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The circadian clock is an important adaptation to life on Earth. Here,
we use machine learning to predict complex, temporal, and circa-
dian gene expression patterns in Arabidopsis. Most significantly, we
classify circadian genes using DNA sequence features generated de
novo from public, genomic resources, facilitating downstream ap-
plication of our methods with no experimental work or prior knowl-
edge needed. We use local model explanation that is transcript
specific to rank DNA sequence features, providing a detailed profile
of the potential circadian regulatory mechanisms for each transcript.
Furthermore, we can discriminate the temporal phase of transcript
expression using the local, explanation-derived, and ranked DNA
sequence features, revealing hidden subclasses within the circadian
class. Model interpretation/explanation provides the backbone of
our methodological advances, giving insight into biological pro-
cesses and experimental design. Next, we use model interpretation
to optimize sampling strategies when we predict circadian tran-
scripts using reduced numbers of transcriptomic timepoints. Finally,
we predict the circadian time from a single, transcriptomic time-
point, deriving marker transcripts that are most impactful for accu-
rate prediction; this could facilitate the identification of altered clock
function from existing datasets.
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he circadian clock is an internal molecular 24-h timer that is a

critical adaptation to life on Earth. It temporally orchestrates
physiology, biochemistry, and metabolism across the day/night
cycle. As a result, it regulates many traits associated with fitness
and survival (1, 2). The clock is a well-characterized transcrip-
tional regulatory network, which drives complex, widespread,
and robust patterns of temporal gene expression (3, 4). However,
our understanding of such complex transcriptional regulatory
systems is limited by our ability to assay them, requiring the
generation of long, high-resolution time series datasets.

In plants, much of our understanding of circadian regulation
comes from our study of the model plant Arabidopsis thaliana. This
has yielded a plethora of public, multiomic resources (5-7) that can
be reanalyzed to give additional insights into the roles and func-
tions of complex regulatory networks. In this study, we use newly
generated datasets, published temporal datasets (8-10) (SI Ap-
pendix, Table S1), and Arabidopsis genomes, in combination with
machine learning (ML) approaches (see SI Appendix, Glossary for
definitions of terms), to make predictions about circadian gene
regulation and expression patterns. ML models are frequently
described as “black boxes,” meaning that because of their com-
plexity their inner logic is not easily understood by a human.
Critically, we advance existing approaches using explainable Al
algorithms and interpretation of our models to illuminate what is
inside the black box (SI Appendix, Glossary), such methods help us
to understand the predictions made by ML models. There are
many model interpretation strategies in which methods can identify
important patterns and/or features that underly an ML model (11).
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For example, model interpretation has been successfully imple-
mented in drug discovery to enable the mechanistic interpretation
of drug action and drug response (12-15). We use such approaches
to give insight into circadian biology and experimental design,
alongside our predictions. Clarity with respect to how a model
makes its predictions, we propose, will also generate confidence
and trust in the model, promoting its usage. We use the Arabi-
dopsis circadian clock as an example of a complex transcriptional
regulatory network since some of its key regulatory elements are
already known, allowing the validation of our findings with
experimental evidence.

Circadian gene expression rhythms reflect a variety of wave-
form shapes with a characteristic periodicity of ~24 h (16). Re-
cent computational methods for identifying these rhythms from
transcriptomic time course datasets have achieved circadian gene
classification with as few as 3 to 6 timepoints (saving time for
sampling and money for sequencing) (17). However, some of the
most popular approaches describe optimal sampling strategies
for the identification of rhythms running with >3 d of data and
2-h sampling resolution (18, 19). This is partly due to concern for
the loss of information and accuracy, as a result of
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downsampling. Since the cost implications of this are high, our
focus is on designing trusted downsampling strategies for cap-
turing circadian oscillations using a nonoptimal number of
timepoints and on improving accuracy compared to existing
methods to minimize the impact of information loss. Firstly, we
develop ML models that classify circadian expression patterns
using an iteratively lower numbers of transcriptomic timepoints,
improving accuracy compared to the state of the art. Moreover,
we use model interpretation to quantify the best, transcriptomic
timepoints for sampling. We believe that predictive insight on
when to sample will be a valuable reference for experimental
biologists when planning experiments.

