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Abstract

Entamoeba are amoeboid extracellular parasites that represent an important group of

organisms for which the regulatory networks must be examined to better understand how

genes and functional processes are interrelated. In this work, we inferred the gene regula-

tory networks (GRNs) in four Entamoeba species, E. histolytica, E. dispar, E. nuttalli, and E.

invadens, and the GRN topological properties and the corresponding biological functions

were evaluated. From these analyses, we determined that transcription factors (TFs) of E.

histolytica, E. dispar, and E. nuttalli are associated mainly with the LIM family, while the TFs

in E. invadens are associated with the RRM_1 family. In addition, we identified that

EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E.

dispar, ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257

genes in E. invadens. Finally, we identified that three types of processes, Macromolecule

metabolic process, Cellular macromolecule metabolic process, and Cellular nitrogen com-

pound metabolic process, are the main biological processes for each network. The results

described in this work can be used as a basis for the study of gene regulation in these

organisms.

Introduction

The passage of information from DNA to RNA (transcription) is a fundamental mechanism

for all organisms [1]. The mechanism for transcription involves a large number of molecules

(proteins, enzymes, and DNA sequences, among others) that together orchestrate and carry

out the expression of genes in a highly precise, spatially and temporally controlled manner to

meet the needs of the cell. Transcription factors (TFs) are essential proteins in this event and

are part of the cell’s ability to have differential and temporal expressions, increases or decreases

in the amounts of transcripts, etc. They do this by interacting with cis-consensus DNA

sequences present in gene promoters and with general TFs [2].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0271640 August 1, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Galán-Vásquez E, del Consuelo Gómez-
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TFs may have different types of domains through which they bind to DNA, interact with

other proteins to regulate activation, and locate spatially within the cell, and they have motifs

through which they undergo different types of posttranslational modifications, such as phos-

phorylation, acetylation, methylation, SUMOylation, and ubiquitination [3], which are crucial

for TF function. Numerous studies on TFs have demonstrated how conserved they are and

their specificity for binding to DNA in various species, such as mice [4]. However, protozoa

are a group for which very little is known about transcription and TFs.

Particularly in the Entamoebidae family, parasitic species have been described, includ-

ing Entamoeba histolytica, the causal agent of intestinal amebiasis and amoebic liver

abscess in humans, which causes 100,000 annual deaths [5–9]. E. nuttalli infects macaques

and different species of monkeys and causes intestinal amebiasis, liver abscesses, and even

death. This species is responsible for serious health problems in zoos and in various

regions of the planet, such as nature reserves [10–12]. E. invadens is a parasite of reptiles

(ophidians, saurians, and chelonians) and causes gastrointestinal damage from mild to

severe and is the only species of the genus Entamoeba that encysts in vitro [13]. Finally, E.

dispar is considered a nonpathogenic species that lives as a commensal in humans; first

described in 1993 for Diamond and Clark [14] was posteriorly identified as able to pro-

duce liver and intestinal lesions that were occasionally indistinguishable from those pro-

duced by E. histolytica [15].

These four species of Entamoeba are amoeboid extracellular parasites that move via the

emission of pseudopods and lack mitochondria; this is why they are located in the early phase

of eukaryotic evolution [16]. Only in E. histolytica and more recently in E. invadens has the

presence of mitosomes been described [17,18]. These organisms present two phases in their

life cycle: the cyst, which is the infective form, and the trophozoite, which is the invasive form

[16,19].

These four species of Entamoeba are undoubtedly of great importance in the parasitology

not only of humans, but also of other organisms. Therefore, the genomes of these four species

have already been sequenced. E. histolytica has a genome rich in AT (75%) with a size of

20,800,560 bp and 8,333 genes [20]; E. dispar has a genome similar to that of E. histolytica,

with 8,749 genes and a composition of 76.5% AT and size of 22,955,291 bp. E. nuttalli has a

genome that contains 74.9% AT, a size of 14,399,953 bp, and 6,193 genes, and of the four men-

tioned species it has the smallest genome [21]. E. invadens has the largest genome of these four

species, with 40,888,805 bp, and AT content of 70%, and 11,549 genes [22].

