. 3. Data averaged from multiple experiments, as described in Fig. 3 B for
residue-13 substitutions, and from four experiments for each double mutant. Charge is defined as the nominal number of elementary
charges at neutral pH on the amino acid at the toxin position of interest. (C) A plot of the electrostatic attenuation, defined as the slope
of the linear fits from B, shows that the strongest attenuation of the current is induced by residues 13 and 16. Attenuation falls off with
distance from these residues (also see Fig. 6 A).
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As shown by these difference potential surfaces, sub-
stitution of neutral or acidic residues into position-13
allows a progressively larger fraction of the channel ves-
tibule to be more easily cation-accessible, and conse-
quently, ions pass through more freely. If we assume
that sodium must reach the selectivity filter to perme-
ate, then it is instructive to compare changes in electro-
static potential at the methyl group of Ala-1529, a mem-
ber of the DEKA selectivity motif. Ala was chosen be-
cause it remains fixed in location, whereas the side
chains of the other residues may be displaced by
changes in nearby charges or field. Table I shows the
difference potentials resulting from Arg-13 substitu-
tions and their ordered relation to Fres(0mV). Shorter
basic residues induce a smaller excluded volume than
Arg-13, and their charges are sufficiently distant from
the narrowest part of the pore that they do not block
completely. Fig. 5 also suggests that Arg-13 can attenu-
ate the normal catalytic influence of Glu-758 on cation
permeation. Thus, the model offers two possible elec-
trostatic mechanisms by which �CTX Arg-13 can block
ion permeation: (1) the basic residue induces a cation-
excluded volume, extending beyond its van der Waals
volume, that interrupts the conduction pathway; and
(2) Arg-13 masks the negative electrostatic field pro-
duced by Glu-758 in the vestibule, thereby reducing its
normal enhancement of ion conduction.

The calculations shown in Table I and Fig. 5 are intu-
itively satisfying, but not surprising, as similar predic-
tions might be made for various models in which Arg-
13 was critical for block. However, coupling studies
(Chang et al., 1998; Li et al., 2001b) indicate that
�CTX interacts most intimately with domain 2 of the
channel. Toxin residues that interact with this receptor

Figure 5. Electrostatic difference potential surfaces, calculated
for the model of Lipkind and Fozzard (2000), showing an increase
in a “permissive volume,” which favors cation entry after Arg-13 sub-
stitutions. The different isopotential surfaces are shown as �X13–

�R13. The surfaces, referenced to the wild-type toxin (Arg-13), are
displayed for (A) R13K, (B) the archetypal partial blocker, R13Q,
and (C) for R13E. For convenience, two different criteria levels are
shown in each panel, where the more negative contour corre-
sponds to the difference potential at Glu-758 for the mutant shown
and the less negative one is equal to the deeper potential contour
from the previous panel. The S5 and S6 helices from each domain
were included in the calculations, but, for clarity, are not shown in
the figure. The backbone of �CTX is shown in blue, and the back-
bones for the channel P-loops are shown in green and light green.
Residue-13 of the toxin, Glu-758 of channel domain II, and the se-
lectivity filter residues are shown as ball and stick representations.

T A B L E  I

Residual Currents and Calculated Difference Potentials at the Selectivity 
Filter for Substitutions at Residue-13 of �CTX

Substitution
�� (kT/e, at C
 of A1529)

relative to WT toxin Fres (0 mV)