Next, we redefine the field, developing ML models that dis-
tinguish circadian transcripts using no transcriptomic timepoint
information and instead using DNA sequence features (SI Ap-
pendix, Glossary). The theory supporting this is that a major
mechanism of (circadian or otherwise) gene expression control is
through transcription factor (TF) binding to the regulatory DNA
sequence. Considering previous work in Arabidopsis, it is likely
that the promoter, 5’ untranslated region (UTR), and the first
part of the coding region are the most useful locations for TF
binding site (TFBS) detection (20). Genes expressed with similar
patterns are more likely to be controlled by similar sets of
TFBSs. In addition, small RNAs (sRNAs), comprising micro-
RNAs (miRNAs) and small interfering RNAs, are thought to
affect transcript abundance via posttranscriptional regulation of
messenger RNA (mRNA) (21). Plant miRNAs predominately
bind to the coding regions of mRNA and, to a lesser extent, 5’
UTR and 3'UTR regions (22, 23). As such, we consider both
coding and noncoding regions to classify circadian genes using
DNA sequence. Our DNA sequence features are profiles of k-
mer-based motif representations that are identified de novo and
embody a comprehensive picture of TFBS, SRNA/RNA binding
sites, and other sequence-based regulatory elements, since we
incorporate the promoter 5'UTR, 3'UTR, and coding regions.

A key strength of our DNA sequence-based approach is that
we classify circadian transcripts using k-mer-based motif repre-
sentations generated from preexisting, public, and genomic re-
sources, facilitating downstream application of our methods with
no experimental work or prior knowledge of regulatory elements
needed. Computational regulatory motif discovery methods
typically search for overrepresented words across DNA se-
quences using methods such as expectation maximization and
Gibbs sampling (24-27). Approaches are typically limited by a
requirement for input information [e.g., coexpressed genes, site
abundance, or a fixed motif length (28-30)]. Artificial intelli-
gence (AI) has been used to take DNA sequence information as
an input to predict outputs that likely impact DNA function.
Examples include predicting variant effects on chromatin fea-
tures, such as TF binding, and histone profiles [e.g., DeepSEA
(31) and DanQ (32)]. Furthermore, Al has been used to predict
transcriptomic profiles directly using features such as DNA se-
quence or epigenetic marks. These features typically include
representations of TFBS [e.g., Xpresso (33, 34)], enhancers [e.g.,
McEnhancer (35)], histone modifications [e.g., DeepChrome
(36)], open chromatin regions (37), or promoters (38). However,
these approaches typically require experimental data beyond
training, prior knowledge of regulatory elements that our ap-
proach does not need, or they focus on single-gene expression
states and do not consider complex patterns, as our methods do.

Traditionally, AI work to predict expression has lacked com-
prehensive model explanation (39). Increasingly, efforts focus on
developing interpretive methods for expression prediction models
(34-36, 38, 40). For example, for DNA sequence-based models,
the studies (33, 38, 40) evaluate feature relevance or importance
and derive predictive DNA regions by aligning differential nu-
cleotide importance with differentially expressed genes; these re-
gions can then be bioinformatically analyzed to identify regulatory

20f12 | PNAS
https://doi.org/10.1073/pnas.2103070118

motifs. Here, alongside our DNA sequence-based predictive
model, we use explainable Al to derive regulatory motifs directly
from the ML model and explore their functional consequences. We
exploit model explanation to identify, on a transcript-by-transcript
basis, the ranked regulatory sequences that guide the classification
of its expression pattern as circadian. We identify both small and
larger combinations of regulatory elements that, in combination,
give a larger, overall impact on gene classification. These regulatory
sequences are candidate genetic features that could control gene
expression and allow us to understand the regulatory mechanisms
governing circadian expression patterns and even to manipulate
regulation. Ultimately, we use model explanation to generate and
validate hypotheses in silico, facilitating both gene expression pre-
diction and derivative regulatory element discovery.

Finally, assaying circadian clock function, as opposed to identi-
fying transcript rhythmicity, has been a challenge for the study of the
circadian regulation in organisms ranging from mammals to plants.
Recent work applied ML to circadian time course transcriptomic
datasets from human blood, to predict the phase of the endogenous
circadian clock (circadian time, CT), using a single timepoint from a
set of marker genes (41, 42). This allows the use of one timepoint to
identify altered clock function (e.g., due to disease or environmental
conditions). An equivalent major challenge exists in plant sciences.
As such, we use ML to predict the circadian time in Arabidopsis
from a single, transcriptomic timepoint using marker genes. To
advance previous offerings, we identify marker genes as part of our
interpretable approach, ensuring that they represent a diverse range
of temporal patterns with consistent amplitudes across datasets to
facilitate accurate and robust phase prediction, irrespective of
sample phase. Counter intuitively, our marker genes do not include
the core clock genes used in previous studies for time prediction
(43). Taken together, these tools constitute a suite of informative
resources for both experimental biologists and the interpretation of
further circadian datasets.