A gene regulatory network (GRN) is a directed graph in which interaction edges connect

TFs to target genes (TGs) [23]. This type of network greatly helps in understanding the links

between genes and the products they encode, which is a crucial and difficult step in experi-

mental and computational biology [24]. Only a few GRNs have been reconstructed in model

organisms [24–27]. As a result, homology-based techniques are frequently used to research

GRNs in species that are less well-known [28–31].

In this work, we inferred the GRNs of the four main Entamoeba species using a criterion of

TF-TG orthology relationships from reference GRNs experimentally described. The recon-

structed GRNs were posteriorly analyzed in terms of topology. We consider that the GRN

inferences for these strains open the opportunity to explore organisms of public health

importance.

Material and methods

The network inference process steps were described in the schematic workflow (Fig 1). Details

on each step, including input and output data, are described in follow.
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Genomes analyzed

Four genomes of Entamoeba spp. were downloaded from the NCBI server: E. histolyticaHM-

1:IMSS (GCF_000208925.1), E. dispar SAW760 (GCF_000209125.1), E. nuttalli P19

(GCF_000257125.1), and E. invadens IP1 (GCF_000330505.1). Additionally, the genomes of

Saccharomyces cerevisiae (GCF_000146045.2), andHomo sapiens (GCF_000001405.39) were

downloaded to be used for the GRN inferences.

Proteomic repertoire in Entamoeba spp.

OrthoVenn2 was used to identify orthologous clusters in the four proteomes, and to perform a

functional enrichment analysis for each cluster, we used an E-value of 0.01 as cutoff for all-to-

all protein similarity comparisons, and an inflation value of 1.5 for the orthologous clustering

employing the Markov Cluster algorithm. The enrichment analysis was considered significant

with a P-value less than 0.05 [32].

Fig 1. Schematic workflow of the network inference procedure steps. Four Entamoeba genomes were downloaded from NCBI and compared with

Orthovenn, to infer the common set of orthologous proteins. Interproscan was used to assign protein domains (Pfam and Supfam). To infer the GRN, two

organismal models were used, S.cerevisiae and H. sapiens, and the ProteinOrtho was considered. The GRNs inferred were evaluated in terms of their

topological properties, hubs, and functional descriptions.

https://doi.org/10.1371/journal.pone.0271640.g001
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Identification of TFs

To assess the TF diversity, protein sequences of whole proteomes were used to identify DNA-

binding domains (DBDs) associated with regulatory proteins. To do this, InterProScan

(v5.25–64.0) [33] was used to map InterPro families and DBDs, using default parameters.

Afterwards, 162 Pfam IDs obtained from the TF database and by literature lookup were com-

piled and identified in the associated predictions (S1 Table).

Reconstruction of GRNs

Two organisms were considered templates for the inferences of the GRNs of Entamoeba. The

GRN of S. cerevisiae was obtained from the YEASTRACT database and is composed of 6,709

nodes and 179,601 edges [34]. The GRN ofH. sapiens with 2,862 nodes and 8,427 edges was

obtained from the TRRUST database v2 [35].

To identify orthologous proteins between the four Entamoeba proteomes and the prote-

omes of S. cerevisiae andH. sapiens, were used to identify the orthologs using the program Pro-

teinOrtho (V5.16) [36], with the following parameters: E-value of 0.01, a sequence

coverage� 50%, and minimal percent identity of best Blast hits of 30%.

To infer the GRNs, we map their interactions considering the following criteria: If the

orthologs of the TF and its TG of the model organism (S. cerevisiae and / orH. sapiens), were

found in a new genome, the interaction was assigned using guilt by association. Then, each

network was integrated using all the ortholog assignments with the two six reference GRNs.

All the network interactions can be inferred by running the scripts, provided as supplementary

data 1.

