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INTRODUCTION

Systems biology implements a variety of statistical, computational and mathematical techniques to
understand how networks of biological systems work together to achieve a function (Westerhoff
and Palsson, 2004; Wolkenhauer, 2014). Systems biology is a multi-scale field, as it has no
fixed scale in the context of a biological response or cascade, where an ensemble of proteins,
cofactors and small molecules concertedly act to achieve function. This is the case of fundamental
pathophysiological networks, such as epidemiological responses with host and pathogens (Hillmer,
2015). Understanding the network of interactions that mediate these systems is of the utmost
importance for deciphering the mechanisms associated with multifactorial diseases, as well as to
address fundamental biological questions. This knowledge can be used for translational research
and application in biomedicine (McGillivray et al., 2018). The multi-scale nature of systems biology
calls for amultifaced description to bridge the system scale at the cellular level to themolecular scale
of individual macromolecules.

Among the important biological cascades responsible for severe diseases, we focus here on the
complement system, which is an effector arm of the immune system that eliminates pathogens,
helps in maintaining host homeostasis, and forms a bridge between innate and adaptive immunity
(Bennett et al., 2017; Reis et al., 2019). Complement is composed of three pathways known as
alternative, classical and lectin that work in concert to achieve its function (Schatz-Jakobsen
et al., 2016a). The complex network of proteins and other macromolecular entities composing
the complement system represents an ideal case to build a systems biology workflow predicting
the system’s response in immunity against invading pathogens, and how under complement
deficiencies this same system mediates different pathologies. Here, we report on the development
of systems biology predictive models, which describe the intricate biochemical networks and the
crosstalk among other elements of the immune system. We also show how the integration of
multiscale modeling techniques can help for improving the predictive model, while also providing
mechanistic information at the molecular level.

Complement dysfunction is associated with several diseases. Among others, the complement
components have been associated with neurodegenerative disorders including Alzheimer and
Parkinson diseases; as well as multiple sclerosis (Mastellos et al., 2019). Moreover, mutations of
complement proteins have been linked to the etiology of renal diseases (De Vriese et al., 2015;
Ricklin et al., 2016), while individuals with complement deficiencies develop severe infections,
such as meningitis, bacteremia and pneumonia caused by microorganisms, such as Streptococcus
pneumoniae,Neisseria meningitidis, and Staphylococcus aureus (Skattum et al., 2011). Clearly, while
a proper activation of the complement system is associated with a wide spectrum of beneficial
effects, dysfunctional states are associated with severe consequences. Considering that the function
of the complement system is regulated by a network of multiple components, whose concerted
activity underlies a variety of diseases, accurate models of the interaction network would greatly
help therapeutic strategies (Ricklin et al., 2018).
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MATHEMATICAL MODELS OF THE
COMPLEMENT SYSTEM

The complexity of the complement system arises from the
mechanistic function of numerous proteins and related
biochemical reactions within the complement pathways
(Figure 1). For instance, complement is composed of more
than 60 proteins that circulate in plasma and bound to cellular
membranes of host cells that work to mediate different phases
(fluid and solid) of immunity (Liszewski et al., 2017). This
multi-phasic interaction between complement proteins forms
the basis of the intricate biochemical networks and numerous
crosstalk with different compartments of the immune system,
such as pentraxins (C-reactive protein, serum-amyloid P, and
long pentraxin 3) and the coagulation cascade (Amara et al.,
2008; Ma and Garred, 2018).

In this complex scenario, mathematical models using ordinary
differential equation (ODE) emerged as a powerful tool to
elucidate the dynamics of the complement system. Indeed,
ODEs can be used to generate predictive models of complex
biological processes involving metabolic pathways, protein-
proteins interactions, and tumor growth (Ilea et al., 2012;
Dubitzky et al., 2013; Rohrs et al., 2018). In defining a
biological network in a quantitative manner, ODE models can
enable to predict concentrations, kinetics and behavior of the
network components, building hypotheses on disease causation,
progression and interference, which can be tested experimentally
(Enderling and Chaplain, 2014). In line with this, models of
the complement system based on ODEs have been designed
to mechanistically deconstruct segments of the complement
system under homeostasis and infection (Hirayama et al., 1996;
Korotaevskiy et al., 2009; Liu et al., 2011; Zewde et al., 2016; Sagar
et al., 2017; Lang et al., 2019).

