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Abstract

Background: The advent of next-generation sequencing technologies empowered a wide variety of transcriptomics
studies. A widely studied topic is gene fusion which is observed in many cancer types and suspected of having
oncogenic properties. Gene fusions are the result of structural genomic events that bring two genes closely located
and result in a fused transcript. This is different from fusion transcripts created during or after the transcription process.
These chimeric transcripts are also known as read-through and trans-splicing transcripts. Gene fusion discovery with
short reads is a well-studied problem, and many methods have been developed. But the sensitivity of these methods
is limited by the technology, especially the short read length. Advances in long-read sequencing technologies allow
the generation of long transcriptomics reads at a low cost. Transcriptomic long-read sequencing presents unique
opportunities to overcome the shortcomings of short-read technologies for gene fusion detection while introducing
new challenges.

Results: We present Genion, a sensitive and fast gene fusion detection method that can also detect read-through
events. We compare Genion against a recently introduced long-read gene fusion discovery method, LongGF, both on
simulated and real datasets. On simulated data, Genion accurately identifies the gene fusions and its clustering
accuracy for detecting fusion reads is better than LongGF. Furthermore, our results on the breast cancer cell line
MCF-7 show that Genion correctly identifies all the experimentally validated gene fusions.

Conclusions: Genion is an accurate gene fusion caller. Genion is implemented in C++ and is available at https://
github.com/vpc-ccg/genion.
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Background
Gene fusions are aberrations that result from genomic
events such as deletions, inversions or translocations,
whereby segments of two genes become closely located
and are transcribed together into a chimeric RNA
molecule. Gene fusions may hinder the original functions
of the fused genes and can introduce functional novelty
[1]. We refer to the study by Wu et al. [2] for a detailed
discussion on gene fusions and chimeric RNAs.
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Gene fusions are observed in many types of cancer.
For example, the BCR-ABL1 fusion, caused by a balanced
reciprocal translocation between chromosomes 9 and 22,
is observed in chronic myeloid leukemia [3]. This gene
fusion causes genome instability and impairs signaling
pathways [4]. Gene fusions between androgen regulated
genes and genes from the ETS family are observed inmany
prostate cancer patients [5, 6]. TMPRSS2-ERG is one of
such fusions created by the deletion of ∼ 2.8Mb between
these genes. This fusion is observed in ∼ 50% of prostate
cancer patients and is associated with high expression of
estrogen regulated gene (ERG) [7]. Several studies sug-
gest that recurrent gene fusions can be used as potential
biomarkers in cancer [8, 9].Moreover, gene fusions are not
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specific to cancer and are also important for other diseases
[10–12]. All this underscores the importance of detecting
accurately gene fusions.
Traditionally gene fusion discovery is done using short

reads generated by Illumina sequencing. Gene fusion dis-
covery with short paired-end reads is a well-studied prob-
lem and many tools have been developed to address it.
These tools use approaches based on either reads map-
ping or assembly. We refer to Haas et al. [13] for a recent
review focusing on gene fusions in cancer, showing that
mapping-based methods generally outperform assembly-
based methods. Detecting gene fusion from RNA-seq
short reads is a very active research area, with novel
methods being published regularly (e.g. Chiu et al. [14],
Dehghannasiri et al. [15]).
While RNA-seq short reads are adequate for calcu-

lating gene expression, they do not perform as well
for the discovery of gene fusions caused by genomic
events. This is mainly due to the weakness of the sig-
nal provided by mapped short reads, especially in the
case of splicing events that results in split mappings of
the reads around gene fusion breakpoints. Furthermore,
gene fusions are not the only possible cause resulting in
chimeric RNA reads; read-through and trans-splicing are
biological events that generate chimeric RNA molecules
during or after transcription [16, 17]. Additionally, library
preparation and sequencing can lead to the creation of
artifactual chimeric RNA reads. It is generally difficult
to differentiate chimeric RNA reads caused by sequenc-
ing or non-genomic transcriptional events from actual
gene fusion reads that are caused by genomic events with-
out using complementary genome sequencing data. This
issue has important implications toward the detection of
potential cancer biomarkers.
Transcriptomics Long-Read Sequencing (TLRS) is an

emerging technology that offers an opportunity to over-
come these issues [18]. TLRS is a promising approach
for the low-cost detection of gene fusions while allow-
ing the precise characterization of the fusion isoforms. To
the best of our knowledge, AERON [19] (still in devel-
opment) and LongGF are the only published tools that
are capable of detecting gene fusions from TLRS. AERON
uses a sequence to graph alignment approach to find gene
fusions, while LongGF uses splice aware mappings to call
gene fusions.
While at first, it may seem that gene fusion discovery

from transcriptomics long reads might not be difficult
due to the length of the reads that can span the full
length or large parts of the transcripts, we show that
the various mechanisms creating chimeric RNA reads
introduce non-trivial challenges. While finding the reads
that map over multiple genes, indicating potential gene
fusions, is straightforward, the challenging part of gene
fusion discovery is to identify such reads supporting true

fusions, which form a minority of the multi-gene reads.
For example, in our experiments on PacBio IsoSeq data
for the MCF-7 cell line [20], out of ∼ 2.4 million reads,
∼ 180, 000 reads were mapped to multiple genes, but
only ∼ 2, 000 supported high confidence gene fusions.
To address these challenges, we introduce a new com-
putational gene fusion discovery method, Genion (GENe
fusION). From the mapping of transcriptomic long reads
to a reference genome, Genion first identifies chains of
exons. Reads with chains that contain exons from several
genes provide an initial set of reads supporting potential
gene fusions. Then, Genion clusters the reads that indi-
cate potential gene fusions to define fusion candidates and
ranks these fusion candidates, using a statistical approach
based on the analysis of background expression patterns
of the normal transcripts for the involved genes and on the
co-occurrence of the fusion candidates in other potential
fusion events.
In order to evaluate the sensitivity and accuracy of

