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Entropy generation and dissipative 
heat transfer analysis of mixed 
convective hydromagnetic flow 
of a Casson nanofluid with thermal 
radiation and Hall current
A. Sahoo & R. Nandkeolyar*

The present article provides a detailed analysis of entropy generation on the unsteady three-
dimensional incompressible and electrically conducting magnetohydrodynamic flow of a Casson 
nanofluid under the influence of mixed convection, radiation, viscous dissipation, Brownian 
motion, Ohmic heating, thermophoresis and heat generation. At first, similarity transformation 
is used to transform the governing nonlinear coupled partial differential equations into nonlinear 
coupled ordinary differential equations, and then the resulting highly nonlinear coupled ordinary 
differential equations are numerically solved by the utilization of spectral quasi-linearization method. 
Moreover, the effects of pertinent flow parameters on velocity distribution, temperature distribution, 
concentration distribution, entropy generation and Bejan number are depicted prominently through 
various graphs and tables. It can be analyzed from the graphs that the Casson parameter acts as 
an assisting parameter towards the temperature distribution in the absence of viscous and Joule 
dissipations, while it has an adverse effect on temperature under the impacts of viscous and Joule 
dissipations. On the contrary, entropy generation increases significantly for larger Brinkman number, 
diffusive variable and concentration ratio parameter, whereas the reverse effects of these parameters 
on Bejan number are examined. Apart from this, the numerical values of some physical quantities 
such as skin friction coefficients in x and z directions, local Nusselt number and Sherwood number 
for the variation of the values of pertinent parameters are displayed in tabular forms. A quadratic 
multiple regression analysis for these physical quantities has also been carried out to improve the 
present model’s effectiveness in various industrial and engineering areas. Furthermore, an appropriate 
agreement is obtained on comparing the present results with previously published results.

Nanofluids are generated by colloidal suspensions of nanosized particles in the base fluid. The nanoparticles are 
usually made of metals, oxides, carbides, or carbon nanotubes. For example, the base fluids are taken as water, 
ethylene, glycol, oil and many others. It is observed to have various important useful properties of nanofluid 
such as the increment of the heat transfer and the stretching rate of nanofluid. The increment in the effective-
ness and performance of coolant is required in various areas such as electronics, power production, vehicle, 
engineering and industrial system etc. Generally, the nanofluid coolant is used to increase the quality of aero-
dynamics designs. Recently, nanofluid is applied in various cases, such as aerodynamics power engineering, 
heat exchanger, cooling of transformer, chemical separation devices, solar water heating, micropamps and drug 
recovery system. For huge requirements, the researchers are motivated to investigate the coolant, which has a 
high performance. So the researchers want to enhance the thermal conductivity of traditional fluids like ethyline 
glycol, water, oil etc. The thermal conductivity of ordinary base fluids is very low, and it is necessary to enhance 
the thermal conductivity of base fluids. The Suspension of nanoparticles in the base fluid improves the thermal 
conductivity and convective heat transfer. Initially,  Choi1 accepted this idea and introduced an innovative new 
type of nanofluids, which expresses a high thermal conductivity. Eastman et al.2 established a nanofluid contain-
ing copper nanometer-sized particles dispersed in ethylene glycol, and the nanofluid’s thermal conductivity was 
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larger than any other pure ethylene glycol. Khan and  Pop3 suggested an innovative mathematical model on the 
steady flow and thermal behaviour of nanofluid flowing over a linearly stretching sheet. Seth et al.4 executed a 
comprehensive study on an attractive mathematical model containing the MHD mixed convection stagnation 
point flow of micropolar nanofluid.

The study on flow over a stretching sheet is significantly important for using its application in many engineer-
ing and industrial sectors. Its fascinated applications are utilized in the production of plastic and rubber sheets, 
metalworking process such as hot rolling, aerodynamic extrusion of plastic sheets, melt spinning as a metal 
forming technique, elastic polymer substance and production of emollient, paints, production of glass-fibre etc. 
 Crane5 executed an investigation on the solution of boundary layer equation of Newtonian fluid over a stretching 
plate. Generally, Crane’s suggested model of the linearly stretching plate is not used in many industrial sectors. 
So Researchers find an interest for investigating the various aspects of the stretching rate. Remembering the vast 
applications of the stretching rate, Fang et al.6 investigated boundary layer flow over a stretching sheet with a 
power law velocity assuming the variable thickness of the sheet. The influences of different controlling param-
eters and different solution branches on the velocity and shear stress distributions were prominently illustrated. 
Rana and  Bhargava7 analyzed flow and heat transfer of a nanofluid over a nonlinearly stretching sheet. Here 
the combined effects of Brownian motion and thermophoresis were prominently discussed. Kameswaran et al.8 
examined Hydromagnetic nanofluid flow due to a stretching or shrinking sheet by taking viscous dissipation 
and chemical radiation effects into account. Here the external magnetic field significantly affects the nanofluid 
flow over a stretching sheet and controls the boundary layer of nanofluid. The impacts of magnetic field and 
viscous dissipation on the wall heat and mass transfer rates were highlighted significantly. Some other relevant 
and innovative investigations under different conditions are discussed by several  authors9–12.

The flow of an electrically conducting fluid in the presence of magnetic field is utilized in many engineering 
devices, such as MHD propulsion system, plasma confinement, liquid-metal cooling of nuclear reactors, elec-
tromagnetic pumps, MHD generators etc. The strong magnetic field generates a resistive Lorentz force, which 
controls the flow. In heat transfer processes, for getting the remarkable outcomes of the product, the rate of 
cooling can be controlled. Under the influence of the externally applied magnetic field, the cooling rate of liquid 
is controlled. The researchers emphasize the study on magnetohydrodynamic fluid flow due to its immense 
potentials for using in various engineering and industrial problems. For the requirements of the new aspects 
of the investigation, the researchers move towards analyzing the magnetohydrodynamic fluid flow. Recalling 
the remarkable applications of this work,  Pavlov13 was the first to develope an interesting model regarding the 
incompressible magnetohydrodynamic flow of a viscous fluid past a stretching surface. Sheikholeslami et al.14 
displayed a keen interest to address the numerical simulation of MHD nanofluid flow and heat transfer between 
two parallel plates in a rotating system by taking the effect of viscous dissipation into account. They discussed 
various important results including the nature of the magnitude of the skin friction coefficient and Nusselt 
number against the disparate values of pertinent parameters. They showed that magnetic parameter and rotation 
parameter had favourable effects on the magnitude of the skin friction coefficient, but the adverse effects of both 
of these parameters on Nusselt number were visualized. Khan and  Makinde15 studied MHD laminar boundary 
layer flow of an electrically conducting water-based nanofluid containing gyrotatic microorganisms along a 
convectively heated stretching sheet. They incorporated the convective boundary layer condition.  Hsiao16 initi-
ated the model regarding micropolar nanofluid flow towards a stretching sheet with the multimedia feature in 
the presence of MHD and viscous dissipation effects by taking Brownian motion and thermophoretic effect into 
account. Contributions on the topic of MHD flow of the electrically conducting fluid under different conditions 
are depicted in the  articles17–19.

It is an established fact that the flow of an electrically conducting fluid under the impact of a magnetic field 
produces a transverse flow because of the effect of Hall current, which rises due to the strong intensity of the 
magnetic field. The Hall effect has the potential to deal with many real life problems, and has a great importance 
to signify different flow features within the flow field. As this context, for its remarkable applications in various 
cases, the researchers find a keen interest to analyze theoretically and graphically about the impact of Hall current 
on the MHD flow of the viscous, incompressible and electrically conducting fluid. Maleque and  Sattar20 studied 
the effects of variable properties along with the effects of suction/injection and Hall current on a steady MHD 
convective flow generated by an infinite rotating porous disk. They inferred that Hall parameter m had an amaz-
ing effect on the radial and axial velocity profiles. They noticed that increasing the values of m(> 2.0) resulted 
in diminishing the radial and axial velocity profiles. Keeping the earlier research of works on the effect of Hall 
current in mind, Khan et al.21 tried to derive the exact analytical solutions for the MHD flows of an Oldroyd-B 
fluid through a porous space in the presence of the effect of Hall current. Some of the recent research works 
about this phenomena are executed by several  authors22–26.