Network structural analysis

To determine the topologies of the reconstructed networks, the following metrics were calcu-

lated: the number of edge incidents with other nodes, i.e., the Node degree (K). In GRNs,

input degree (Kin) is the number of arrows that enter anode, which corresponds to the TFs

that affect a TG, and output degree (Kout) is the number of arrows that leave a node, which

corresponds to the number of TGs by which a TF is regulated [37,38].

A clustering coefficient measures how connected a node’s neighbors are to one another. It

is calculated as, “the number of edges connecting a node’s neighbors divided by the total num-

ber of possible edges between the node neighbors” [39]. The connectivity in an undirected net-

work is the link between two nodes, and this link can be via a direct or indirect edge through

intermediate connections. In this context, a connected component is a set of nodes that are

linked to each other node by a path, and the component with the most proportions of nodes is

called a giant component [38].

Some metrics are proposed to identify the relevance of nodes in a network. Hubs, which are

defined as the most connected nodes with other nodes, confer the global structure of the net-

work. Centrality (C), which measures the contribution or importance of nodes, sets node u as

more important than another node v if C(u)> C(v). The most relevant centrality metrics are:

degree, closeness, betweenness, and eigenvector centrality, which assigns every v2V of a given

graph G a value C(v) 2 R [38].

Functional annotation analysis

To determine the function enriched in each network, we used the Database for Annotation,

Visualization and Integrated Discovery (DAVID 6.81), a gene functional classification system

that integrates a set of functional annotation tools [40]. Each list of genes from the networks
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was used to perform an enrichment analysis in Gene Ontology terms, and a statistical signifi-

cance at a P-value of< 0.05 was set.

Results and discussion

Protein similarities of Entamoeba spp.

In order to evaluate how similar, the proteomic repertoire of Entamoeba species are, we ana-

lyzed the shared orthologous proteins between E. histolytica, E. nuttalli, E. invadens, and E. dis-
par genomes and displayed them in OrthoVenn2 [32]. The OrthoVenn revealed 4,285 clusters

of 18,545 orthologous proteins that are shared by all species, accounting for 55.86% of the E.

histolytica proteome, 51.93% of the E. dispar proteome, 70.73% of the E. nuttalli proteome,

and 41.95% of the E. invadens proteome (Fig 2). The main functions associated with these pro-

teins correspond to metabolic processes (GO:0008152), cellular processes (GO:0009987), and

macromolecule metabolic processes (GO:0043170). The second longest group of 1,154 clusters

includes only proteins of E. nuttalli (1,157 proteins), E. histolytica (1,205 proteins), and E. dis-
par (1,222 proteins) (Fig 2). These results show that the four species share ~50% of their pro-

teins, which makes sense, as they are organisms of the same genus and all of them can infect a

host. However, it is intriguing that E. dispar, shares 51.93% of its proteome with E. histolytica,

a species capable of colonizing the human intestine and even inducing the development of

amoebic liver abscesses, the more serious form of disease; this suggests that other factors such

as host or environmental factors, in addition to some genetic factors, may define the pathoge-

nicity of these two species. Likewise, the observation that E. nuttalli, a species whose host is the

macaque, shares a very high percentage of proteins with the other three species is striking, par-

ticularly because it has been shown that E. nuttalli is the closest species to E. histolytica [8,16].

On the other hand, we identified singletons, which are proteins not grouped in any cluster.