Genion, we generated simulated data by spiking known
gene fusions from the Cosmic database [21] into a human
transcriptome with an expression profile defined from
data from the 22Rv1 prostate cancer cell line. On this sim-
ulated data, Genion performed comparably to LongGF,
the only other long reads fusion discovery tool we could
run on this data, by identifying one more gene fusion.
Furthermore, we evaluated Genion on a breast cancer
cell line, MCF-7, where both Genion and LongGF iden-
tified three experimentally validated fusions successfully.
As for this dataset, for 13 additional fusions, validated
from short reads, although LongGF did find 5 more gene
fusions than Genion, we suspect that some of the reported
gene fusions were in fact incorrect due to features sug-
gesting they might be false positives. Moreover, the total
number of the fusions calls reported by LongGF is 9×
the number of fusions called by Genion and ∼ 40% of
the LongGF fusion calls were shown to be random pair-
ing by Genion. Finally, we compared the two tools on an
in-house dataset generated from the prostate cancer cell
line 22Rv1 [22], a well-studied cell line known for express-
ing different variants of the Androgen Receptor (AR) gene.
We are not aware of any validated fusion on this cell line
and we believe that this cell line can play a unique role as
a negative control. On this dataset, Genion reported only
one gene fusion while LongGF reported 70 gene fusions,
including the one reported by Genion.

Implementation
Preliminaries
Terminology As the terminology for gene fusions is
inconsistent between different studies, we first formally
define the terminology that will be used throughout this
manuscript. Chimera or chimeric read refers to any RNA
read that contains sequences from multiple genes. To
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denote a chimera of genesA and B, we useA : B. Chimeras
can be classified into five categories: (i) Gene fusion: a
chimera created by a genomic structural variation such
as deletion, inversion or translocation [23]. (ii) Transcrip-
tional read-through: a read sequenced from a molecule
that is formed by the splicing of exons of multiple genes
that are on the same strand and are in close proximity of
each other [17]. Read-through events are caused by non-
genomic events and tend to join the exons of the 5′ gene
to the exons of the 3′ gene [17]. Recurrent read-through
transcripts have been observed in breast and prostate can-
cers [17, 24] and may have biological implications. (iii)
Trans-splicing: a form of RNA processing whereby exons
from two different primary RNA transcripts are ligated
[16]. (iv) Library preparation random-pairing: a common
artifact where different RNA molecules randomly attach
together during the library preparation (e.g. due to tem-
plate switching [25]). (v) Base calling random-pairing: a
chimera that is caused by erroneous segmentation by the
base calling software which result in two molecules being
represented by a single read. This artifact is specific to
Nanopore sequencing and not observed in PacBio data.

Overview Genion starts by mapping reads to the human
reference genome. These mappings are then processed to
extract sets of interval pairs, referred as segments, repre-
senting the positions of mapped regions on the reads and
on the reference genome. These segments are matched
with annotated exons that overlap with them. Using a
dynamic programming exon chaining algorithm, Genion
associates each read with one or more sets of exons that
are expressed in the read. We call each such set an exon
chain. These chains are clustered into groups of chimeric
reads that involve the same two different genes. Each
such cluster is statistically tested to remove candidates
likely originating from random pairing. Then, each clus-
ter is analyzed during a post-processing step in order

to define its likely origin (gene fusion, read-through or
trans-splicing). Overall, Genion has three main stages: (i)
pre-processing, (ii) chimera identification, and (iii) gene
fusion calling. Figure 1 depicts an overview of the Genion
pipeline which we describe in detail in the following
sections.

Pre-processing
In this stage, Genion maps the TLRS data onto the human
reference genome and for each read, it produces a list of
pairs of aligned intervals, one on the read and one on the
genome, together with an annotation of the read in terms
of exons contained in these intervals.

Mapping transcriptomics reads. We first map all TLRS
reads to a reference genome (human genome version
GRCh38) using the splice-aware mapper deSALT [26].
We mask the mapped parts of the reads and map the
masked reads using again deSALT with the same settings
to find mappings from the parts of the reads that were
initially unmapped and merge the two sets of mappings.
We then associate to each read a set of mapped segments,
composed each of a read interval and the corresponding
genome interval it maps to. Note that read intervals do not
overlap while genome intervals might overlap. In order
to account for potential indels (due to sequencing errors
[27]) that would disrupt such segments, Genion merges
consecutive segments if the corresponding intervals are
less than 10 nucleotides apart both on the read and on the
reference genome.