Results and Discussion

ML Interpretation Optimizes Timepoint Downsampling to Define
Circadian Transcripts. We used MetaCycle for the detection of
circadian signals in dense time series transcriptomic data (18).
MetaCycle is one of the most well-maintained and accessible
tools within the community, incorporating a variety of the most
widely used methods, ARSER (44), JTK_CYCLE (45), and
Lomb-Scargle (46), and integrating their results so that rhythmic
prediction is a cumulation of different statistical approaches. We
ran MetaCycle (see Materials and Methods) on the Arabidopsis
time series transcriptomic dataset generated by ref. 8, which was
sampled every 4 h for 48 h (SI Appendix, Table S1). The data
were processed to produce normalized counts per transcript (see
Materials and Methods). MetaCycle classified 9,394 out of 44,963
transcripts as circadian (q < 0.05), with 7,734 denoted as high
confidence (q < 0.02) (SI Appendix, Note S1). We trained a series
of ML classifiers to predict if a transcript was circadian or non-
circadian in a binary classification using 7,734 of the least likely
candidates to be circadian (q > 0.99), labeled by MetaCycle
alongside the 7,734 highly circadian transcripts (q < 0.02) (see
Materials and Methods and SI Appendix, Glossary and Note S2). For
ML models, we report the F1 scores that measure the accuracy of
the model on a scale of 0 to 1, with 1 being most accurate (S/
Appendix, Glossary). Considering all 12 transcriptomic timepoints,
the best model was generated with Light Gradient-Boosting Ma-
chine (LightGBM) after optimization (Materials and Methods and
SI Appendix, Fig. S14 and Table S2), with an F1 score of 0.999 on
the training data, 0.955 on the (held out) test data, and a mean F1
cross validation score of 0.939 (SI Appendix, Glossary). Our con-
fusion matrix (SI Appendix, Fig. S1B and Glossary) highlights
consistently high-model accuracy, irrespective of the class that is
being predicted (circadian/noncircadian).
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Our best ML model (LightGBM) assigned a matching, circa-
dian/noncircadian label to the majority of the transcripts that
MetaCycle labeled. However, the overlap was not 100%, so we
examined the small proportion of transcripts that were “inac-
curately” classified. We found that the inaccurately classified
cases by our ML model were often intermediate or borderline
cases for MetaCycle (Fig. 1) or edge cases (e.g., with slightly
longer period lengths [SI Appendix, Fig. S1]). We deduced this
because cases rejected by MetaCycle as circadian but accepted by
the ML (false positives [FPs]) had significantly lower (MetaCycle
derived) P values than the cases that were rejected by both
MetaCycle and ML (true negatives [TNs]) (P < 0.0001, t =
6.8795, df = 7753). Conversely, cases accepted by MetaCycle as
rhythmic but rejected by ML (false negatives [FNs]) had higher
(MetaCycle derived) P values than cases categorized as rhythmic
by both MetaCycle and ML (true positives [TPs]) (P < 0.0001,
t = 5.7744, df = 7711) (Fig. 14). Additionally, cases rejected by
MetaCycle as circadian but accepted by the ML (FP) have sig-
nificantly lower relative amplitudes (rAMPs) compared to the TP
calls in which both methods agree (P < 0.0001, t = 8.3845, df =
7732). Conversely, cases accepted by Metacycle as rhythmic but
rejected by ML (FN) had a significantly higher rAMP than the TN
calls (P = 0.036, t = 2.0924, df = 7732) (Fig. 1B). Therefore, the
ML model is not simply using high- and low-expression levels to
discriminate the circadian and noncircadian status of transcripts,
and interestingly, the distribution of rAMPs for the FNs reflects
that of the TPs far more closely than that of the TN calls.