In this context, E. histolytica contains 626 singletons that are mainly related to organic sub-

stance metabolic process, primary metabolic process, and cellular metabolic process; E. dispar

Fig 2. Orthologous proteins shared between Entamoeba strains. A) Orthologous clusters of whole proteomes. B) The bar plot graph shows the number of

orthologous clusters by organism. C) The plot indicates the number of clusters that are organism specific or shared by 2, 3, or 4 organisms. D) For the 4,285

clusters shared by 4 organisms, the protein abundance levels are shown for each organism.

https://doi.org/10.1371/journal.pone.0271640.g002
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contains 1,137 singletons mainly related to primary metabolic process, organic substance met-

abolic process, and cellular metabolic process; E. nuttalli contains 286 singletons mainly

related to biosynthetic process and single-organism signaling. Finally, E. invadens contains

2,927 singletons mainly related to single-organism cellular process, cellular response to stimu-

lus, regulation of cell process, and single-organism signaling. These results show that E. inva-
dens presents more single proteins than E. dispar, E. histolytica, and E. nuttalli. This may be

because E. invadens has a much larger genome that is almost twice the size of the genomes of

the other three species. Therefore, the genetic information contained in E. invadens is probably

necessary to infect different species of reptiles, such as turtles, lizards, and snakes [41]. Thus,

the processes and mechanisms in which these proteins are involved (cellular process, cellular

response stimulus, and regulation of cell process) are different from those of E. histolytica and

E. dispar and to a lesser extent those of E. nuttalli. A similar result was previously described for

E. histolytica, E. dispar, E. invadens, and E.moshkowskii [16]. Therefore, amoebic genetic

diversity may vary depending on host species.

Identification of transcription factors

A TF repertoire consists of a set of proteins that regulate gene expression in the cell. Based on

the PFAM assignments from InterProScan, we identified a set of 242 TFs in E. histolytica, 297

TFs in E. invadens, 210 TFs in E. nuttalli, and 245 TFs in E. dispar, representing 2.9%, 2.57%,

3.39%, and 2.8% of each proteome, respectively. The number of TFs identified in each species

of Entamoeba seems not to be so different between them, nor to be related to the size of their

genomes. However, the number of TFs obtained for each species is within the range of TFs

stipulated for other organisms, as it is estimated that TFs constitute between 0.5 and 8% of the

genes contained in the genomes of eukaryotic organisms [42].

Interestingly, the TFs predicted in E. histolytica are distributed among 11 families, whereas

the TFs predicted in E. invadens are distributed among 87 families, 103 families in E. nuttalli,
and 99 families in E. dispar. The most abundant family in E. histolytica, E. dispar, and E. nut-
talli is the LIM domain (PF004112) (Fig 3), which is a protein structural domain containing

two Zn2+ fingers separated by a 2-amino-acid hydrophobic linker. The LIM domain can bind

a wide variety of protein targets and is widely distributed among plants, fungi, protozoa, and

animals [43,44]. However, to date, only in the species E. histolytica has a protein with this

domain, called EhLimA, been identified; EhLimA is associated with the actin of the parasite

cytoskeleton and membrane [44]. Several possible LIM proteins have been identified in the E.

histolytica genome, some of which could be relevant proteins in transcription for this Ent-
amoeba species [45]. On the other hand, the TFs of E. invadens are associated with the RRM_1

family (PF00076) (Fig 3), which is a putative RNA-binding domain of approximately 90 amino

acids and is known to bind single-stranded RNAs [46]; it is found abundantly in all life king-

doms [47,48]. Nevertheless, no protein with this domain has been characterized in any Ent-
amoeba species to date. Interestingly, the proteins that contain this domain participate in the

preprocessing of mRNAs, alternative splicing, stability, edition, and export of mRNAs, and

thus they are fundamental in the biological processes of the organism [49]. This contrast in the

number of families in which the TFs of these four Entamoeba species are distributed may be

due to the characteristics of each species, that is, their forms and lifestyles, structures, and life

cycles between other factors that have allowed them to specialize according to their needs. For

example, E. invadens has the ability to infect different types of reptiles (snakes, turtles, and liz-

ards), organisms in which osmotic changes or abrupt carbon source depletion in the intestine

can be common, whereas in the human intestine such abrupt changes do not occur [50]. Thus,

the type of TF families other Entamoeba species require may be different, even having species-
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exclusive TFs. In the case of E. histolytica and E. dispar, the species are morphologically indis-

tinguishable in both the cyst and the trophozoite forms [51]. Therefore, on the one hand, E.