Annotating segments. Next, we annotate each segment
with the set of exons its genome interval overlaps with.
For this task, we use the Ensembl human gene annotation
(release 97) database [28]. This database contains 60,617
genes (including coding and non-coding), known isoforms
of these genes and exons present in each isoform.We build

Fig. 1 Genion pipeline. Preprocessing step produces alignment intervals for each input read. Paftools [30] is used to convert the mappings from
SAM to PAF format. Mapped parts of the reads are masked and mapped again. Outputs of mapping steps are merged and converted to set of
segments and annotated. Chimeric Read Identification step chains the annotated segments of each read and identifies the gene content.
Chimeric Cluster Characterization step takes single-gene aligned chains to calculate gene expressions. Multi-gene aligned chains are clustered.
Each cluster is statistically tested and FDR correction is applied on calculated p-values. For each cluster FiN and ff-igf scores are calculated. Clusters
are characterized and ranked according to these scores and reported
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an interval tree of the annotated exons, a data structure
that allows Genion to detect quickly and accurately all the
overlaps between exons and genome intervals, with no
restriction on the length of the overlap.
Note that more than one exon can annotate each seg-

ment as adjacent exons may be close enough to overlap
with a single segment, different isoforms of the same
gene may have overlapping exons or exonic regions of
two distinct genes may overlap. Furthermore, if the set of
the exons associated with a segment is empty, this likely
implies it belongs to an intronic or an intergenic region.
The result of this preprocessing phase is the annota-

tion of each segment resulting from the mapping by a set
of exons, that will be used as features associated to reads
in the next phase aimed at detecting potentially chimeric
reads.

Chimeric reads identification
In this step we aim to associate to each read an ordered
list of non-overlapping unique exons, that we call an exon
chain. Exon chains will be used as a coarse encoding of
reads in order to cluster reads into groups likely origi-
nating from the same isoform. Such clusters will then be
used in two ways: (1) clusters associated to multi-gene
exon chains will be considered as a ground set that con-
tains reads from potential gene fusion isoforms, and (ii)
clusters associated to single-gene exon chains will be used
to calculate the expected expression of individual genes,
an important feature to filter out false positive candidate
gene fusions in a later step.

Obtaining optimal exon chains. To compute exon
chains, we devised an algorithm inspired by co-linear
chaining dynamic programming (DP) algorithms (see [29]
for a recent reference on chaining algorithms).
Our algorithm aims to maximize the exonic sequence

content of a chain while minimizing the number of
gene/isoform switches between two consecutive seg-
ments.
In order to explain the algorithm, we define the nota-

tions that are used in the DP equations. A given read r
has a set of segments. Each segment is a triplet (Ir , IG,D)

where Ir = (rs, re) is a read interval, IG = (gs, ge) is a
genome interval, and D = {−1,+1} is the direction of
the mapping of Ir to IG. Each IG overlaps with at least
one isoform, and each overlap is represented by a triplet
(Ie,GIe,TIe) where Ie = (ges, gee) is an isoform interval,
GIe is a gene identifier and TIe is an isoform identifier
. Thus, each read can be represented by a list M =
[m1,m2, . . . ,mn] of 6-tuple mj = (Ijr , I

j
G,D

j, Ije,GI
j
e,TI

j
e).

This set represents the association between segments and
exons.

Genion performs the DP per read independent of the
other reads and computes for each read a list S where
S[ c] is the maximum score of chains ending with M[ c].
First, we calculate the overlap between the genomic inter-
val of every segment and its overlapping exons through
the reciprocal overlap formula given in (Eq. 1), which is
defined as the size of the intersection divided by the size
of the larger interval. Second, we find all the parents of c
through Eq. 2: p is a parent of c if the read interval of p pre-
cedes the read interval of c and their respective genomic
intervals are preceding each other in the direction of the
mapping (e.g. if on the forward strand, IpG occurs before
IcG). Note that if the direction of the mapping of p and c
is different, there is no restriction on the order of their
genomic intervals. This is done to consider the chaining
of transcripts from fusions caused by genomic events such
as inversions or translocations that may fuse two genes
on opposite strands. Finally, S[ c] is calculated by iterat-
ing over all the parents of c and finding the best score
through Eq. 3. Note that we use a different penalty value
to penalize gene/isoform switching. Thus, our algorithm
prioritizes exon chains that are coming from a single iso-
form over a single gene (isoform switching), and chains
from single gene over gene switching (potential fusions).
Gene switching is penalized to prefer normal gene chains
over fusion chains if their scores are similar. Penalizing the
isoform switching does not change the final result. It is
implemented to clean up the resulting chain by avoiding
alternating exons from different isoforms.

overlap(a, b) = max
(
0,

min(ae, be) − max(as, bs)
max(ae − as, be − bs)

)

(1)

parents(c) =

⎧⎪⎪⎨
⎪⎪⎩
p

p ∈ M,
(Ipre < Icrs)∧(
Dp = Dc ∧

(
Dp × (IcGe

− IpGs
) > 0

))

⎫⎪⎪⎬
⎪⎪⎭
(2)

S[ c] ← max
p∈parents(c)

{(S[ p] ) + overlap(IcG, I
c
e)

× length(IcG) × penalty(c, p)}
(3)

penalty(c, p) =
⎧⎨
⎩
1, if TIce = TIpe
0.9, if GIce = GIpe ∧ TIce �= TIpe
0.5, if GIce �= GIpe

(4)

The optimal chaining score is given by

B = argmax
1≤i≤n

(S[ i] ) , (5)

and to specify an optimal exon chain, we backtrack
from the index S[B] and at each iteration we report
(Ie,GIe,TIe).
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Preliminary Classification of the exon chains. After
this chaining step, Genion classifies input reads into three
categories: (i) if the chain contains intervals from multi-
ple genes, the read is classified as a chimeric read, (ii) if
there is only one gene in the chain, it is a normal RNA
read, (iii) if the algorithm returns no chain, then it is an
intergenic read. Chimeric reads form the ground set from
which fusion candidates are obtained.