We assessed the effect of reducing the number of tran-
scriptomic timepoints on the accuracy of our classification of cir-
cadian/noncircadian transcripts. For our best ML model (using 12
timepoints), we reduced the number of timepoints (or features)
sequentially from 12 down to 3. To obtain each interim-reduced
set of timepoints from 12 to 3, we used well-known feature se-
lection tools y* and eli5 (SI Appendix, Glossary) and compared
these against testing every possible feature combination for the
timepoint number (see Materials and Methods). The method of
trialing every possible feature combination for each reduced
timepoint number enabled us to most accurately -classify

transcripts as circadian/noncircadian (Fig. 24). Using this ap-
proach with six timepoints, we achieved a mean classification F1
score of 0.886 on cross-validation and of 0.792 using only three
timepoints (SI Appendix, Table S3). The mean F1 scores on cross-
validation varied by 0.09 between our best and least predictive six
timepoints, likewise they varied by 0.06 between our best and least
predictive three timepoints, highlighting the impact of timepoint
selection. SI Appendix, Table S3 highlights that we have consistent
accuracy, irrespective of the class that is being predicted (circa-
dian/noncircadian). Using model interpretation (i.e., identifying
the combinations of features that gave the highest F1 scores), we
defined the most optimal sampling strategies for the different
number of timepoints. Selecting six or more timepoints, the best
combinations tended to be consecutive timepoints extending
across the intersect of day 1 and day 2. In contrast, when selecting
low numbers of timepoints, more accurate classifications were
made when timepoints were spaced across a single day (Fig. 2B),
and there was a distinct bias for selecting certain timepoints with
others appearing to be much less informative (e.g., ZT28, ZT40,
ZT52, and ZT64 that were never selected). Fig. 2C shows the best
combination of reduced timepoints in each category 12 to 3 for
the example transcript phytochrome A (PHYA). When we fol-
lowed the same strategy, creating transcriptomic ML circadian
classification models for wheat, a divergent plant species from
Arabidopsis (SI Appendix, Table S1), we saw similar trends for
the best combinations of reduced timepoints (SI Appendix, Note
S3 and Fig. S2).

To test how generalizable our model is on unseen data (S
Appendix, Glossary), we used the most accurate three-timepoint
model (timepoints 36, 48, and 60) for the binary classification of,
firstly, a second Arabidopsis transcriptomic time series dataset
developed by ref. 9 and secondly, a wheat transcriptomic dataset
representing a divergent plant species from Arabidopsis (SI Ap-
pendix, Table S1). These test datasets represent different sam-
pling strategies and experimental setups (see Materials and
Methods). Both test datasets were processed bioinformatically as
per our original (8) dataset, in which we generated ground truth
circadian/noncircadian labels for transcripts using MetaCycle
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Fig. 1. Arabidopsis circadian/noncircadian comparative ML binary classification with 12 transcriptomic timepoints. Class 0 = Noncircadian and Class 1 =

Circadian. Histograms in A and B relate to the best model from S/ Appendix, Fig. S1A generated using LightGBM; the histograms are color coded as per the
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the 10 best feature combinations. (C) For the example gene PHYA, a line plot of the gene’s expression across the best combination of reduced timepoints in
each set 12 to 3. Expression values are reduced by ~5% for each timepoint combination to allow the separation of lines for visualization.

with all available timepoints (see Materials and Methods). For the
Arabidopsis (9) dataset, the timepoints did not match those used
to train our model; sampling started 2 h after exposure to con-
stant light (rather than 24 h after), and samples were taken every
3 hinstead of every 4 h. As such, we selected the closest times to
those that were used to train our model according to time of day
relative to dawn (timepoints 11, 23, and 35). Unmatched time-
points are likely to have a negative effect on performance, which
we observed with an F1 score for the classification of this gene
set of 0.714, amounting to a decrease in accuracy of 0.08, com-
pared to the dataset that the model was trained on. For the
wheat dataset, sampling started 24 h after exposure to constant
light, and measurements were taken every 2 h instead of every 4
h. Therefore, here, matching the time of day relative to dawn, we
could select equivalent timepoints (12, 24, and 36 h), and the F1
score was slightly higher at 0.769, amounting to a decrease of
only 0.02 on a highly divergent species. The model therefore
generalizes well, irrespective of the sample’s species, and we
observe a much similar performance by matching the timepoints
that are used (relative to dawn), as we show for wheat.