R13K �0.1 0.05

R13Q �1.0 0.30

R13E �1.8 0.48
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surface would be shielded from the conduction path-
way by the bulk of the toxin. This prompted our exper-
iments with R13Q/K16N, and the additional analysis
shown in Fig. 6 (A and B) and Table II. Fig. 6 A shows
empirically that the charge-dependent effect of toxin
residues weakens as one moves to residues more distant
from narrowest part of the channel, defined by the
DEKA ring forming the selectivity filter. Fig. 6 B shows
that �� values at Ala-1529, resulting from charge
changes at five different toxin residues, are strongly
correlated with the measured fractional residual cur-
rents. In the model, �CTX is closer to channel do-
mains I and II, leaving a path on the opposite side, by
which ions can bypass the toxin (Fig. 6 C). This con-
ducting bypass is strongly influenced by toxin residue
16; experiments with �CTX-R13Q/K16N showed a
strong charge-dependent influence of this residue (see
also Fig. 4 C). Consistent with these data, �� surfaces
predict stronger effects of change in the charge at resi-
due-16 than at 2, 12, and 14 (Table II), thus, providing
independent support to coupling studies (Dudley et
al., 2000; Li et al., 2001a) regarding the specific toxin
orientation and location in the vestibule.

D I S C U S S I O N

�CTX is a potent all-or-none blocker of skeletal muscle
sodium channels (Moczydlowski et al., 1986). Block in-
volves the strategic positioning of a positive charge in the
ion permeation pathway near, but not at, the selectivity
filter. For wild-type toxin, essentially complete block is at-
tained with the basic residue, arginine, at position-13
(Fig. 4 B). Residue-13 is stabilized in the outer vestibule
of the pore by multiple toxin–channel binding interac-
tions (Sato et al., 1991; Becker et al., 1992; Dudley et al.,
1995; Chahine et al., 1998). Outward rectification found
in channels bound by toxin mutants shows that other
toxin residues can also impede ion movement (Figs. 2

Figure 6. (A) The electrostatic attenuation of single-channel cur-
rent (Fig. 4, B and C) decreases with distance of the charge change
from the selectivity filter residue, Ala-1529. Coincidentally, the
length constant for the decay of the attenuation (8.2 Å) approxi-
mately matches the Debye length in the bathing solution, indicat-
ing that the shielding within the vestibule of the toxin–pore com-
plex is roughly equivalent to that in free solution. Extrapolation, to
zero, of the smooth curve through the data points (arbitrarily
drawn as an exponential) suggests that a single positive charge at
Ala-1529 would be adequate to completely block current flow. (B)
Fres is closely correlated with �� estimated at C
 of Ala-1529 (r �
0.95, P � 0.01). Labeling is as in Fig. 4 B; double substitutions are
labeled in red. (C) Cartoon of the model showing the putative
path of ion flow through the partially occluded channel. The ori-

entation of �CTX is similar to the right hand view in Fig. 1. On the
toxin, arginine residues are shown in dark blue (Arg-1, top left;
Arg-13, bottom; Arg-19 – top right); Lys-16, cyan; Asp-12, red; and
Gln-14, green. The selectivity filter is made up of the DEKA resi-
dues from P loops of domains I-IV, respectively. Toxin residue Lys-
16 faces the conducting path, consistent with its strong effect on
the residual current. Arg-13 is nearest the DEKA ring.

T A B L E  I I

Residual Currents and Calculated Difference Potentials at the Selectivity Filter 
for Doubly Substituted �CTX Derivatives of Form R13Q/XnY

Second 
substitution

�� (kT/e, at C
 of A1529)
relative to R13Q

�� (kT/e, at C
 of A1529)
relative to WT toxin Fres (0 mV)

D2N (�/o) 0.2 �0.8 0.29

D12N (�/o) 0.3 �0.7 0.26

Q14R (o/�) 0.3 �0.7 0.24

K16N (�/o) �0.5 �1.5 0.56
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and 3 A). Also, the observation of a significant Ires with
all residue-13 mutants, including the bulky R13W (van
der Waals volumes [Creighton, 1993] in Å3: W, 163; R,
148), suggests that probably not even the wild-type toxin
completely occludes the selectivity filter. Thus, �CTX
block of current appears to rely on electrostatic repul-
sion of permeating ions centered near residue-13, with
supporting contributions from other basic toxin resi-
dues (Lys-8, 9, 11, and 16; and Arg-1 and 19).