For the improvement of the realistic fluid flow problems, it is necessary for the researchers to move towards 
analyzing the time dependent models. Firstly,  Wang27 tried to execute the unsteady-state problem. The pio-
neering attempt to find a fluid film on an accelerating stretching surface was done by Wang. He introduced a 
similarity transformation to turn the Navier–Stokes equations into the nonlinear ordinary differential equations. 
 Attia28 presented an interesting model for analyzing the impact of the external uniform magnetic field on the 
unsteady flow of an incompressible, viscous and electrically conducting fluid over an infinite rotating porous 
disk. Freidoonimehr et al.29 initiated a fascinating model to investigate the effect of the unsteady MHD laminar 
free convective flow of nanofluid over a porous vertical surface. They analyzed the effect of various parameters 
like magnetic parameter, unsteadiness parameter, buoyancy parameter etc. on velocity and temperature distribu-
tion. They examined that unsteadiness parameter was highly responsible for decreasing skin friction coefficient, 
whereas the reverse effect of it on the rate of mass transfer was observed evidently. Some of the relevant and 
effective research works are done by several  authors30–32.
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The investigation of non-Newtonian fluid attracts the researchers very much due to its huge applications in 
industrial and engineering areas. In 1995, Casson established a fluid flow model along with the flow of non-
Newtonian liquids. Casson fluid is one type of nanofluid, and it has a great significance in various cases. Recently, 
the Casson fluid flow model becomes meaningful for its fascinated application in human life. The examples of 
Casson fluid are honey, Chilly sauce, jelly, blood etc. The Casson fluid flow model has a remarkable requirement 
in modern science. Casson fluid displays the properties of yield stress. However, when yield stress becomes large, 
Casson fluid turns into a Newtonian fluid. If yield stress is less than shear stress, Casson fluid starts move. Taking 
care of it Eldabe and  Salwa33 made a first attempt to investigate the heat transfer of steady MHD non-Newtonian 
Casson fluid flow between two co-axial cylinders. Many years had passed to improve the investigation of this 
work. Nadeem et al.34 discussed the influence of the externally applied magnetic field on the Casson fluid flow in 
two lateral directions past a porous and linear stretching sheet. They presented the interesting results against the 
variation of Casson flow parameter as well as other fluid flow parameters. Recalling huge requirements of Casson 
fluid in real life, Prashu and  Nandkeolyar35 introduced a mathematical model to get the interesting results about 
the influence of unsteady three dimensional incompressible and electrically conducting magnetohydrodynamic 
flow of Casson fluid over the stretching sheet under the combined effects of radiative heat transfer and Hall cur-
rent. Various relevant and useful investigations are presented by several  authors36–39.

Heat transfer system is significantly performed by thermal radiation. The effect of thermal radiation finds 
the potential for using in many industrial and engineering applications, such as electrical power generation, 
nuclear energy plants, astrophysical flows, space vehicles, solar systems, gas production etc. In the present 
investigation, our motive is to develope various models which depict the impact of radiative heat transfer on the 
magnetohydrodynamic fluid flow under different conditions. Mbeledogu and  Ogulu40 established an amazing 
mathematical model regarding heat and mass transfer of an unsteady MHD flow of a rotating fluid past over a 
vertical porous flat plate with taking radiative heat transfer and natural convection into account. They estimated 
that increasing the values of the Prandtl number and the radiative parameter diminished the temperature of fluid 
within the boundary layer. Ansari et al.41 investigated the flow of non-Newtonian viscoelastic nanofluid over a 
linearly stretching sheet under the impact of the uniform magnetic field and radiative nonlinear heat transfer. 
The remarkable and innovative studies about this present phenomena are illustrated in the  articles42–45.

In a thermodynamic system, the entropy generation is the amount of entropy which is created generally dur-
ing irreversible processes by means of heat flow through a thermal resistance, fluid flow through a flow resistance, 
diffusion, Joule heating, friction between solid surfaces, fluid viscosity within a system etc. According to the 
second law of thermodynamics, the total entropy of the system remains unchanged during a reversible process. 
On the other hand,over a surface, when nanofluid flows are passing through several irreversible processes, such 
as diffusion, friction between the layers of fluid due to viscosity, thermal resistance, flow resistance, Joule heating 
etc., then the increment in the total entropy of the system can be observed. It is well known that entropy genera-
tion has a crucial role to diminish the required sources of energy of the system. In order to get better efficiency 
and performance in most engineering and industrial applications, the key concern of the researchers is to lessen 
the entropy generation. Taking care of this, initially,  Bejan46 tried to investigate the entropy generation in a 
convective heat transfer process. Shit et al.47 scrutinized a mathematical model to analyze entropy generation on 
unsteady two-dimensional magnetohydrodynamic flow of nanofluid over an exponentially stretching surface in a 
porous medium under the influence of thermal radiation. This research work was extended by Shit and  Mandal48. 
They treated Buongiorno’s model to investigate entropy generation on unsteady magnetohydrodynamic flow of 
Casson nanofluid over a stretching vertical plate under the influence of thermal radiation. Their investigation 
suggests that Casson parameter increases entropy generation sharply, while thermal radiation increases it closer 
to the plate. In this context, some of the relevant and remarkable investigations are described in the  articles49–55.

In quantum statistical mechanics, the idea of entropy was promoted by John von Neumann. Consequently, 
the entropy called as “von Neumann entropy” is actually an extension of the classical Gibbs entropy concepts to 
the field of quantum mechanics, and is generally defined as follows S = −kBTr

(
ρ log ρ

)
 where kB is Boltzmann 

constant, and ρ is the density matrix. Researchers are interested to investigate the fruitful aspects of various 
applications of quantum statistical mechanics for its immense requirements in a wide number of industrial and 
engineering processes. Taking care of it, Wang et al.56 explored the quantized quasi-two-dimensional Bose–Ein-
stein condensates with spatially modulated nonlinearity in the harmonic potential. Liang et al.57 initiated a family 
of exact solutions of the one-dimensional nonlinear Schrödinger equation for analyzing the dynamics of a bright 
soliton in Bose–Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic 
potential. Wen et al.58 displayed the matter rogue wave in Bose–Einstein condensates with attractive interatomic 
interaction analytically and numerically. Chen et al.59 combined the cellular dynamical mean-field theory with 
the continuous time quantum Monte Carlo method for getting the rich phase diagrams in the Hubbard model on 
the triangular kagome lattice as a function of interaction, temperature, and asymmetry. Moreover, in the field of 
quantum mechanics, Abliz et al.60 analyzed the entanglement control in an anisotropic two-qubit Heisenberg XYZ 
model in the presence of the external magnetic fields. Hu et al.61 described a brief explanation on the basis of the 
necessary and sufficient conditions for local creation of quantum correlation. Qi et al.62 represented a real physi-
cal system containing the non-Abelian Josephson impact between two F = 2 spinor Bose–Einstein condensates 
with double optical traps. Ji et al.63 proposed an optical system describing the photonic Josephson effects in two 
weakly linked microcavities with ultracold two-level atoms. Furthermore, Ji et al.64 introduced an optical system 
to let a direct experimental observation of the quantum magnetic correlated dynamics of the polarized light.