disparmust have a series of genes that are repressed or activated and prevent it from causing

disease in its host [52], whereas E. histolytica seems to have a series of mechanisms, including

transcriptional control, that allow it to cause amoebic colitis or a liver abscess in its host, or

not. Some of these molecules are enzymes such as glycosidases (sialidase, N-acetylgalactosami-

dase, and N-acetylglucosaminidase) which are necessary for the invasion of the epithelium,

cysteine proteases (CP-A4, CP-A6, EhCPADH, and CP-B1, among others) which kill inflam-

matory and epithelial cells; or proteins such as the amoebopore that causes cell cytolysis, or the

Gal/GalNAc lectin, which is involved in adhesion and the cytopathic effect [53,54] E. nuttalli,
whose host is the macaque, has a life cycle similar to that of other Entamoeba species, and it is

also capable of infecting humans but generates an asymptomatic infection. This suggests that

this species must also present genomic plasticity and, therefore, specific transcription patterns

that require a greater versatility of TFs. Therefore, a finely controlled transcriptional regulation

must be carried out in which different TFs are necessary, hence the possible versatility of the

families of TFs found in this work. However, we also observed that there are conserved TF

families in the four species (Fig 3), in which the similar basic TF repertoire can be found,

which may be performing basal transcription in these organisms. Finally, the species E. histoly-
tica, E. dispar, and E. nuttalli present a similar number of TFs from the most abundant fami-

lies, which coincides with the fact that the three species present a close phylogenetic

relationship [51].

In general, few of the TFs identified in this work by sequence analysis have been previously

characterized, such as, Nuclear factor Y (NF-Y) that appears at a later time point of Entamoeba

Fig 3. The most abundant families in Entamoeba strains. On the X-axis is the number of proteins; the Y-axis indicates the TF family names.

https://doi.org/10.1371/journal.pone.0271640.g003
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encystation [55–57]; the Ehp53, homologous to the tumor suppressor protein p53 [58] from

human and Drosophila melanogaster. Ehp53 contains seven of the eight DNA-binding residues

and two of the four Zn2+-binding sites described for p53. Heterologous monoclonal antibod-

ies against p53 (Ab-1 and Ab-2) recognized a single 53 kDa spot in two-dimensional gels and

they inhibited the formation of DNA-protein complexes produced by the interaction of

nuclear extracts of E. histolytica with an oligonucleotide containing the consensus sequence

for the binding of human p53. [58]. In addition, a calcium-sensitive EF-hand protein that

binds to the URE3 motif [59], and two proteins that bind to the URE4 sequence (EhEBP1 and

EhEBP2) [60], have also been identified.

Finally, we identified by sequence comparisons, members of the Myb-SHAQKYF family.

These proteins have been previously identified as differentially expressed in trophozoites

under basal cell culture conditions. Members of this group harbor a highly conserved and

structured Myb-DBD and a large portion of intrinsically disordered residues. As the Myb-

DBD of these proteins harbors a distinctive Q[VI]R[ST]HAQK[YF]F sequence in its putative

third α-helix. An NMR structure of the Myb-DBD of EhMybS3 shows that this protein is com-

posed of three α-helices stabilized by a hydrophobic core, similar to Myb proteins of different

kingdoms [61]. Therefore, our approach opens the possibility to characterize experimentally

diverse TFs with hypothetical functions, predicted in this work.

Regulatory networks

The GRN is defined as a graph G = (V, A), where V is a set of nodes that correspond to genes

or proteins in the network and A is a set of edges that correspond to relationships between two

nodes. Few GRNs have been reconstructed from experimental data; comparative genomics

approaches are usually used for the reconstruction of GRNs in little-known organisms. To this

end, the GRN from a model organism can be used as a template to export interactions in the

organism of interest; under this approach, orthologous TFs generally regulate the expression

of orthologous TGs [28,62]. Therefore, to identify the GRNs of the four Entamoeba species,

the GRNs of S. cerevisiae andH. sapiens were used as references. A regulatory association was

established when orthologues of a TF-TG relationship in a model organism were found for

both a TF and a TG in the target organism (Table 1) (S2 Table) [28,62].