Removal of ambiguous chimeric chains. In this step we
filter out chains due to overlapping genes, homologous
genes and segmental duplications.
First, if any overlap exists between the genes in the

chain, the chain is discarded.
Some of the chimeric reads result from ambiguous

mappings where different parts of the same read maps
to homologous genes – where two genes shares a high
sequence similarity. If the exon chain of a read contains
gene partners from homologous gene pairs, we filter them
as they may increase the false positive rate in later stages.
In order implement this filter, we build a simple index of
homologous gene pairs, by mapping the human transcrip-
tome reference to itself using minimap2 [30], where any
two genes that are aligned are added to this index.
Segmental Duplications (SD), also known as low-copy

repeats, are genomic segments larger than 1 Kb that are
duplicated one or more times in a given genome with
a high level of homology [31]. These SDs can lead to
increased mapping ambiguity since they may involve par-
tial gene duplication in another gene that will not be
included in our homologous gene pairs index. To remove
likely mapping artifacts due to SDs, we filter out the
chimeric chains that are in SD regions. We use Genomic-
SuperDups [31, 32] that records interval pairs on the
human genome where segmental duplications exist. We
use again an interval tree data structure to build an inter-
val to interval index of SDs. For each chimeric chain, we
search for the range of the first gene using the SD inter-
val tree. If any SD involving the corresponding interval is
found, we search for an interval that overlaps with the sec-
ond gene. If an SD exists between the genes, the chain is
discarded.

Removal of low complexity exon chains. Our chaining
algorithm does not consider the sequence content of the
reads and it may chain the poly-A regions of the reads if
they are not removed from raw reads as they are mapped
by the deSALT. To handle this issue, we remove segments
in the output chains if the sequence content consists of
more than 70% of a single base.

Chimeric reads characterization
Given the chimeric read chains and normal read chains,
Genion aims to categorize the chimeric chains into three

classes: (i) random-pairings, (ii) read-throughs, and (iii)
gene fusions candidates. Note that, in the presence of
random-pairings created by template switching and seg-
mentation errors, it is difficult to argue a chimeric candi-
date originates from trans-splicing unless it has significant
expression. In this study, we are not targeting trans-
splicing chimeras. Trans-splicing with low expression are
reported as random-pairing and trans-splicing with high
expression are reported as gene fusions. To achieve this
goal, Genion estimates the gene expression of each gene
from normal read chains, and cluster the chimeric chains
into groups of gene pairs. Finally, it performs two tests to
differentiate between the three classes introduced above.

Gene Expression Estimation. The single-gene chains
are used to estimate the gene expression of the genes
observed in the sample. For each gene, Genion counts
the number of the single-gene exon chains for this gene
and stores this value for further characterization of the
chimeric clusters. We will refer to the expression of gene
A as EA.

Clustering of the chimeric chains. Chimeric chains are
clustered according to the involved gene pairs and we
denote the number of supporting chimeric chains for each
pair of genes A and B by NA:B. Any chimeric cluster that is
supported by less than 3 chimeric chains (user adjustable
parameter) is marked as a low support cluster and is
discarded.

Classification of chimeric clusters. Finally, Genion
assigns each chimeric cluster to one of the three fol-
lowing classes: (i) random pairing, (ii) read-through, and
(iii) gene fusion. Genion calculates two scores named
Fusion inverseNormal (FiN) and fusion frequency inverse
gene frequency score (ff-igf ). These two scores differen-
tiate between different type of candidates and order the
candidates in terms of Genion’s confidence as to their
correctness, as explained in the next paragraph.

Statistical testing of gene fusion candidates. To differ-
entiate gene fusions from random pairings, we introduce
a simple statistical model. Let A and B be two unfused
genes and A : B the chimera containing both A and
B. We expect to sequence mean(EA,EB) ∗ prp A : B
chimeras between these genes, where prp is the prob-
ability of random pairing occurring during sequencing.
For each chimeric candidate, we test the null hypothesis
that NA:B ∼ mean(EA,EB) ∗ prp indicating that num-
ber of chimeric reads is not significantly more than what
we would expect from random pairing. We test this null
hypothesis using the one-tailed version of Fisher’s exact
test as we are not interested in candidates that have signif-
icantly less support than expected from a random-pairing.
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Fig. 2 FiN and ff-igf values for each call made by Genion. a Ground truth of the simulated dataset, b Genion calls on the simulated dataset and c
Genion calls on the MCF-7 Pacbio dataset. Simulated gene fusions, read-throughs and random-pairings are colored blue, purple and red
respectively. Calls are colored with simulated ground truth in (a) and Genion predictions in (b) and (c) [44]. PASS:GF, PASS:RT and FAIL:RP represent
chimeras called as gene fusions, read-throughs and random-pairings in (b) and (c). Chimeras filtered due to overlaps, homology or low support are
not included in this figure

We model the number of random pairings with a hyper-
geometric distribution that models number of successes
without replacement. If we observe EA and EB normal
reads of genes A and B, the probability of observing NA:B
chimeric reads will be

Pr(x = NA:B) =
( n
NA:B

)( n
n∗prp

)
( n
n∗prp+NA:B

) ,

where n = mean(EA,EB)+NA:B and x is the random vari-
able recording the number of observed chimeric reads.
The p-value for a one-tailed Fisher’s exact test is the

probability of observing at least NA:B chimeric reads
Pr(NA:B ≤ x) (Fig. 3). We use false discovery rate (FDR)
control on the p-values computed using the Fisher’s exact
test. We decided to use Benjamini-Yekutieli [33] pro-
cedure due to the dependency between the candidates
(caused by shared member genes and global random pair-
ing rate used to calculate expected number of random
pairings). This procedure reports the corrected p-value
for each chimeric candidate and reports if it rejects the
null hypothesis. This ensures the precision to be (1 - FDR);
note that this is the precision of differentiating random
pairings from gene fusions, not the final precision of the
gene fusions called by Genion.
FiN Score. For a chimeric cluster between genesA and B,

the FiN score (FiNA:B) is defined as the ratio of the number
of fusion supporting reads to the sum of the numbers of
non-fusion supporting reads plus 1.