So far as the researchers are investigating the impact of unsteady three-dimensional magnetohydrodynamic 
flow of Casson nanofluid over a stretching sheet for its remarkable requirement in engineering and industrial 
applications. No one has discussed about the unsteady three-dimensional magnetohydrodynamic flow of Cas-
son nanofluid over the stretching surface in the presence of radiative heat transfer and mixed convection with 
taking viscous dissipation, Brownian motion, Ohmic heating, thermophoretic effect, heat generation and Hall 
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current into account. In this present article,the main objective of the authors is to represent a mathematical model 
containing the unsteady three-dimensional incompressible and electrically conducting magnetohydrodynamic 
flow of Casson nanofluid over a stretching sheet in a vertical direction under the influence of radiative heat 
transfer, Hall current, Mixed Convection, Viscous and Joule dissipations. Similarity transformations are utilized 
to turn the nonlinear partial differential equations into nonlinear ordinary differential equations. The obtained 
nonlinear coupled ordinary differential equations are numerically solved by using spectral quasi-linearization 
method (SQLM) . In this present article, the impacts of the variation of pertinent parameters such as Casson liquid 
parameter, Hall current parameter, magnetic parameter, unsteadiness parameter, radiation parameter, Brownian 
motion parameter, thermophoretic parameter, heat generation parameter, mixed convection parameter, Eckert 
number on the distribution of velocity, temperature and concentration are analyzed significantly. A brief descrip-
tion about entropy generation, and the impacts of various pertinent flow parameters on the entropy generation 
rate and Bejan number are displayed significantly.

Mathematical formulation
We consider the unsteady three-dimensional flow of an incompressible, homogeneous, electrically conducting 
Casson nanofluid past a vertical stretching sheet in the presence of an external magnetic field. We assume that 
x-axis is along the sheet in the vertically upward direction, and y-axis is normal to the sheet. It is assumed that 
the nanofluid is occupies the region y � 0 . We assume that the nanoparticle and base fluid are in thermal equi-
librium, and the chemical reaction between them is neglected. It is assumed that, except the density in buoyancy 
force, the thermophysical properties of nanofluid remain constant. The Boussinesq approximation is taken into 
account so that the density variation obtained by concentration or temperature difference is neglected except in 
case of buoyancy force. The time-dependent velocity of the sheet in x-direction is assumed to be u = uw(x, t) . The 
nanofluid is viscous and electrically conducting. The external time-dependent magnetic field B(t) is applied in 
the positive y-direction, which is normal to the surface of the sheet. The geometry of the problem is presented in 
Fig. 1. We also assume the magnetic Reynolds number to be very small ( Rem � 1 ) so that the induced magnetic 
field is neglected as compared to the applied one. The intensity of the applied magnetic field is so strong that 
the Hall current is generated in the flow field. The symbols T = Tw and T = T∞ denote the constant temperature 
of the fluid at the sheet’s surface and in the free stream, respectively. Cw is the nanoparticle fraction concentration 
at the sheet, and C∞ is the ambient concentration. The heat transfer phenomenon is also influenced by radiation, 
viscous dissipation, Brownian motion, Ohmic heating, thermophoretic effect, and heat generation.

The rheological equation of the Casson fluid is given as follows:

Figure 1.  The schematic diagram of the physical problem.
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where eij is the (i, j)th component of the deformation rate, µB is the plastic dynamic viscosity of the non-Newto-
nian fluid, py is the yield stress of the fluid, π = eijeij is the product of the component of the deformation rate 
with itself and πc denotes a critical value of this product based on the non-Newtonian model. Here β = µB

√
2πc

py
 

is the Casson parameter.
Using the above assumptions, the governing boundary layer equations i.e. continuity, momentum, energy 

and concentration equations can be expressed, respectively, as 

The suitable boundary conditions are defined as 

where uw is the stretching velocity in x direction. Let uw(x, t) = ax
1−γ t and the time dependent magnetic field is 

taken as B(t) = B0(1− γ t)−1/2 . Here a and γ are constants. Further, in the above equations, u, v and w are the 
components of velocity in x, y and z directions, respectively. t is time variable, β is the Casson fluid parameter, 
σ denotes electrical conductivity, νnf  is the nanofluid’s kinematic viscosity, m is Hall current parameter, T is the 
temperature of fluid within the boundary layer, C denotes nanoparticle concentration within boundary layer 
region, κ denotes thermal conductivity of the nanofluid, 

(
ρcp

)

nf
 denotes the heat capacity of nanofluid, 

(
ρcp

)

np
 

denotes nanoparticle heat capacity, DB is coefficient of Brownian diffusion, DT is coefficient of thermophoretic 
diffusion, and the radiative heat flux is denoted by qr.

Here optically thick fluid is taken, and the radiative heat flux vector is defined with the help of the Rosseland 
approximation as follows

where σ ∗ is Stefen–Boltzmann constant and α∗ is the coefficient of Rosseland mean absorption. Following Pan-
tokratoras and  Fang65, the radiative heat flux is simplified as

The present mathematical problem is executed by using radiative heat flux given in (8).
For simplifying the present mathematical model, the similarity  transformations66,67 are generated as

Utilizing the similarity transformations, the present governing equations turns into nonlinear coupled ordinary 
differential equations, which are presented as follows

(1)τij =
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The boundary conditions reduce to the following form:

where non-dimensional parameters are defined as

Quantities of physical interest
For engineering interest, the significant physical quantities, such as skin friction coefficients in x and z directions 
Cfx , Cfz , the local Nusselt number (rate of heat transfer)Nux and Sherwood number(rate of mass transfer)Shx 
are defined as

where the shear-stress components τwx , τwz , heat flux qw and mass flux Jw at the surface are defined as

The present physical quantities in non-dimensional form are defined as 

(9)
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where qr is the radiative heat flux and Rex = xuw
νnf

 is the local Reynolds number.

Solution methodology
The obtained ordinary differential Eqs. (9)–(12) along with the boundary conditions defined in (13) and (14) are 
numerically solved by using spectral quasi-linearization method (SQLM). This method is utilized to linearize the 
nonlinear terms of the transformed ordinary differential equations with the help of the one term Taylor series 
approximation about the previous iteration, say r. Following the framework of SQLM, the resulting iterative 
scheme is presented as 

The boundary conditions in iterative form are derived as

and

For starting the iterative scheme, the initial approximations, which satisfy the boundary conditions are assumed 
as f0 = 1− e−η , g0 = 0, θ0 = e−η , φ0 = e−η

For solving the linearized and decoupled equations (18)–(21) numerically, a well known method, namely 
the Chebyshev spectral collocation method, is used. The method uses the Chebyshev polynomials defined in 
[−1, 1] to discretize the computational domain. For this reason, the physical region [0,∞) is truncated to a 
domain [0, L∞] . Then the domain [0, L∞] is transformed to the interval [−1, 1] by utilizing the following linear 
transformation

where L∞ is called scaling parameter, which is large but a finite number. It is chosen to present the behaviour of 
the flow properties outside the boundary layer region. Let P be the number of Gauss Lobatto collocation points. 
The Gauss Lobatto collocation points utilized to discretize the domain [− 1, 1] are defined as 

At these P collocation points, the functions Fj , Gj , �j and �j for j � 1 are approximated with the help of kth 
Chebyshev polynomial 

(
T∗
k

)
 as follows

The kth Chebyshev polynomial is defined as 

The jth derivative of unknown functions Fr+1, Gr+1, �r+1 and �r+1 are constructed as

(18)a113,r f
′′′
r+1 + a112, rf

′′
r+1 + a110,r fr+1 + a110,r fr+1 + a120,rgr+1 = R1,r

(19)a222,rg
′′
r+1 + a221,rg

′
r+1 + a220,rgr+1 + a211,r f

′
r+1 + a210,r fr+1 = R2,r

(20)a332,rθ
′′
r+1 + a331,rθ

′
r+1 + a330,rθr+1 + a310,r fr+1 + a341,rφ

′
r+1 = R3,r

(21)φ
′′
r+1 + a441,rφ

′
r+1 + a432,rθ

′′
r+1 + a410,r fr+1 = R4,r

f
′
r+1 = 1, fr+1 = 0, gr+1 = 0, θr+1 = 1, φr+1 = 1 at η = 0

f
′
r+1 → 0, gr+1 → 0, θr+1 → 0, φr+1 → 0 as η → ∞

η =
L∞(ζ + 1)

2
, −1 � ζ � 1.