The inferred GRN of E. histolytica has 221 nodes and 272 interactions. The regulatory inter-

actions conserved were preferentially assigned from S. cerevisiae (248 interactions), and also

from the interactions from H. sapiens (24 interactions) (Fig 4A). The networks include 28 reg-

ulatory proteins: 18 were inferred by homology, and 10 were inferred based on InterPro and

Pfam assignments. Of these 28, 4 TFs are self-regulated, i.e., the TF regulates its own gene.

The GRN of E. dispar has 583 nodes and 979 interactions. The regulatory interactions con-

served were preferentially assigned from S. cerevisiae (942 interactions), whereas 34 interac-

tions were inferred fromH. sapiens (Fig 4B). The networks include 41 regulatory proteins, 17

of which were inferred by homology and 24 were inferred by InterPro and Pfam assignments;

from these 41, 7 TFs are self-regulated.

The GRN of E. nuttalli includes 382 nodes and 560 interactions. From these, 582 regulatory

interactions were inferred from S. cerevisiae and 23 interactions fromH. sapiens (Fig 4C). The

network also includes 39 regulatory proteins, of which 6 are self-regulated.

Finally, the GRN of E. invadens has 520 nodes and 853 interactions. The regulatory interac-

tions were preferentially assigned from S. cerevisiae (805 interactions) and alsoH. sapiens (50

interactions) (Fig 4D). The networks include 38 regulatory proteins, of which 7 TFs are self-

regulated. Interestingly, the number of regulatory proteins in E. histolytica is lower and they

appear to have fewer interactions and nodes compared to the regulatory proteins identified in
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E. dispar, E. nuttalli, and E. invadens. For example, E. dispar has 13 more regulatory proteins

than E. histolytica, but the number of nodes is more than double (521) and the number of

interactions is three times higher than in E. histolytica (Table 1).

Topological properties of the GRNs

In order to describe the global and local structures of the GRNs of Entamoeba spp. strains, the

general structures of the four networks were analyzed (Table 1). Networks are structured into

connected components (CC), within which the giant component is the one that contains the

largest number of nodes in a network. In this context, we identified that the E. histolytica net-

work comprises four CCs and the giant component contains 210 nodes and 263 edges; the E.

dispar network contains five CCs and the giant component has 553 nodes and 945 edges; E.

nuttalli contains three CCs and the giant component has 379 nodes and 558 edges. Finally, E.

invadens contains five CCs and one giant component with 510 nodes and 846 edges (Fig 4).

In addition, the clustering coefficient, a measure of the degree to which nodes in a graph

tend to cluster together, was calculated. We observed that the maximum clustering coefficient

was 1 in E. invadens and 0.5 in the other networks. A clustering coefficient of 1 indicates that

nodes with neighbors that are related between them form complete graphs, while a clustering

coefficient less than 1 is related to few nodes being connected, which is common in the four

networks due to limited information.

The input degree (Kin) and output degree (Kout), which link the number of TFs that con-

trol a gene and the number of genes that a TF regulates, were computed. In this context, we

identified that 155 in E. histolytica, 295 in E. dispar, 234 in E. nuttalli, and 290 in E. invadens
are regulated by one TF, i.e., they have an input degree of 1. In this context, the most regulated

gene in E. histolytica is EHI_131470 (ribosome biogenesis protein Nop10) responsible for ribo-

some biogenesis and is regulated by four TFs. EDI_107330 (Xaa-Pro dipeptidase) is regulated

by seven TFs in E. dispar; in E. nuttalli ENU1_214880 (Xaa-Pro dipeptidase) is regulated by six

TFs. Finally, in E. invadens EIN_095830 (branched-chain-amino-acid aminotransferase) is

regulated by nine TFs (Table 1).

Table 1. General properties of the GRNs.