FiNA:B = NA:B
1 + EA + EB

(6)

In our experiments we observed (Fig. 2) the following
relation of FiN score between different types of chimeras:

0 ∼ FiNRandom Pairing < FiNRead Through < FiNGene Fusion

Intuitively, the FiN score for random pairings is
expected to be very small, since it is unlikely that the
same random pairing occurs more than once. The FiN
score for read-through candidates is still expected to be
small but larger than for a random pairings since the likeli-
hood of a read-through transcription occurringmore than
once is greater. Finally, the FiN scores of true gene fusions
due to genomic events are expected to be higher than for
read-through candidates, as individual genes involved in a
read-through are also transcribed individually, unlike for
gene fusions. This value will be close to the fusion read
count for homozygous events and it will be reduced by
incomplete sequencing of the transcripts and non-fusion
reads for heterozygous events.
ff-igf Score.We use the ff-igf score to rank the computed

chimeric clusters. This score is based on the fact that a
gene can be involved in at most two different gene fusions
(once on each copy of a diploid genome). We expect any
gene to be at most part of a single gene fusion event.
Thus, observing a gene in multiple chimeric clusters low-
ers the confidence it is actually a bona-fide gene fusion
cluster. The fusion frequency inverse gene frequency score
(ff-igf) for a chimeric cluster is the ratio of the number of
chimeric chains supporting the fusion A : B to the sum of
the number of chimeric chains from other chimeric clus-
ters containing the gene A or the gene B. If we denote by F
the set of all discovered chimeric clusters, it is defined as
follows:
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ff-igfA:B = log (1 + |PGA ∩ PGB|) × log
( |F|
1 + |PGA| + |PGB|

)

(7)

PGG = {X | NX:G > 1 ∨ NG:X > 1}
Genion first identifies the read-through chimeras from

all candidates. This is because expression of read-through
chimeras cannot be estimated and they cannot be dif-
ferentiated from random-pairings with statistical testing.
Chimeric candidates are reported as read-through if:

• Member genes are on the same chromosome, they
are on the same strand and distance between the
genes is less than 500Kb.

• The FiN score is less than 0.5
• The ratio of the exon chains having second to last

exon of the head gene (first gene in the gene pair) and
second exon of the tail gene (second gene in the gene
pair) over all chains in the cluster is greater than 0.8.

Remaining chimeric clusters are identified as gene
fusion or random-pairing depending on rejection of the
null hypothesis with the Benjamini-Yekutieli procedure.
Finally, gene fusions candidates are sorted based on

their ff-igf score and reported as a ranked list of gene
fusion calls.

Results
LRTS is a relatively new technology. Hence the number
of publicly available datasets is limited compared to short
reads datasets. In this paper we used both in-house data
consisting of nanopore cDNA sequencing of the 22Rv1
prostate cancer cell line, and publicly available nanopore
cDNA sequencing data of Universal Human Reference
(UHR) and PacBio IsoSeq sequencing data of the MCF-7
breast cancer cell line.We also testedGenion on simulated
data.

Simulated data
Data generation. To accurately test the performances of
gene fusion discovery tools, simulations need to account
for the expected noise and artifacts of real datasets: they
should have a realistic expression of regular and fusion
genes and should simulate non-genomic events result-
ing in chimeric reads such as read-throughs and random
pairings.
In order to generate data with a realistic level of gene

expression, we mapped our in-house nanopore MinION
sequencing data of the 22Rv1 prostate cancer cell line
to the ENSEMBL 97 human cDNA reference using min-
imap2 and used the primary mappings to estimate an
expression profile for each gene.
To define ground truth gene fusions, we selected 16 val-

idated gene fusions from the most common fusions listed
in the Cosmic database [21]. We refer to member genes

of these fusions as head and tail genes depending to the
order of transcription. In this simulation, we assume that
fusions are expressed similar to their head genes. We sim-
ulated heterozygous fusions with an expression equal to
half of the expression of the head gene. Similarly, we sim-
ulated homozygous fusions with an expression equal to
the expression of the head gene. We modified the expres-
sion of the member genes of each gene fusion to 50% for
heterozygous fusions and 0 for homozygous fusions. Out
of 16 simulated gene fusions, 10 were homozygous and 6
were heterozygous.
To simulate artifacts resulting in non-fusion chimeric

reads, we also added 37 read-through events to the simu-
lation, selected from recurring read-through events [34];
17 of the read-through events had less than 3 reads in the
simulation and were not considered in the performance
evaluation. Following published evidence [35] on the exon
structure of read-throughs, we simulated transcripts con-
taining all of the exons except the last exon of the head
gene and the first exon of the tail gene. Simulated read-
through transcripts were assigned an expression level
equal to 5% of the head gene expression.
We used the BadRead simulation tool [36] to gener-

ate long reads with the calculated expression profile and
the ONT MinION error profile. In this simulation, we
generated 2,926,804 reads, where 2,900 of these came
from the 16 gene fusions. We only simulated reads from
chromosomes that contain gene fusions.
Finally, to include in our simulations artifactual

chimeric reads due to random pairing, we randomly
selected 1% of the simulated reads and randomly paired
them into chimeric pairs, resulting in 28,971 randomly
paired chimeras, 74 of which originating from a gene
fusion or a read-through.