ζi = cos
π i

P
, i = 0, 1, 2 . . . P

(22)Fj(ζ ) ≈
P∑

k=0

Fj(ζk)T
∗
k (ζ )

(23)Gj(ζ ) ≈
P∑

k=0

Gj(ζk)T
∗
k (ζ )

(24)�j(ζ ) ≈
P∑

k=0

�j(ζk)T
∗
k (ζ )

(25)�j(ζ ) ≈
P∑

k=0

�j(ζk)T
∗
k (ζ ).

T∗
k (ζ ) = cos

[
kcos−1(ζ )

]
.
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Here S =
2D

L
, D is Chebyshev differentiation matrix. The entries of this matrix are defined as follows

In this procedure, we obtain following matrix equation:

where each Aij is of order (P + 1)× (P + 1) and the order of each R1,r , R2,r , R3,r and R4,r is (P + 1)× 1.

Solution error
The solution error method is used to justify the convergence of the solutions for validating our results. In this 
method, the norm of the difference of the solutions at two consecutive iterations is calculated. If this norm 
approaches to very small value, then the method converges, and it validates the results obtained by using spectral 
quasi-linearization method (SQLM). The errors in the solutions of f (η), g(η), θ(η) and φ(η) are defined as

The errors in the solutions are represented through the Fig. 2a–d. From these figures, it is concluded that 
after seven iterations, the error of each solution attains to become less than 10−8 , which validates our results.

(26)

djFr+1

dηj
=

�P
k=0 S

j
kifr+1(ζk) = SjFr+1,

djGr+1

dηj
=

�P
k=0 S

j
kigr+1(ζk) = SjGr+1,

dj�r+1

dηj
=

�P
k=0 S

j
kiθr+1(ζk) = Sj�r+1,

dj�r+1

dηj
=

�P
k=0 S

j
kiφr+1(ζk) = Sj�r+1,







i = 0, 1, 2 . . . P.

(27)
D00 =

2P2 + 1

6
, Dik =

ci(−1)i+k

ck(ζi − ζk)
, i �= k; i, k = 0, 1 . . . P

DPP = −
2P2 + 1

6
, Dkk = −

ζk

2(1− ζ 2k )
, k = 1, 2 . . . P − 1







ci =
{
2 i = 0 or P
1 otherwise

(28)
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Fr+1

Gr+1

�r+1

�r+1




 =






R1,r
R2,r
R3,r
R4,r






Fr+1 =
�
fr+1(ζ0), fr+1(ζ1), . . . fr+1(ζP)

�T
,

Gr+1 =
�
gr+1(ζ0), gr+1(ζ1), . . . gr+1(ζP)

�T
,

�r+1 = [θr+1(ζ0), θr+1(ζ1), . . . θr+1(ζP)]T ,
�r+1 = [φr+1(ζ0),φr+1(ζ1), . . . φr+1(ζP)]

T ,
R1,r = [r1,r(ζ0), r1,r(ζ1), . . . , r1,r(ζP)]T ,
R2,r = [r2,r(ζ0), r2,r(ζ1), . . . , r2,r(ζP)]T ,
R3,r = [r3,r(ζ0), r3,r(ζ1), . . . , r3,r(ζP)]T ,
R4,r = [r4,r(ζ0), r4,r(ζ1), . . . , r4,r(ζP)]T ,
A11 = a113,rS

3 + a112,rS
2 + a111,rS + a110,r I ,

A12 = a120,r I ,
A13 = a130,r I ,
A14 = O,
A21 = a211,rS + a210,r I ,
A22 = a222,rS

2 + a221,rS + a220,r I ,
A23 = O
A24 = O,
A31 = a310,r I + a311,rS + a312,rS

2

A32 = a320,r I + a321,rS,
A33 = a332,rS

2 + a331,rS + a330I ,
A34 = a341,rS,
A41 = a410,r I ,
A42 = O,
A43 = a432,rS

2

A44 = S2 + a441,rS.







.

error F = �fr+1 − fr�∞, error G = �gr+1 − gr�∞, error � = �θr+1 − θr�∞, error � = �φr+1 − φr�∞.
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Validation of approximate solutions
In order to validate the present results, a comparison of the present results with the results obtained by 
Khan and  Pop3 is executed after neglecting certain parameters. Table 3 represents the comparison of the 
present results of local Nusselt number and Sherwood number against the pertinent parameter Nt at 
β → ∞, Pr = 10, Sc = 10, Nb = 0.1 with Khan and Pop by nullifying extra parameters. Moreover, the com-
parison of the magnitude of skin friction coefficient in x-direction against the significant parameters M and β 
with the results of Nadeem et al.34 is fulfilled through Table 4 by vanishing other parameters. In both comparisons, 
an appropriate resemblance is observed, which validate the present results.

Analysis of entropy generation
The study on the entropy generation of any system is prominent to explain the irreversibility of thermal energy 
in the system. The main objective of the present model is to minimize entropy generation for obtaining better 
outcomes by controlling several physical parameters. The entropy generation rate per unit volume of the present 
model can be constructed mathematically as follows:
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Figure 2.  Solution error for (a) f (η), (b) g(η) , (c) θ(η), (d) φ(η).
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• The term 1
T2
∞

(

κnf +
16σ ∗T3

3α∗

)(
∂T
∂y

)2
 represents entropy generation due to heat transfer irreversibility.

• The term µnf

T∞

(

1+ 1
β

)[(
∂u
∂y

)2
+

(
∂w
∂y

)2
]

 presents entropy generation due to the viscous dissipation of energy 

of the Casson nanofluid.
• The term σB2(t)

(1+m2)T∞

(
u2 + w2

)
 signifies entropy generation due to the applied magnetic field.

• The terms RDB
C∞

(
∂C
∂y

)2
 and RDB

T∞

(
∂T
∂y

)(
∂C
∂y

)

 indicate the entropy generation because of the mass transfer irre-
versibility.

The non dimensional form of entropy generation can be expressed as follows:

where EG0 =
κnf (Tw − T∞)2

T2
∞

(
y
η

)2
.

Utilizing the similarity transformation, the nondimensional entropy generation can be reduced to the fol-
lowing form

where Brinkman number Br = µnf u
2
w

κnf�T = µnf a
2x2

(1−γ t)2κnf (Tw−T∞)
, dimensionless temperature ratio variable 

α1 = Tw−T∞
T∞

, dimensionless concentration ratio variable α2 = Cw−C∞
C∞

, diffusive variable L = RDBC∞
κnf

. NG is total 
entropy generation of the system. NGT is entropy number due to thermal irreversibility. NGFF defines entropy 
generation number due to fluid friction irreversibility including the impact of applied magnetic field. NGM 
denotes entropy number due to mass transfer irreversibility. A significant parameter in the analysis of entropy 
generation is Bejan number. Taking care of it, the dimensionless Bejan number is constructed mathematically 
as follows:

From Eq. (32), it is clear that Bejan number ranges from 0 to 1. If Be ≪ 0.5 , entropy generation due to friction 
irreversibility dominates over heat transfer irreversibility. If Be ≫ 0.5 , then entropy generation due to heat 
transfer irreversibility dominates over friction irreversibility. For Be = 0.5 , the heat transfer irreversibility and 
friction irreversibility are equal.

Results and discussion
The numerical study of the present mathematical model is analyzed by taking the effects of Hall current, radia-
tion, mixed convection, heat generation, viscous and Joule dissipations, Brownian motion and thermophoresis 
into account under some boundary conditions. The present model of the physical problem is characterized by 
a set of time and space dependent nonlinear partial differential equations containing momentum equation, 
energy equation and concentration equation. Similarity transformations are applied to obtain a set of nonlinear 
ordinary differential equations, and SQLM is used to solve these ordinary differential equations subject to the 
relevant boundary conditions. From the physical point of view, the impact of several values of specified param-
eters on the flow field, such as mixed convection parameter, Prandtl number, magnetic number, Eckert number, 
Brownian motion parameter, thermophoretic parameter, Schmidt number, Hall current parameter, Radiation 
parameter and heat generation parameter are explored and plotted graphically. In the current section, for the 
numerical computation, the default values of pertinent parameters are taken as A = 0.1, M = 7, m = 0.2, β =

0.3, Nr = 0.5, Pr = 6, tr = 1, Sc = 1.5, Nb = 0.2, Nt = 0.1, � = 8, Ec = 0.1 and α = 0.1.