GRN E. histolytica E. dispar E. nuttalli E. invadens
Total number of nodes 221 583 382 520

Total number of

interactions

272 979 560 853

Number of TFs 28 41 39 38

Number of TGs 205 542 521 482

Self-regulated� 4 7 6 7

Maximum out degree� EHI_044890—

Helicase

(121)��

EDI_297980—Hypothetical

protein

(284)

ENU1_120230—HSF

(195)

EIN_249270—NF-Y alpha

(257)

Maximum in-degree� EHI_131470—

NOP10

(4)���

EDI_107330 –Xaa-Pro

dipeptidase

(7)

ENU1_214880 –Xaa-Pro

dipeptidase

(6)

EIN_095830—branched-chain-amino-acid

aminotransferase

(9)

Connected components 4 5 3 5

Average clustering 0.0033 0.0723 0.043 0.0786

�This information can be found in S4 Table.

��The values in parentheses correspond to its Kin.

���The values in parentheses correspond to its Kout.

https://doi.org/10.1371/journal.pone.0271640.t001
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With regard to output degree, the most connected node in the E. histolytica network is the

putative Helicase EHI_044890, which influences 121 genes. It is interesting that the ortholo-

gous proteins of EHI_044890 in other organisms are essential, according to the TDR targets

database (https://www.tdrtargets.org). For instance, in Trypanosoma brucei, its mutation

reduces significant loss of fitness in differentiation of procyclic to bloodstream forms, whereas

in Caenorhabditis elegans, it is lethal for the embryonic stage. Therefore, we suggest that

EHI_044890 is also essential in E. histolytica, because of its output degree, functional role, and

similarity to other proteins.

EDI_297980 regulates 284 genes and is a hypothetical protein in E. dispar network.

ENU1_120230 regulates 195 genes and is a putative heat shock transcription factor in E. nut-
talli. This type of TFs has not been identified in any Entamoeba species, except in E. histolytica,

which has a family of seven EhHSTFs (manuscript in preparation). EhHSTF7 has recently

been shown to be the TF responsible for regulating the expression of the multidrug resistance

gene EhPgp5 in this species of amoeba [57].

Finally, EIN_249270 regulates 257 genes and is a putative transcription factor NF-Y alpha

in E. invadens. This TF has been a heterotrimeric protein composed of NF-YA, NF-YB, and

NF-YC subunits that bind to the CCAAT box. This factor participates mainly in the regulation

Fig 4. GRNs of A) E. histolytica, B) E. dispar, C) E. nuttalli, and D) E. invadens. The yellow nodes are TFs and the blue nodes are TGs; size nodes are

proportional to output degree.

https://doi.org/10.1371/journal.pone.0271640.g004
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of genes of the cell cycle and metabolism such as gluconeogenesis and appears at a later time

point of Entamoeba encystation [55–57,63]. In addition, we identified the top 10 most important

nodes by the centrality metrics, based on node connectivity as well as the shortest paths between

them. In terms of degree centrality, the most important nodes in each network included

EHI_044890 (0.5545), which is an isw2p helicase in E. histolytica [64]; its homologues in S. cere-
visiae are chromatin-remodeling factors and yeast ISWI, which is essential for the cell to resist

various stresses in vivo, and both homologous show genetic interactions [65]. EDI_297980

(0.4914) is a hypothetical protein in E. dispar, and it is homologous to nuclear transcription fac-

tor Y, alpha (KEGG). In E. nuttalli, ENU1_120230 (0.5118) is orthologous with YGL073W,

which is a trimeric heat shock TF [66]. Finally, EIN_249270 (0.4971), which is orthologous to

nuclear transcription factor Y, alpha (KEGG), is the most important in E. invadens.
Furthermore, we identified the node with the highest closeness score, i.e., that which mini-

mizes the sum of distances to the other nodes. In E. histolytica the most important is

EHI_131470 (0.0189), for ribose biogenesis protein Nop10, involved in 18S rRNA pseudouri-

dylation and in cleavage of pre-rRNA [67]. In E. dispar, EDI_107330 (0.0126) is a putative

Xaa-Pro dipeptidase; Xaa-Pro dipeptidase plays a role in collagen metabolism because of the

high level of imino acids in collagen (Uniprot). In E. nuttalli, ENU1_214880 (0.0167) is also

homologous with Xaa-Pro dipeptidase. In E. invadens EIN_095830 (0.0166) is a putative

branched-chain amino acid aminotransferase.