�CTX residue-13 interacts most prominently with
Glu-758, a residue three positions outward along the
primary sequence from the channel’s selectivity filter
(Benitah et al., 1996; Pérez-García et al., 1996; Yama-
gishi et al., 1997; Chang et al., 1998). In the absence of
toxin, Glu-758 is critical for ion conduction but not for
selectivity (Terlau et al., 1991; Chiamvimonvat et al.,
1996a,b). Mutation of Glu-758 to a cysteine (E758C),
which is partially negative at neutral pH, reduces the
single-channel current of fenvalerate-activated chan-
nels to �36% of the wild-type value (Chiamvimonvat et
al., 1996b), a value between the Fres(0 mV) of the
R13Q- and R13E-bound channels. Furthermore, cad-
mium block of these channels results in a residual
current �17.5% of the wild-type channel amplitude
(Tsushima et al., 1997), roughly mimicking the block
by R13O. The similarity of Fres for the E758C channel
mutant and that for wild-type channels bound by
�CTX mutants suggests that the toxin may block the
ionic current through sodium channels in part by re-
ducing the effectiveness of E758 in facilitating cation
movement through the pore.

Enhancement of block by increasing residue-13
length appears to reflect a true steric inhibition, rather
than a secondary effect of positioning of a side chain
charge for effective block, as size dependence is essen-
tially identical for positive, neutral and negative resi-
dues. With one exception (alanine), longer amino ac-
ids blocked more completely than shorter ones of the
same charge (Fig. 3 B). Enhanced block by larger resi-
dues may be due to a simple reduction in accessible vol-
ume, perhaps supplemented by entropic effects from
changes in the degree of ordering of water. Also,
deeper intrusion into the channel pore by larger resi-
dues may allow them to better interact with Glu-758
and possibly the selectivity filter (Chang et al., 1998).
Alternatively, a large residue-13 may be able to displace
the flexible E758 side chain (Benitah et al., 1997) out
of its normal position in the ion conducting pathway
(Chiamvimonvat et al., 1996a,b). This may explain why
R13A block did not follow the size trend shown by the
other mutants. Block by R13A may result only from the
effects of the remaining bulk of the toxin, with the Ala-
13 side chain unable to interact either with the con-
ducting ions, or with Glu-758 and other residues lining
the permeation pathway. However, Asn-13 in R13N,

which gave a slightly larger Fres(0 mV) than R13A (Fig.
3 B), may form polar interactions with Glu-758 or other
charged or polar channel residues, as is also possible
for R13Q and R13W.

In discussing the steric contributions to block, we
have, for simplicity, focused on a static view of side
chains that occupy a fixed position within the vestibule
and reduce the conductance by directly excluding ions
from part of the normal conducting pathway. Although
this is doubtless an oversimplification, it is consistent
with most of the data in hand. At another extreme is
the alternate hypothesis that the residue-13 side chain
continuously flip-flops, too rapidly to be resolved, be-
tween a nonblocking and a fully blocking conforma-
tion when the toxin is bound. The magnitude of the re-
sidual current would then be determined by the rela-
tive flip and flop rates (i.e., it would depend on the
stability of the fully blocking configuration). For such
an explanation to fit our data, the stability of this
blocked configuration would have to be tightly corre-
lated with side chain size. There is no such correlation
of residual currents with the affinities determined from
the observable blocking kinetics (not shown), which
depend strongly on the nature of residue-13. Thus, a
simple contribution of steric occlusion to block is a bet-
ter explanation of the available data.