Nanofluid velocity profile. Figures 3, 4, 5 and 6 depict the impact of disparate values of pertinent param-
eters on the nanofluid velocity profiles. The impact of Casson parameter β and magnetic parameter M on the 
profiles of velocity components in x and z-directions is depicted graphically in Fig. 3a–c, respectively. It is visu-
alized from these figures that raising the values of both Casson parameter β and magnetic field parameter M 
leads to reduce the velocity f ′(η) in x-direction within the boundary layer region. When the Casson parameter β 
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tends to ∞ , the fluid turns into a Newtonian fluid. The increase in the values of β enhances the plastic dynamic 
viscosity, and hereby the yield stress diminishes. This resists the fluid motion. The presence of magnetic field 
in an electrically conducting fluid creates a resistive force called Lorentz force. This force retards the motion of 
nanofluid, and as a result, the velocity f ′(η) in x-direction gets decreased with increasing the values of magnetic 
parameter M. On the contrary, the dual nature of transverse velocity ( g(η) ) can be observed for increasing the 
values of magnetic parameter and β . On increasing the magnetic parameter and β,the nanofluid velocity g(η) 
in z-direction gets increased rapidly near the sheet, and after that, it dwindles away from the sheet within the 
boundary layer. The strong magnetic field B(t) applied on the flow of an electrically conducting nanofluid pro-
duces Hall current and the impact of this current on the profiles of nanofluid velocity is demonstrated graphi-
cally in the Fig. 4a, b. It is witnessed that the Hall current parameter has no considerable effect on the nanofluid 
velocity f ′(η) in x-direction. However, the small increment in f ′(η) with increasing the values of Hall current 
parameter m can be visualized. The nanofluid velocity g(η) in z direction enhances considerably on increasing 
the Hall current parameter m. Physically, lessening the conductivity ( σ

1+m2 ) means strengthening the Hall cur-
rent parameter m, which generates a magnetic damping force caused to speed up the velocity components of 
the nanofluid. The impact of unsteadiness parameter A on the velocity profiles can be observed in Fig. 5a, b. It 
is evident that on increasing unsteadiness parameter A, the velocity components are increasing slowly, which 
leads to rise the thickness of momentum boundary layer. Figure 6a, b display the velocity distribution for various 
values of Eckert number and mixed convection parameter � . It is concluded from the figures that the increment 
in parameter Ec means strengthening the kinetic energy, which enhances the velocity components in x and z 
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Figure 3.  Graphs of (a) f ′(η) against β and M, (b) g(η) against β , (c) g(η) against M.
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directions. It is also evident that the increment in Ec increases the boundarylayer thickness. It is observed from 
Fig. 6a, b that mixed convection parameter � has a tendency to enhance the fluid velocity. This phenomenon 
happens only in the presence of Buoyancy force.

Nanofluid temperature profile. Figures 7, 8 and 9 display the influence of some specified parameters on 
Casson nanofluid temperature profiles within the thermal boundary layer. It is observed from Fig. 7a that mag-
netic parameter M has a tendency to enhance the nanofluid temperature within the boundary layer. The applied 
magnetic field boosts to increase Ohmic heating, which is produced by Lorentz force. As a result, temperature 
rises on increasing magnetic parameter. The temperature profiles for different values of Casson parameter β in 
the cases, such as Ec = 0 and Ec > 0 are depicted in Fig. 7b, c, respectively. It is evident that the increment in 
Casson parameter β leads to increase the nanofluid temperature in the absence of Ec and diminishes the nano-
fluid temperature in the presence of Ec within the boundary layer. Since Casson parameter β reduces the velocity, 
and Eckert number is inversely proportional to the temperature difference, it resembles that Casson parameter 
has a tendency to diminish the temperature under the impact of viscous and Joule dissipations (Ec > 0) . Fig-
ure 8a portrays the impact of various values of Ec and thermophoretic parameter Nt on nanofluid temperature 
profiles. It can be visualized that increasing the values of Ec leads to enhance temperature profile throughout the 
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boundary layer. On increasing Ec, a hump is noted in the region near the sheet, and after that, nanofluid temper-
ature tends to ambient temperature value away from the sheet. Eckert number is the ratio of the kinetic energy 
to the enthalpy. However, the impact of Ec on the temperature profile is noticed only due to the increasing trend 
of viscous and Joule dissipations. In case of viscous and Ohmic heating, as a consequence of dissipation effects, 
heat is generated due to friction between two adjacent electrically conducting fluid layers and hereby fluid tem-
perature rises. It can be seen that the parameter Nt has an increasing effect on temperature distribution. As a 
result, the thermal boundary layer thickness improves significantly. Physically, the increment in Nt occurs by 
means of the enhancement in the thermophoretic phenomenon. Thermophoresis is one type of particle motion 
under the influence of the applied thermal gradients, whereas it is related deeply to the soret effect. Nanopar-
ticles transfer thermal energy from the hotter side to the cooler side within the boundary layer region due to 
diffusion of particles caused by the thermophoretic effect. Thus the temperature of fluid increases significantly. 
Figure 8b illustrates the temperature profile for disparate values of Nb. It is evident from Fig. 8b that the incre-
ment in Nb leads to increase fluid temperature. This phenomenon represents an increase of Brownian motion, 
which indicates the irregular movement of particles suspended in the fluid. It can be concluded that increasing 
the Brownian motion enhances temperature considerably throughout the boundary layer due to increasing the 
collision between fluid particles. Also Fig. 8b exhibits the heat generation effect on the temperature profile in 
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the presence of Buoyancy force. It is observed that ascending the values of heat generation parameter enhances 
fluid temperature significantly. It is due to the fact that the external heat source introduces more heat in the flow 
region, as a result of which, the fluid temperature increases. Figure 8c predicts the impact of the temperature 
distribution against the unsteadiness parameter A and the Hall current parameter m. It is noticeable that the 
unsteadiness parameter A has no significant effect on the fluid temperature. A minor increment of temperature 
is visualized for increasing the values of the unsteadiness parameter A throughout the boundary layer. As a 
result, the thickness of thermal boundary layer enhances. Meanwhile, it is depicted from Fig. 8c that the Hall 
current parameter m has a strictly decreasing affect on the distribution of temperature throughout the boundary 
layer. Moreover, the impact of radiative parameter Nr, the temperature ratio parameter tr and Prandtl number 
Pr on the fluid temperature is portrayed in Fig. 9a–c, respectively. From Fig. 9a, the decreasing behaviour of 
temperature distribution towards the radiative parameter Nr can be noticed near the sheet. But away from the 
sheet, temperature is highly rising on increasing the radiative parameter Nr. At a certain distance from the sheet, 
the fluid absorbs more heat due to a larger radiation parameter. This fact is responsible to increase temperature 
far from the sheet. From the Fig. 9b, the similar observation can be visualized in case of temperature distribution 
against the parameter tr. The temperature ratio parameter tr indicates the ratio of the fluid temperature at the 
surface to the fluid temperature outside the boundary layer region. From Fig. 9c, it can be noticed the opposite 
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observation on temperature profile against Prandtl number. Prandtl number indicates the ratio of momentum 
diffusivity to thermal diffusivity. The increment in Prandtl number signifies that the higher momentum diffusiv-
ity drops fluid temperature. This fact clarifies that fluid temperature is strictly rising under the increasing effect 
of thermal diffusivity throughout the boundary layer region.