Betweenness centrality of a node is defined as the sum of the fraction of all-pairs shortest

paths that pass through v, i.e., the influence of a vertex over the flow of information between

every pair of vertices under the assumption that information primarily flows over the shortest

paths between them. The most important in E. histolytica is EHI_048150 (0.0011519), which

encodes the EhCAF1 protein homologous to POP2 in S. cerevisiae; POP2 is a nuclease involved

in mRNA deadenylation [68,69]. EDI_297980 (0.000999) in E. dispar and EIN_249270

(0.0011270) in E. invadens are orthologs to nuclear transcription factor Y, alpha.

ENU1_027490 (0.00050421) in E. nuttalli is homologous to ISW2, a conserved ATP-depen-

dent chromatin-remodeling factor in S. cerevisiae [70].

Biological process in the networks

To identify the most abundant functions represented in the networks, they were analyzed with

Gene Ontology terms. We identified that the most abundant terms in the four networks are

Macromolecule metabolic process (GO:0043170), Cellular macromolecule metabolic process

(GO:0044260), and Cellular nitrogen compound metabolic process (GO:0034641), all of which

are related to chemical reactions and pathways involving macromolecules and organic and

inorganic nitrogenous compounds (Fig 5) (S3 Table).

Additionally, we identified some GO terms associated with one species’ network: single-

organism biosynthetic process (GO:0044711), organophosphate metabolic process

(GO:0019637), and macromolecular complex subunit organization (GO:0043933) in E. histoly-
tica; single-organism carbohydrate metabolic process (GO:0005975) and organic substance

catabolic process (GO:1901575) in E. dispar; generation of precursor metabolites and energy

(GO:0006091) in E. nuttalli; regulation of protein complex assembly (GO:0043254), regulation

of actin filament-based process (GO:0032970), and generation of precursor metabolites and

energy (GO:0006091) in E. invadens.

Conclusions

The inference of GRNs of Entamoeba speciesprovide an excellent opportunity to understand

how genes and functional processes are interrelated in these organisms. These networks were
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analyzed in terms of these topological properties to infer the role of TFs in the context of the

GRN and the biological functions. From these analyses, we identified that TFs of E. histolytica,

E. dispar, and E. nuttalli are associated with the LIM family, whereas the TFs in E. invadens are

associated with the RRM_1 family. In the context of more connected nodes, we identified that

EHI_044890 regulates 121 genes in E. histolytica, EDI_297980 regulates 284 genes in E. dispar,
ENU1_120230 regulates 195 genes in E. nuttalli, and EIN_249270 regulates 257 genes in E.

invadens. Finally, we determined that Macromolecule metabolic process (GO:0043170), Cellu-

lar macromolecule metabolic process (GO:0044260), and Cellular nitrogen compound meta-

bolic process (GO:0034641) are the main biological processes for each network. However,

there are specific enriched biological processes for each network that determine the differences

in the size of each network. The results described in this work can be used for the study of

gene regulation in these organisms.

Supporting information

S1 Table. Transcription factors of Entamoebas strains.

(XLSX)

Fig 5. GO enrichment analysis. The dot plot shows the terms (FDR< 0.05) of biological processes identified using DAVID. The size of a dot represents the

number of genes associated with the GO term, and the color of dots represents the P-adjusted value.

https://doi.org/10.1371/journal.pone.0271640.g005
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Funding acquisition: Edgardo Galán-Vásquez, Ernesto Pérez-Rueda.
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