Tools configuration. We compared Genion against the
two available long-read specific gene fusions discovery
tools: LongGF and AERON. AERON is an unpublished
method and failed to run on all the datasets we considered
in this paper and thus we removed it from our compar-
isons1. For the LongGF tool we followed the instructions
in the code repository and mapped the simulated reads
using minimap with the “-x splice:hq” option, sorted the
reads by name, and ran LongGF with the options (“100 50
100 0 0 2 64”). We ran Genion with default options, which
uses the deSALT mapper with parameter “-N 10”, which
limits number of reported mappings for each reads.

Evaluation of chimeric read clustering. To compare the
accuracy of both tools in terms of clustering chimeric
reads, we used the classical Adjusted Rand Index (ARI)

1We opened the following issue in their github on Jan 15, 2021: https://web.
archive.org/web/20220205030953/https://github.com/SchulzLab/Aeron/
issues/25

https://web.archive.org/web/20220205030953/https://github.com/SchulzLab/Aeron/issues/25
https://web.archive.org/web/20220205030953/https://github.com/SchulzLab/Aeron/issues/25
https://web.archive.org/web/20220205030953/https://github.com/SchulzLab/Aeron/issues/25
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Table 1 Clustering statistics for Genion and LongGF and number
of fusion reads recovered by each tool

Reads Fusion ARI All ARI

Genion 2,521 0.901 0.925

LongGF 872 0.183 NA

statistics [37]. The ARI measures the similarity of two
clustering, one of them being a ground truth clustering.
True positive (TP), true negative (TN), false positive

(FP) and false negative (FN) numbers for ARI calculation
defined as follows: TP is the number of read pairs (r1, r2)
that are in the same cluster in the ground truth as well as
in the predicted cluster. TN is the number of read pairs
that are in different clusters in the ground truth and the
predicted clusters. FP is the number of read pairs that
are in the same predicted cluster but in different clusters
in the ground truth. FN is the number of read pairs that
are in different predicted clusters but in the same cluster
in the ground truth. In the context of the fusion calling,
FN includes the reads missed by fusion calling method
while FP includes random pairings between the same gene
pair of an existing gene fusion for both tools. We did not
include such cases in the ARI computation. We used the
scikit-learn [38] package to compute the ARI.
We also tested Genion clustering accuracy on chimeric

reads, not limited to gene fusions. Out of 33,217 chimeric
reads originating from a true gene fusion, a read-through
or a random pairing, Genion correctly clustered 28,640 of
them, giving an ARI of 0.925. For each tool, we labelled
the 2,900 simulated fusion reads with the fusion cluster
they belong to. If a read is not clustered in a fusion cluster
or put into a cluster calling a gene fusion different from
its label, it is considered as a singleton cluster for the pur-
pose of computing the ARI. Genion and LongGF clustered
respectively 2,251 and 872 fusion reads, giving ARI scores
0.910 and 0.183 respectively (Table 1) when considering
only fusion read clusters.

Evaluation of the fusion calling accuracy. Genion and
LongGF found respectively 15 and 14 of the 16 simulated
fusions (Table 2). Genion was the only tool to find the
TMPRSS2:ERG fusion. Both tools failed to identify the
NAB2:STAT6 fusion. Genion successfully identified the
chimeric chains for NAB2:STAT6, however since these
two genes are overlapping, the chimeric chains were fil-
tered out. For LongGF, we suspect that NAB2:STAT6
is filtered out for the same reason as Genion, and that
TMPRSS2:ERG is not reported because the length of the
head gene involved in the fusion is only 80b.

Real datasets
We tested Genion and LongGF on three real date-
set: (i) MCF-7 breast cancer cell line sequenced using

PacBio (accession: PRJNA277461), (ii) UHR (Universal
Human Reference) RNA that is composed of ten differ-
ent cell lines [39] sequenced by ONTGridION (accession:
PRJNA639366), and (iii) 22Rv1 prostate cancer cell line
sequenced in-house using two flowcells on an ONT Min-
ION sequencer.
For the MCF-7 cell line, we found a set of 16 vali-

dated gene fusions released by PacBio Systems 2. Three
out 16 gene fusions are validated experimentally using
RT-PCR and PET-0. The remaining fusions are validated
using orthogonal short-read sequencing data. Since short
read validation does not account for chimeric artifacts,
these calls cannot be considered with as much confidence.
Actually Genion successfully discovered several of them
but annotated them as random pairings (Table 3). We
included them in this manuscript because they are the
closest data available that can be considered as gold stan-
dard. For UHR and 22Rv1, we did not find any validated
fusion.
In MCF-7, Genion called 22 gene fusions and 15 read-