Nanofluid concentration profile. Figure 10a–c display the influence of some specified parameters on 
Casson nanofluid concentration profiles throughout the boundary layer. Figure 10a depicts the nanoparticle 
concentration profile for different values of Nt. It is ascertained that Nt acts as an assisting parameter in case of 
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Figure 7.  Temperature profiles against (a) M, (b) β and Ec = 0 , (c) β and Ec > 0.
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concentration distribution inside the boundary layer region. From the physical point of view, this observation 
occurs due to the increment of the thermophoretic phenomena. Moreover, Fig. 10b illustrates to highlight the 
nanoparticle concentration profile for various values of Nb. Physically, the enhancement in parameter Nb refers 
to occur the collision between nanoparticles repeatedly. As a result of which, the species between nanoparticles 
diminishes, which leads to decrease the concentration distribution. From Fig. 10c, it is demonstrated that the 
larger Schmidt number Sc is responsible for decreasing the concentration within the boundary layer, which 
results in thinning the thickness of nanoparticle concentration boundary layer. The larger Schimdt number 
means the lesser mass diffusivity, which indicates to decrease the nanoparticle concentration throughout the 
boundary layer.
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Figure 8.  Temperature profiles against (a) Ec and Nt, (b) Nb and α , (c) A and m.
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Entropy generation and Bejan number. Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 
and 26 illustrate the influences of pertinent parameters on the entropy generation. Figures 11 and 12 are shown 
to exhibit the impact of magnetic parameter M on entropy generation NG and Bejan number Be. It is noticed 
from Fig. 11 that initially the increment in magnetic parameter decreases the entropy generation near the sheet, 
and then leads to enhance the entropy generation. From Fig.  12, in case of Bejan number, the same fact is 
visualized. For the large values of M, the resistive Lorentz force is generated, which retards the fluid motion, 
and in the presence of a strong applied magnetic field, the temperature increases due to Ohmic heating, which 
leads to introduce much heat. Hereby entropy generation increases. Away from the sheet, for the large M, heat 
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Figure 9.  Temperature profiles against (a) Nr, (b) tr, (c) Pr.
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transfer irreversibility dominates over fluid friction irreversibility. As a result, Bejan number increases. Figure 13 
elaborates the variation of entropy profile against the multiple values of Brinkman number. Brinkman number 
is the ratio of heat produced by viscous dissipation to heat transported by molecular conduction. Physically, on 
increasing the Brinkman number, the conduction rate of the heat generated due to viscous dissipation depreci-
ates, resulting in an enhancement in the entropy generation rate. The behaviour of Bejan number for multiple 
values of Brinkman number is plotted in Fig. 14. Here the graph of Bejan number declines for increasing the 
Brinkman number. Physically, the total entropy generation rate rises due to the increment in Brinkman num-
ber, which leads to decline the Bejan number. Figure 15 demonstrates the impact of various values of Casson 
parameter β on entropy generation profile. It is analyzed that on increasing the values of Casson parameter β , 
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Figure 10.  Concentration profiles against the disperate values of pertinent parameters (a) Nt, (b) Nb, (c) Sc.
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entropy generation rate decays. Physically, this phenomenon occurs due to the stress of Casson liquid, which 
reduces rheological features. When Casson parameter approaches ∞ , the fluid behaves as a Newtonian fluid. As 
a result, the liquid has a tendency to shear quickly along the sheet, which causes to decrease entropy generation 
rate. The impact of Casson parameter on Bejan number is exposed through the Fig. 16. On increasing the Cas-
son parameter, the increasing trend of Bejan number is visualized. When Casson parameter becomes large, then 
the total entropy generation rate decays. Therefore Bejan number rises. Figure 17 depicts the impact of various 
values of Hall current parameter m on entropy generation profile. The increment in Hall current parameter 
enhances the entropy generation near the sheet, but at a certain distance from the sheet, the entropy generation 
diminishes significantly. In case of Bejan number, the same phenomenon is observed through the Fig. 18. At the 
neighbourhood of the sheet, the entropy generation due to thermal irreversibility dominates over fluid friction 
irreversibility for increasing the values of Hall current parameter. So Bejan number increase near the sheet. Far 
from the sheet, increasing the values of Hall current parameter decays temperature. As a result of which, the 
entropy generation decreases. Also the entropy generation due to thermal irreversibility is dominated by fluid 
friction irreversibility on increasing m away from the sheet. As a result, Bejan number decreases. Figures 19 and 
20 depict the effect of diffusive variable L on NG and Be, respectively. Figure 19 shows that NG gets increased with 
increasing the values of L. Figure 20 depicts that the enhancement in L decreases Be. For the large L, the mass dif-
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Figure 11.  Sketch of NG against M.
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fusivity of nanoparticle increases, which causes to rise the entropy generation. From the physical point of view, 
since the total entropy generation rate enhances, Bejan number decays. Figures 21 and 22 are drawn to highlight 
the behavior of NG and Be against the distinct values of temperature ratio parameter α1 . It is worth noting that 
on increasing the values of α1 , the entropy generation gets decreased near the sheet, however, later it increases 
significantly away from the sheet. From Fig. 22, it can be seen that Bejan number has a significantly increasing 
effect on the enhancement in the temperature ratio parameter α1 . For the large values of α1 , the thermal irrevers-
ibility dominates over the fluid friction irreversibility. Therefore Bejan number gets increased. The Influence of 
concentration ratio parameter α2 on NG and Be is elaborated through the Figs. 23 and 24, respectively. It is evi-
dent that NG gets enhanced for increasing the values of concentration ratio parameter α2 by means of increasing 
the mass transfer irreversibility. However, Fig. 24 depicts that the increment in concentration ratio parameter α2 
reduces the Bejan number. Physically, since the total entropy generation rate increases, the Bejan number decays. 
From Figs. 25 and 26, it is evident that higher thermal radiation parameter Nr has a tendency to enhance the 
entropy generation and Bejan number rapidly. For the higher estimation of Nr, the temperature increases, which 
results in an increment in entropy generation and Bejan number. Here the thermal irreversibility dominates over 
the total entropy generation.
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Figure 13.  Sketch of NG against Br.
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Skin friction, Nusselt number and Sherwood number. For the engineering interest, the effect of 
disparate values of pertinent parameters on the numerical values of some physical quantities such as skin fric-
tion coefficients ( Cf x and Cf z ), local Nusselt number and Sherwood number are displayed in Tables 1 and 2. 
From Tables 1 and 2 it is visualized that the magnitude of skin friction coefficient in x direction is a decreas-
ing function of unsteadiness parameter A, Hall current parameter m, β ,Nr, tr,Ec, �,α,Nt,Nb and Sc . Whereas, 
the magnitude of skin friction coefficient in z direction has a decreasing effect on Casson parameter β and 
Prandtl number Pr. Moreover, the favourable behaviour of the parameters M, and Pr to the magnitude of skin 
friction coefficient in x direction can be noticed. The parameters A,M,m, Nr, tr, Ec, �, α, Nt, Nb and Sc 
have an increasing trend towards the magnitude of skin friction coefficient in z direction. The parameters 
A, M, Ec, Pr, �, α, Nt, Nb and Sc have a tendency to increase the rate of heat transfer in magnitude and the 
opposing nature of the parameters m, β , Nr, tr on the rate of heat transfer in magnitude is observed. However, 
the parameters A, M, Ec, Pr, �, α, Nt and Sc lead to enhance the rate of mass transfer in magnitude, whereas, 
the parameters m, β , Nr, tr, and Nb have a tendency to retard the rate of mass transfer in magnitude.
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Figure 15.  Sketch of NG against β.
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Quadratic multiple regression analysis
In the present section, the skin friction coefficients 

(
Cfx and Cfz

)
 , the reduced Nusselt number and the reduced 

Sherwood number are estimated with the help of quadratic multiple regression method. The approximated 
quadratic regression models for CfxRe

1/2
x , CfzRe

1/2
x , NuxRe

−1/2
x and ShxRe

−1/2
x  are constructed, respectively, 

as follows:

(33)Cfxest = Cfx + b1m+ b2A+ b3m
2 + b4A

2 + b5mA

(34)Cfzest = Cfz + c1Nr + c2A+ c3Nr
2 + c4A

2 + c5NrA

(35)Nuest = Nu+ a1Nt + a2Nb+ a3Nt
2 + a4Nb

2 + a5NtNb

(36)Shest = Sh+ d1Nt + d2Nb+ d3A+ d4Nb
2 + d5NtNb+ d6Nt

2 + d7A
2 + d8ANt + d9ANb
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Figure 17.  Sketch of NG against m.
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Figure 18.  Sketch of Be against m.
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where b1, b2, b3, b4, b5 and c1, c2, , c3, c4, c5 are the regression coefficients of the quadratic multiple regres-
sion model for CfxRe