To further these efforts, we recently generated an expanded
ODEmodel that predicts the complement biomarker levels under
the states of homeostasis, disease, and drug intervention (Zewde
and Morikis, 2018). By using the reaction network in Figure 1,
we generated a system of ODEs to describe the bi-phasic
nature of the complement system: (i) initiation (fluid phase);
(ii) amplification and termination (pathogen surface); and (iii)
regulation (host cell and fluid phase). The ODE representation is
shown below:

dCi

dt
=

xi∑

y=1

σijfj

where variable Ci represents the concentration of an individual
complement protein/complex, xi denotes the number of
biochemical reactions associated with complement Ci for the y

th

reaction. Moreover, σij, denotes stoichiometric coefficients and
fj is a function that describes how the concentration Ci changes
with the biochemical reactions of the reactants/products and
parameters, within the given timeframe.

Building on this basic concept, we have designed a model
of the complement system that incorporates pathological
conditions by reducing the regulatory kinetic rates constants
and lowering blood plasma concentrations (Zewde and Morikis,

2018). By applying this model, it is possible to perform in
silico mutation by perturbing a complement protein and its
binding partner and examine how it translates into the global
dynamics of the complement pathway activation and regulation.
As a consequence, this enables to generate patient specific
models provided clinical data, predicting the effect of a specific
mutation within the entire system. For instance, disorders,
such as C3 glomerulonephritis and dense-deposit disease
are associated with a mutation that affects the complement
regulatory protein factor H (FH) (Nester and Smith, 2016). This
mutation results in low plasma levels of FH and subsequently
leads to host cell damage due to under-regulation of the
alternative pathway. By measuring patient’s FH level, this value
can be used to reparametrize the starting concentration of
FH in the ODEs model and, subsequently, examine how the
mutation affects activation and regulation of the alternative
pathway (Zewde and Morikis, 2018). The ODE mathematical
models can also be used to identify novel therapeutic targets,
which can be object of experimental validations to assess
their capability to interfere with the complement system. In
this respect, one strategy, called “global sensitivity,” enables
to identify which set of kinetic parameters is important
in the network of the complement system. In parallel, the
“local sensitivity” analysis can help in pinpointing critical
complement components that mediate the output of activation
or regulation (examples in Liu et al., 2011; Zewde et al., 2016;
Sagar et al., 2017). ODE models are also useful if kinetic data
is available for known inhibitors. Indeed, ODEs can be used
to perform comparison studies on how different therapeutic
targets perform under disease-based perturbations. In our
previous work (Zewde and Morikis, 2018), we incorporated
two complement inhibitors known as compstatin, C3 inhibitor
(Figure 1, magenta circle), and eculizumab, C5 inhibitor
(Figure 1, light blue circle), and examined how they regulated
a disease state mediated by FH. Our model showed both
inhibitors performed differently in regulating an over-active
complement system (disease state). Compstatin was shown
to potently regulate early-stage complement biomarkers,
whereas eculizumab over-regulates late-stage biomarkers.
From these results, our model indicated the need for patient-
tailored therapies depending on how disease associated
mutations manifest in the complement cascade. Altogether,
ODE models can be utilized to mechanistically translate
convoluted biological reaction-networks, reparametrized for
patient specific modeling, and identify novel therapeutic targets
under pathological conditions.

MULTISCALE SOLUTIONS TO THE
CHALLENGES OF ODE MODELS

Building on ODE models that predict how the molecular
interactions mediate immunity and disease, our group has
expanded the ODEs approach to model the pathways of
the complement system as a whole. In this respect, one of
the main challenges is represented by the lack of kinetic
parameters, thereby significantly hindering our modeling
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FIGURE 1 | Reduced biochemical network of the complement system (alternative and classical). The representative surface of host or pathogen is shown in magenta.