through events. LongGF called 297 gene fusions and 155
of them had at least 3 read support and we used those
calls for a fair comparison. Genion and LongGF shared 17
gene fusion calls and 69 out of 155 LongGF calls were fil-
tered by Genion as random pairings. As shown in Table 3,
both LongGF and Genion successfully identified the three
experimentally validated gene fusions (BCAS3:BCAS4,
RPS6KB1:VMP1 and SYAP1:TXLNG). LongGF identified
10 out the 13 remaining validated gene fusions while
Genion reported 8. From the five gene fusions that are
not identified by Genion: FOXA1:TTC6 was filtered out
during the chaining process as these two genes do over-
lap, POP1:MATN2, MYH9:EIF3D, ZNF217:SULF2, and
ARFGEF2:SULF2 were filtered out as random pairings
because they do not have significantly more read sup-
port than what is expected from a random pairing, and
RSBN:APB1 has low read support. Probability mass func-
tions used to determine if a chimera is random pairing are
shown in Fig. 3 for EIF3D:MYH9 and RGS17:TBL1XR1
chimeras. It is important to note that the FOXA1:TTC6
fusion has good FiN and ff-igf scores and is supported
by a genomic event nearby. Thus, we believe our over-
lapping gene filter might be too stringent. ZNF217 and
SULF2 are observed in 39 and 104 other chimeric clus-
ters, respectively, which supports this chimera being a
false positive. LUMPY [40] reported a deletion of∼ 5.8Mb
between these two genes, however the power of short
reads in calling a deletion of this magnitude is at best
dubious without analyzing the depth of coverage in this
region. Contrarily, the ARFGEF2:SULF2 fusion shows
similar expression to its head ARFGEF2 gene and it is

2Accessed from: https://web.archive.org/web/20220204004810/https://github.
com/PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-Transcriptome.

https://web.archive.org/web/20220204004810/https://github.com/PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-Transcriptome
https://web.archive.org/web/20220204004810/https://github.com/PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-Transcriptome


Karaoglanoglu et al. BMC Genomics          (2022) 23:129 Page 9 of 13

Table 2 Simulated gene fusions called by Genion and LongGF

Gene1 Gene2 Genion LongGF Gene1 Gene2 Genion LongGF

TCF3 PBX1 � � KMT2A MLLT3 � �
JAZF1 SUZ12 � � BCR ABL1 � �
DNAJB1 PRKACA � � TMPRSS2 ERG � ✗

KIAA1549 BRAF � � CCDC6 RET � �
NAB2 STAT6 ✗ ✗ CBFA2T3 GLIS2 � �
EWSR1 FLI1 � � PML RARA � �
SS18 SSX1 � � RUNX1 RUNX1T1 � �
COL1A1 PDGFB � � CRTC1 MAML2 � �

more likely to be a real gene fusion than other SULF2
fusion in the set ZNF217:SULF2. This may be a short-
coming of the FiN score which may thus leave room
for improvement. RSBN1:AP4B1 had low support and
Genion did not report it. Upon closer inspection we see
that Genion reported RSBN1:AP4B1-AS1 where AP4B1-
AS1 is the antisense RNA1 of AP4B1. This may be caused
by our underlying mapper as our chaining prefers to build
the chain on the AP4B1-AS1 rather than AP4B1.
Furthermore, we downloaded WGS data for the MCF-

7 cell line and identified Structural Variations (SV) using
LUMPY, a state-of-the-art short reads SV caller with a
good balance of precision and recall. LUMPY identified
2,958 deletions and 67 inversions on this dataset. Gene

fusions caused by genomic events should overlap with
SVs, unlike read-through events. Furthermore, overlap-
ping SVs should be compatible with the strands of the each
gene in a fusion pair: where fusions involving genes on the
same genomic strand should be associated to deletions,
fusions involving genes on the inverse strands should be
supported by inversions, and fusions involving genes on
different chromosome should be supported by transloca-
tions. We manually investigated the SVs around these 16
gene fusions and identified 6 events to be compatible with
our called gene fusions. It is interesting to note that 1
out of the 3 experimentally validated fusions (Table 3) did
not overlap with any of the LUMPY calls suggesting that
WGS short reads data might not always allow to detect

Table 3 Genion and LongGF gene fusion calls on MCF-7 cell line data released by PacBio. These set of gene fusions are validated either
experimentally (EXP) or by short reads sequencing (SRS). # Reads is the number of reads from the data release. Ranks are the order
which fusion reported by the tools. Chimeras found by Genion, but identified as random pairing are given RP rank. FiN and ff-igf are the
scores computed by genion

Gene1 Gene2 # Reads Validation
LongGF Genion

SV Overlap
Rank Rank FiN ff-igf

BCAS4 BCAS3 1183 EXP 1 1 5.15582 8070.86 translocation

RPS6KB1 VMP1 349 EXP 2 2 0.25847 2046.15 deletion

SYTL2 PICALM 117 SRS 4 3 0.45365 857.222 ✗

RPS6KB1 DIAPH3 101 SRS 5 4 0.31655 626.54 ✗

SLC25A24 NBPF6 41 SRS 6 5 1.80952 472.95 inversion

PAPOLA AK7 37 SRS 7 6 0.20536 369.71 ✗

ESR1 CCDC170 24 SRS 10 8 0.52564 308.07 ✗

TXLNG SYAP1 27 EXP 12 9 0.11986 275.28 ✗

TBL1XR1 RGS17 15 SRS 34 12 0.66667 153.69 translocation

MYO6 SENP6 14 SRS 35 13 0.10683 147.50 ✗

POP1 MATN2 7 SRS RP 0.15790 28.27 ✗

MYH9 EIF3D 11 SRS 14 RP 0.04000 140.16 ✗

FOXA1 TTC6 26 SRS 4.10526 303.47 inversion

RSBN1 AP4B1 7 SRS 19 0.01100 8.00 ✗

ZNF217 SULF2 16 SRS RP 0.00758 27.14 deletion

ARFGEF2 SULF2 23 SRS 15 RP 0.03104 113.28 inversion
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Fig. 3 Probability mass functions (pmf) of a EIF3D:MYH9 and b RGS17:TBL1XR1 chimeras derived from the hypergeometric distribution. Red line
shows the probability of getting number of random pairings for the candidate, blue line shows the number of chimeric reads found by Genion.
P-value of the candidate is calculated by the area below the pmf after the blue line