1/2
x and CfzRe

1/2
x ,respectively, while a1, a2, a3, a4, a5 and d1, d2, d3, d4, d5, d6, d7, d8 are 

indicated the regression coefficients of the quadratic multiple regression model for the reduced Nusselt number 
NuxRe

−1/2
x  and the reduced Sherwood number ShxRe

−1/2
x  , respectively. For carrying out the quadratic multiple 

regression model on the skin friction coefficient in x-direction, the values of CfxRe
1/2
x  are estimated for 100 sets 

of values of m and A generated arbitrarily from the intervals [0, 0.3] and [0, 0.15] , respectively, assuming the other 
parameters as fixed, whereas, in order to perform the same model on the skin friction coefficient in z-direction, 
the numerical values of CfxRe

1/2
z  are approximated for 100 sets of values of Nr and A taken randomly from the 

intervals [0.1, 0.5] and [0, 0.15] keeping the other parameters as constant. Moreover, to execute the quadratic 
multiple regression model on the reduced Nusselt number, the numerical values of NuxRe

−1/2
x  are calculated 

for 100 sets of values of Nt and Nb chosen randomly from the intervals [0.1, 0.5] and [0.1, 0.5] assuming the 
other parameters as constant, whereas for constructing the same model on the reduced Sherwood number, the 
numerical values of ShxRe

−1/2
x  are computed for 100 sets of values of Nt, Nb and A generated arbitrarily from 

the intervals [0.1, 0.5], [0.1, 0.5] and [0, 0.15] , when the numerical values of the other parameters are considered 
to be constant. The maximum relative errors εCfx

, εCfz
, εNu and εSh are formulated as
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Figure 19.  Sketch of NG against L.
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From Table 5, it can be notified that with increasing the impact of the Schmidt number, Cfx and the values 
of the coefficient of A are negative, while the values of the coefficient of m are positive. Consequently, it can be 

(37)εCfx
=

∣
∣
∣
∣

Cfxest − Cfx

Cfx

∣
∣
∣
∣

(38)εCfz
=

∣
∣
∣
∣

Cfzest − Cfz

Cfz

∣
∣
∣
∣

(39)εNu =
∣
∣
∣
∣

Nuest − Nu

Nu

∣
∣
∣
∣

(40)εSh =
∣
∣
∣
∣

Shest − Sh

Sh

∣
∣
∣
∣
.
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Figure 21.  Sketch of NG against α1.
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Figure 22.  Sketch of Be against α1.
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concluded from the Eq. (33) that the favourable nature of the unsteadiness parameter on the magnitude of the 
skin friction coefficient in x-direction is noticed, on the contrary, the reverse trend of Hall Current parameter 
towards it takes place. Moreover, it can be noted that on increasing the Schmidt number, the values of the coef-
ficient of the unsteadiness parameter are greater than the values of the coefficient of the Hall current parameter 
in magnitude, which signifies that a small change in the unsteadiness parameter leads to a large perturbation 
in CfxRe

1/2
x  as compared to the Hall current parameter. Table 6 displays that the values of the coefficient of the 

unsteadiness parameter are larger than the values of the coefficient of the thermal radiation parameter in mag-
nitude with rising the Hall current parameter, which indicates that the impact of the unsteadiness parameter 
on CfzRe

1/2
z  is dominant as compared to the thermal radiation parameter. Since the coefficients of Nr and A are 

negative and positive, respectively, from the Eq. (34) it can be clarified that the thermal radiation parameter has 
a decreasing tendency towards the skin friction coefficient in z-direction, whereas the assisting behaviour of 
the unsteadiness parameter on it can be noted. Table 7 exhibits that the values of the coefficient of the Brownian 
motion parameter are greater than the values of the coefficient of the thermophoretic parameter in magnitude 
with a variation in the Prandtl number, which signifies that a slight variation in the Brownian motion param-
eter causes a substantial change in the reduced Nusselt number NuxRe

−1/2
x  as compared to the Thermophoretic 

parameter. However, it can be visualized from the Table 7 that the coefficients of the thermophoretic parameter 
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Figure 23.  Sketch of NG against α2.
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Figure 24.  Sketch of Be against α2.
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and Brownian motion parameter become negative with a slight variation in the Prandtl number. So from the 
Eq. (35), it can be concluded that thermophoretic parameter and Brownian motion parameter have adverse 
effects on the reduced Nusselt number NuxRe

−1/2
x  . Through the Table 8, it can be ascertained that the values 

of the coefficient of the Brownian motion parameter are greater than the values of the coefficients of the ther-
mophoretic parameter and the unsteadiness parameter in magnitude, which reveals that the influence of the 
Brownian motion on the reduced Sherwood number ShxRe

−1/2
x  is more than the effects of thermophoretic dif-

fusion and unsteadiness parameter. Furthermore, it is prominently observed from the Table 8 that the values of 
the coefficients of thermophoretic parameter and unsteadiness parameter are negative, while the coefficient of 
the Brownian motion is positive. Therefore, it is quite evident from the Eq. (36) that the Brownian motion has 
an enhancing impact on the reduced Sherwood number ShxRe

−1/2
x  , whereas the contrary trend of thermopho-

retic diffusion and unsteadiness parameter towards it takes place. It is an important finding that the accuracy of 
the quadratic regression estimate for the skin friction coefficient in z-direction is much better than that of the 
quadratic regression estimates for the skin friction coefficient in x-direction, the reduced Nusselt number and 
the reduced Sherwood number.
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Figure 25.  Sketch of NG against Nr.
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Figure 26.  Sketch of Be against Nr.
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Conclusions
Our main objective of carrying out the present research work is to analyze the features of entropy generation on 
unsteady three dimensional magnetohydrodynamic flow of Casson nanofluid over the stretching sheet under 
the influence of radiative heat transfer, mixed convection, Hall current, thermophoresis, Brownian motion, 
Ohmic heating and heat generation. The governing boundary layer equations consisting of nonlinear coupled 
partial differential equations are transformed into ordinary differential equations by using Similarity transfor-
mation variables. The resulting highly nonlinear coupled ordinary differential equations are solved numerically 

Table 1.  Numerical values of skin friction coefficients 
(
Cfx and Cfz

)
, Nusselt Number Nux , and Sherwood 

number Shx for Pr = 6, � = 5, α = 0.2, Nt = 0.1, Nb = 0.1, Sc = 1.5.

A M m β Nr tr Ec −CfxRe
1

2

x CfzRe
1

2

x −NuxRe
−1

2

x ShxRe
−1

2

x

0.1 6 0.1 0.3 0.5 1 0.1 2.6500 0.3067 1.0328 1.5524

0.13 2.6178 0.3080 1.0848 1.5611

0.15 2.5949 0.3090 1.1209 1.5671

6 2.6500 0.3067 1.0328 1.5524

8 3.3787 0.3584 1.6297 1.8245

10 4.0431 0.4027 2.1844 2.0828

0.1 2.6500 0.3067 1.0328 1.5524

0.5 2.2987 1.3345 0.7671 1.4240

0.8 1.9058 1.7804 0.4661 1.2826

0.3 2.6500 0.3067 1.0328 1.5524

0.5 2.0957 0.2635 0.8442 1.4182

0.8 1.7364 0.2344 0.7217 1.3257

0.5 2.6500 0.3067 1.0328 1.5524

0.8 2.6040 0.3111 0.9804 1.4144

1.2 2.5464 0.3163 0.9160 1.2992

1 2.6500 0.3067 1.0328 1.5524

1.4 2.5802 0.3127 0.9301 1.2691

2 2.4114 0.3255 0.6749 1.0525

0.1 2.6500 0.3067 1.0328 1.5524

0.15 2.1339 0.3243 2.2262 2.2010

0.2 1.5037 0.3457 3.6082 2.9308

Table 2.  Numerical values of skin friction coefficients 
(
Cfx and Cfz

)
, Nusselt Number Nux , and Sherwood 

number Shx for A = 0.1, M = 6, m = 0.1, β = 0.3, Nr = 0.5, tr = 1, Ec = 0.1.