Use of partially blocking toxin derivatives has opened
a unique window into the structural basis of ion conduc-
tion. This viewpoint complements and extends studies
using site-directed mutagenesis of the channel protein.
While one might surmise that binding of the relatively
bulky �CTX molecule in the pore might significantly
distort pore structure and hence, function, experimen-
tal evidence suggests that little general perturbation of
pore properties occurs: preliminary experiments under
bi-ionic conditions revealed no obvious change in so-
dium to potassium selectivity (unpublished data); and
voltage-dependent activation gating, although measur-
ably shifted on the voltage axis, is modified only subtly
(French et al., 1996). Furthermore, binding of R13Q
tends to normalize ultraslow inactivation induced by a
pore mutation, suggesting that the bound toxin may act
as a splint, tending to support the pore in a normal con-
formation (Todt et al., 1999).

It is of interest to reflect briefly on the molecular
strategies of different channel-inhibiting toxins. Im-
redy and MacKinnon (2000) recently identified resi-
dues contributing to the interacting surfaces of �-den-
drotoxin and a voltage-dependent K channel. This
toxin appears not to physically occlude the pore, but
rather binds to the adjacent “turret” structure; and, al-
though it can induce partial block, the authors argue
that this probably results from a conformational restric-
tion of pore dynamics rather than an electrostatic inhi-
bition of conduction. In contrast, as noted earlier, scor-
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pion toxins such as charybdotoxin plug potassium
channels with a lysine side chain entering the narrow
part of the pore (Park and Miller, 1992). Whole-cell
data suggest that some pore-targeted peptide calcium
channel toxins may cause incomplete block (Mintz,
1994; Sutton et al., 1998). If this is confirmed by de-
tailed single-channel analyses, it may reflect a structural
feature common to the vestibules of sodium and cal-
cium channels that is conducive to this behavior. Both
competition with guanidinium toxins (Moczydlowski et
al., 1986), and transchannel interactions with an am-
monium pore blocker (French et al., 1996) suggest that
�CTX enters the sodium channel vestibule, but cou-
pling data (Dudley et al., 1995; Chang et al., 1998; Li et
al., 2001a,b), and our present results, argue against an
intimate interaction with the selectivity filter, and
against physical occlusion of the pore. Rather, com-
pleteness of block of the current appears to rely on an
electrostatic “occlusion.” Striking evidence is provided
for this conclusion by the strictly empirical, position-
dependent correlations between residual current and
charge (Fig. 4 B), as well as the model-dependent cor-
relation between residual current and the calculated
difference potentials in Fig. 6 B.

Does this strategy have any biological significance for
the snail that produces the toxin? A remarkable feature
of �CTX action is its isoform specificity: potent inhibi-
tion of skeletal muscle channels, but very weak interac-
tion with the highly homologous isoforms in heart and
brain. The fish-hunting strategy of certain snails rests
on rapid immobilization depending on an initial spas-
tic immobilization initiated by neuronal hyperactivity,
followed later by flaccid paralysis that facilitates inges-
tion (Terlau et al., 1996). In this context, an indiscrimi-
nate Na channel-blocking toxin might be less effective
than one targeted specifically to skeletal muscle chan-
nels, which is distributed via the circulation over a pe-
riod of seconds to minutes after injection. Evolution of
an isoform-specific toxin can be expected to target
parts of the channel that are not conserved among re-
lated isoforms, and thus not to rely on the selectivity fil-
ter for specific binding. For a relatively small toxin like
�CTX (22 amino acids as compared with 37 for charyb-
dotoxin, and �60 for the dendrotoxins), vestibule tar-
geting without intimate binding to the selectivity filter
might be more easily achieved.

In conclusion, �CTX blocks sodium channels in at
least two ways. Most importantly, the charge of Arg-13
seems, in a highly focal manner, to override the con-
ductance-enhancing electrostatic effects of Glu-758 and
other acidic or polar channel residues (e.g., Glu-755;
Chang et al., 1998). This appears to be the key require-
ment for all-or-none block, which is not maintained by
charge-conserving substitutions of the smaller basic res-
idues, lysine and ornithine. Second, positive charges at

other residues, plus the physical bulk of the toxin, re-
duce the effective capture volume from which ions en-
ter the channel vestibule.
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