SVs causing gene fusions, which is expected due to the
shortcomings of SV detection from short reads, especially
for large events.
As mentioned earlier, there is no ground truth informa-

tion for the UHR cell line, thus we rely on information
gathered from the literature. For the UHR cell line, both
tools predicted the BCAS3:BCAS4 and VMP1:RPS6KB1
fusions, which are also observed as top calls in the
MCF-7 cell line. This is expected as UHR contains cell
lines derived from mammary gland carcinoma [39].
VMP1:RPS6KB1 was predicted as a read-through by
Genion because of the low percentage of chimeric
reads. LongGF also predicted the ARFGEF2:SULF2,
SLC27A6:ADAMTS19 and MGAT5:IGLC7 fusions.
ARFGEF2:SULF2 fusion was also called for MCF-7 cell
line and SLC27A6:ADAMTS19 was previously identified
in breast cancer with short reads [41]. Both of these
chimeras were found by Genion and rejected due to their
low support.
We tested both tools on the 22Rv1 cell line which is

a prostate cancer cell line known for expressing differ-
ent isoforms of the AR gene [42]. To the best of our
knowledge, this cell line does not have any reported
gene fusion and we think it is not enriched for gene
fusions. Genion called only the ARHGAP15:GTDC1,
HOXA5:HOXA6 and KISS1:GOLT1A gene fusions and
12 read-throughs, while LongGF called 89 gene fusions
including ARHGAP15:GTDC1. The Depmap database
[43] contains an inversion event on top of ARHGAP15 and
GTDC1, which supports this fusion event, however to the
best of our knowledge, this fusion has not been validated.
Finally, we tested both tools on NA12878, a germline

dataset for which we do not expect any gene fusions.

We used this dataset as a negative control. Genion did
not report any gene fusions or read-through chimeras
while LongGF called IGLV6-57:IGLC2, RPL29:MT-ND1
and ATP5IF1:RPS15A fusions.

Resource Requirement. In Table 4 we show the compu-
tational footprint of Genion and LongGF to process the
MCF-7 Pacbio dataset. Genion has a lower peak memory
that longGF, however, its running time is 3× longer than
LongGF. Note that we also provide the time and memory
required by minimap2 and deSALT as these two mappers
are being utilized by LongGF and Genion, respectively.

Discussion
In this work we present a computational tool that detects
gene fusions on WTS long-read data. Many state-of-the-
art methods rely on manual curation of the called fusions
with a genome viewer (i.e. IGV). While this is a reliable
method for filtering false positives, it requires a lot of
manual work, and the decreasing cost of sequencing will
likely increase the amount of datasets and required anal-
ysis. Thus, a gene fusion detection method that does not
require human validation is essential. In this work, we
present Genion, a tool that quantifies the quality of the
called fusions and generate high quality calls withminimal
manual filtering. In our experiments on simulated data
Genion was able to find previously validated gene fusions
and to differentiate read-through candidates from real
gene fusions. While at the moment Genion uses deSALT,
a mapper that only returns one optimal mapping, we
designed the chaining algorithmwithmulti-mapped reads
in mind, where the algorithm picks the best segments
from many secondary mappings.
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Table 4 Time and memory used by Genion and LongGF during mapping and fusion calling steps on PacBio sequencing of MCF-7
breast cancer cell line

Mapping Fusion Calling

Threads # Time (mm:ss) Peak Memory (GB) Threads # Time (mm:ss) Peak Memory (GB)

LongGF/minimap2 48 16:47 44.94 1 05:28 1.34

Genion/deSALT 48 24:07 37.25 1 14:36 0.85

LongGF works by applying series of filters to the reads
before clustering (binning) them. These filters can be
summarized as filtering overlapping genes, overlapping
alignments and distant alignments (on read). Instead of
filtering individual reads, Genion applies filters to whole
read clusters. While this approach is relatively slower than
filtering individual reads, it gives greater filtering power
and better information to analyse the filtered candidates.
Similar to LongGF, Genion filters candidates based on the
overlaps of the genes and alignments. However, Genion
does not filter reads with long distance between align-
ments on the read. While distance between alignments
is a common signature we observe on false positives, it
still can be observed on real candidates in the presence
of mapping errors and other genomic variants (i.e. inser-
tions). A novelty of Genion is the statistical testing of the
clusters in terms of number of fusion reads and normal
reads from its member genes.
A possible future direction for this work is finding gene

fusions on single cell long reads. This is a long-read
sequencing method that uses 10X Genomics barcoded
that is normally used in short reads. Finding gene fusions
in such data can provide insight into heterogeneity in
tumours.
Another avenue for further developments concern read-

throughs. It is difficult to characterize read-through
events using only transcriptome sequencing data. We sus-
pect that read-through transcription may be related to
chromatin accessibility of head and tail genes. Joint anal-
ysis with ATAC-seq might be able to provide insight on
read-through transcription.

Conclusions
In summary, Genion is an accurate gene fusion discov-
ery tool that uses a combination of dynamic programming
and statistical filtering. We believe it will be an effec-
tive tool for analyzing long transcriptomics sequencing
data.
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