Pr � α Nt Nb Sc −CfxRe
1

2

x CfzRe
1

2

x −NuxRe
−1

2

x ShxRe
−1

2

x

6 5 0.2 0.1 0.1 1.5 2.6500 0.3067 1.0328 1.5524

8 2.6979 0.3017 1.4519 1.7927

10 2.7232 0.2984 1.8679 2.0326

5 2.6500 0.3067 1.0328 1.5524

8 0.8971 0.3463 1.0400 1.6354

9 0.2732 0.3605 1.0996 1.6909

0.2 2.6500 0.3067 1.0328 1.5524

0.25 2.5413 0.3104 1.2677 1.6803

0.28 2.4707 0.3129 1.4189 1.7622

0.1 2.6500 0.3067 1.0328 1.5524

0.2 2.5606 0.3104 1.1380 2.4204

0.3 2.4690 0.3143 1.2417 3.3824

0.1 2.6500 0.3067 1.0328 1.5524

0.2 2.5547 0.3102 1.1477 1.2028

0.3 2.4625 0.3136 1.2388 1.0855

1.5 2.6500 0.3067 1.0328 1.5524

2 2.6407 0.3070 1.0455 1.7210

2.5 2.6367 0.3071 1.0506 1.8607
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Table 3.  Comparison of numerical values of NuxRe
−1
2

x and ShxRe

−1
2

x  against Nt for 
β → ∞, Pr = 10, Sc = 10,Nb = 0.1,M = m = Ec = � = α = A = Nr = 0.

Present results Khan and  Pop3

Nt NuxRe
−1

2

x ShxRe
−1

2

x NuxRe
−1

2

x NuxRe
−1

2

x

0.1 0.9524 2.1294 0.9524 2.1294

0.2 0.6932 2.2740 0.6932 2.2740

0.3 0.5201 2.5286 0.5201 2.5286

0.4 0.4026 2.7952 0.4026 2.7952

0.5 0.3211 3.03511 0.3211 3.03511

Table 4.  Comparison of numerical values of magnitude of skin friction coefficient in x-direction against M,β 
for m = � = Nr = A = 0.

M β Present −
(

1+
1

β

)

f
′′

(0) Nadeem et al.34 −
(

1+
1

β

)

f
′′

(0)

0

∞ 1.0000 1.0042

5 1.0954 1.0954

1 1.4142 1.4142

10

∞ 3.3166 3.3165

5 3.6332 3.6331

1 4.6904 4.6904

100

∞ 10.0499 10.049

5 11.0091 11.0091

1 14.2127 14.2127

Table 5.  Numerical computations for quadratic regression coefficients and error bound for estimated CfxRe
1/2
x .

Sc Cfx b1 b2 b3 b4 b5 εCfx

0.8 − 3.3897 0.0144 − 0.4060 0.5140 − 0.7100 1.0820 0.0066

1 − 3.3851 0.0146 − 0.4043 0.5183 − 0.6886 1.0687 0.0068

1.2 − 3.3810 0.0147 − 0.4028 0.5209 − 0.6754 1.0607 0.0069

Table 6.  Numerical computations for quadratic regression coefficients and error bound for estimated CfzRe
1/2
x .

m Cfz c1 c2 c3 c4 c5 εCfz

0.05 0.1891 − 0.0019 0.0024 0.0115 0.0880 − 0.0556 5.5649E−04

0.06 0.2267 − 0.0022 0.0028 0.0137 0.1039 − 0.0658 5.6294E−04

0.07 0.2643 − 0.0026 0.0032 0.0158 0.1189 − 0.0755 5.7044E−04

Table 7.  Numerical computations for quadratic regression coefficients and error bound for estimated 
NuxRe

−1/2
x .

Pr Nu a1 a2 a3 a4 a5 εNu

0.05 0.6554 − 0.0013 − 0.0016 0.0000 0.0000 0.0000 0.0022

0.08 0.7418 − 0.0026 − 0.0029 0.0000 0.0000 0.0000 0.0037

0.1 0.8061 − 0.0037 − 0.0039 0.0000 0.0000 0.0000 0.0047
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by utilizing the spectral quasi-linearization method and Chebyshev spectral collocation method. The physical 
impact of several flow parameters are exhibited through various graphs and tables. The key observations of the 
present investigation are summarized as follows:

• Magnetic parameter and Casson parameter lead to retard the Casson nanofluid motion in x- direction, 
which results in decreasing the momentum boundary layer thickness. But in case of transverse velocity, the 
dual nature of these parameters is observed prominently. On increasing the magnetic parameter and Casson 
parameter, the transverse velocity is decreasing drastically away from the sheet, but the reverse phenomena is 
noticed in the region closer to the stretching sheet. On the contrary, the magnetic parameter has a tendency 
to increase temperature profile.

• The Unsteadiness parameter has no considerable effect on the velocity distribution of Casson nanofluid. Hall 
current parameter leads to enhance velocity in x- direction slowly, whereas it boosts to increase the transverse 
velocity highly.On the other hand, Hall current parameter declines temperature, which leads to decay the 
thermal boundary layer thickness. Moreover, Eckert number and mixed convection parameter increase the 
momentum of Casson nanofluid strictly. As a result of which, the increment of momentum boundary layer 
thickness is witnessed. However, the increasing trend of mixed convection parameter towards the temperature 
distribution is noticed significantly.

• In the absence of viscous and Joule dissipations ( Ec = 0 ), Casson parameter has a favourable effect on tem-
perature profile. On the contrary, it is noticeable that Casson parameter has a tendency to decay temperature 
in the presence of viscous and Joule dissipations ( Ec > 0 ). However, the increment in the strength of viscous 
and Joule dissipations, Brownian motion, thermophoretic diffusion, heat generation results in an increment 
of temperature distribution, which indicates that the thermal boundary layer becomes thicker. Adjacent to 
the sheet, in case of temperature distribution, the radiation parameter acts as an assisting parameter, while 
far from the plate, it acts as an opposing parameter.

• Brownian motion is responsible to diminish the species concentration throughout the boundary layer, 
whereas thermophoretic diffusion has an opposing trend towards the species concentration.

• The magnitude of skin friction coefficient in x-direction gets decreased due to increasing the parameters 
A, m, β , Nr, tr, Ec, �, α, Nt, Nb and Sc , while the increasing effect of the parameters M and Pr is visual-
ized on it. The magnitude of skin friction coefficient in z-direction is an increasing function of parameters 
A, M, m, Nr, tr, Ec, �, α, Nt, Nb and Sc , whereas the parameters β and Pr have a reverse effect on it. 
The parameters A, M, Ec, Pr, �, α, Nt, Nb and Sc have an increasing trend to the rate of heat transfer in 
magnitude, but the parameters m, β , Nr, tr have an adverse effect on it. On the other hand, the parameters 
A, M, Ec, Pr, �, α, Nt, and Sc have a tendency to enhance the rate of mass transfer in magnitude, while 
the parameters m, β , Nr, trand Nb have an opposing effect on it.

• The entropy generation is inferred to rise for increasing the diffusive variable, concentration ratio parameter 
and Brinkman number, whereas these parameters have an opposing effect on Bejan number. The Magnetic 
parameter diminishes entropy generation closer to the sheet and enhances the entropy generation drastically 
away from the sheet. The similar phenomena can be noticed in case of Bejan number. Moreover, the oppo-
site observation can be visualized in case of entropy generation and Bejan number against the Hall current 
parameter. Casson parameter decreases the entropy generation, while its adverse trend is observed to the 
Bejan number.

• The increment in the strength of thermal radiation is highly responsible for the larger entropy generation 
and Bejan number.
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