Complement activation start in the fluid phase, whereas the crosstalk between the alternative and classical pathways is shown in green. The cascade of reactions will

propagate to the surface and terminate by the formation of the membrane attack complex (MAC). This figure is adapted from Zewde and Morikis (2018). Structural

representation of C3 (blue) with compstatin (cyan) shown in magenta circle (Janssen et al., 2005, 2007). Black circle denotes the surface representation of C5b in

firebrick coloring and C6 in yellow (Hadders et al., 2012). Surface representation of C5 (red) and eculizumab (H- and L-chain in green) shown in light blue circle

(Schatz-Jakobsen et al., 2016b).

efforts. For instance, we are currently building a comprehensive
complement model that includes all three pathways (Figure 1),
immunoglobulins (IgG and IgM) and pentraxins. This system,
which comprises 670 differential equations with 328 kinetic
parameters, is used to examine the interplay between
complement activation and an immune evasive bacteria
Neisseria meningitidis. However, 140 of our kinetic parameters

are unknown and estimation of these parameters is challenging,
due the limited availability of experimental data.

To overcome these challenges, multi-scale approaches can
aid in alleviating some of these burdens by performing
simulations to predict association rate constants. For example,
Brownian dynamics (BD), milestoning and molecular dynamics
(MD) can be used to predict the kinetic and conformational
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requirements of binding (Ermak and McCammon, 1978; Huber
and McCammon, 2010; Votapka and Amaro, 2015). MD enables
to follow themotions of macromolecules over time by integrating
Newton equation of motion. As opposite, BD simulates a system
based on an overdamped Langevin equation of motion, enabling
the study of diffusion dynamics and obtaining association rates
for a given process (Ermak andMcCammon, 1978). Novel hybrid
schemes, such as SEEKR combines multiscale approaches of MD,
BD, andmilestoning to estimate kinetic parameters of association
and dissociation rate constants (Votapka et al., 2017).

We have already initiated this bridge between systems biology
and multi-scale approaches by performing molecular dynamics
and electrostatics studies on the complement complex C5bC6
(Figure 1, black circle) (Zewde et al., 2018). Our analysis
identified three binding sites and critical salt bridges formed
between C5b and C6. Building on this first study, Brownian
dynamics simulations will aid into the prediction of kinetic
parameters associated with C5bC6 complex formation, which
will subsequently be inserted into our ODE model. As a further
useful approach, in the cases where complete structural data
are absent, homology models using computational tools, such
as MODELLER (Webb and Sali, 2016) or SWISS-MODEL
(Waterhouse et al., 2018) can be used as a supplement. This
step can be followed by the utilization of protein docking tools
like HADDOCK (Dominguez et al., 2003) or ClusPro (Kozakov
et al., 2017) to generate potential complement complexes.
Finally, top ranked structures can then be a subject of the
multi-scale approaches mentioned above to estimate unknown
kinetic parameters.

SUMMARY AND PERSPECTIVES

Here, we described the current efforts to model the complexity of
systems biology, by building predictive models based on ODEs.
The multi-scale nature of this field, as characterized by a network
of proteins, cofactors and small molecules concertedly acting to
achieve function, calls for a multiscale description bridging the
macromolecular level to the systems level. Here, we described

our investigations aimed at modeling the complex biological
response of the complement system, which plays a prominent
role in host defense, homeostasis, and disease. We showed
how ODEs models can provide description of the network of
interactions at the system level, while multiscale simulations
methods can complement this approach providing a description
at the macromolecular level.

ODE models of the complement system have elucidated
key mechanisms of immune system function and regulation.
These mathematical models show promise for the investigation
of patient specific diseases and for the identification of
therapeutic interventions under pathological conditions.
Despite these advantages, modeling efforts are continuously
challenged by the lack of kinetic parameters needed
to generate and simulate ODEs models. A multi-scale
approach—harnessing methods, such as Brownian and
molecular dynamics—is promising to address some of these
challenges by predicting unknown kinetic parameters to be
utilized in quantitative models of the complement system.
In addition to multi-scale estimations, high performance
computing has made it possible to simulate large biological
structures (Casalino et al., 2018; Palermo et al., 2018). This
opens scientific avenues in the frontier of modeling entire
biochemical networks, including the complement system, such
merging the molecular level perspective to the system (i.e.,
cellular) scale.
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