40f 12 | PNAS
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We compared our timepoint reduction analysis using ML to a
range of analyses representing the state of the art across the
different timepoint numbers. MetaCycle requires a minimum of
six timepoints for circadian analysis and benefits from these
timepoints being evenly sampled across the chosen time period
(18). As such, we reduced timepoints from 12 to 6 to enable
comparison, including evenly spaced sampling patterns: 4 h/1 d
and 8 h/2 d versus the best suggested sampling times from our
ML analysis (4 h/1 d from 36 to 56 h from Fig. 2 B and C). The
reduction to six timepoints significantly decreased the number of
positive circadian gene calls by MetaCycle that were conserved
with the 12-timepoint analysis, independently of the sampling
technique used. The highest proportion of the 9,394 circadian
genes, identified with 12 timepoints by MetaCycle that were also
identified with six timepoints (P < 0.05), was 63.7% (SI Appen-
dix, Table S4). This accuracy is ~25% lower than the F1 score we
achieved with six timepoints and our best ML model (SI Ap-
pendix, Table S3). Furthermore, when comparing the F1 score of
our three-timepoint ML model, it was more appropriate to use a
three-timepoint state-of-the-art analysis performed by Sporl
et al. (17). SI Appendix, Table S4 highlights that we achieve a
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12% higher accuracy with only three timepoints in a like-for-like
comparison with Sporl et al. (17). This improvement is in addi-
tion to the experimental design insight that we provide.

Circadian Genes Can Be Classified from DNA Sequence. We next
eliminated transcriptomic timepoints and used DNA sequence
features alone to classify transcripts as circadian/noncircadian.
To achieve this, we generated k-mer profiles (counts) de novo
for the mRNA and promoter sequences associated with each
transcript, comparing a range of k-mer lengths (see Materials and
Methods and SI Appendix, Glossary). We trained a series of ML
classifiers to predict if a transcript was circadian or noncircadian
in a binary classification using the derived k-mer profiles for the
same set of transcripts and MetaCycle-derived labels used pre-
viously (for the transcriptomic ML model). Across the range of
k-mers, the best models were consistently generated with the
classifier LightGBM, and the most accurate model used a k-mer
length of six, with separate feature sets for promoter and mRNA
regions (8,192 features of k-mer counts per transcript) that were
both inputted into the model (see Materials and Methods). This
best optimized model showed the following (Fig. 34 and SI Ap-
pendix, Table S2): a mean F1 score of 0.766 on cross-validation (SD
0.006) and a test F1 score of 0.751 on class 0 (noncircadian) and
0.804 on class 1 (circadian). Our accuracy was largely balanced
between the classes. An optimal k-mer length of 6 bp for this
analysis could reflect this being the smallest length that we would
not expect to simply occur by chance, therefore, giving ideal res-
olution. Because of the large number of features created using
feature selection, we tested the accuracy of our rhythmic classifi-
cation when subsets of the feature set were used (see Fig. 3B and
Materials and Methods and SI Appendix, Glossary). We can reduce
the feature number to ~200 and maintain an F1 score above 0.7,
but the highest accuracy was achieved with all 8,192 features, and
as such, for downstream investigations, we used the full feature set.

Our de novo k-mer generation approach allows the down-
stream identification and investigation of both known and pre-
viously unknown sites, with only the annotation of the TSS/TTS
of a transcript required. Our short k-mers (6 bp) from promoter/
UTR regions should mainly represent regulatory elements such
as TFBSs. However, our inclusion of coding regions could en-
compass additional regulators (e.g., miRNA binding sites). Al-
though miRNAs tend to be 20 to 24 bp in length, our k-mers may
represent miRNA seed regions that are typically ~6 bp in length
and perfectly/near perfectly match targets (22).

Explanation of DNA Sequence-Based ML Model Links to Circadian
Regulation. We next wanted to explain our model, to identify
which k-mer’s were most influential in guiding it to predict tran-
scripts as circadian, since these k-mer’s could represent the most
critical regulatory elements for circadian regulation. If we observe
known circadian regulatory elements in this process, this is also a
means of validation of the model. We used SHAP (Shapley Ad-
ditive exPlanations) to explain our best DNA sequence-based
model’s predictions by computing the contribution of each feature
or k-mer to that prediction (i.e., ranked feature impact on classi-
fication) (SI Appendix, Glossary) (47). We did this firstly at a global
level, looking at the top 30 most impactful features across all of the
transcripts for distinguishing class 1 (circadian) from class 0 (non-
circadian) (SI Appendix, Glossary and Fig. 3C). Approximately half
of the most impactful k-mers in Fig. 3C show a positive correlation
between k-mer frequency and the SHAP value or feature impact
on the model. Higher frequencies of these k-mers for a transcript
indicate a higher impact on it being classified circadian. Correla-
tions between k-mer count and SHAP impact value for the top four
most impactful k-mers from Fig. 3C are all highly significant (r >
0.7, P < 0.001; SI Appendix, Fig. S3). Of the positively correlated
top 30 k-mers, 55% of those that contributed to the circadian
classification of a transcript were predominantly in the promoter/
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UTR. We hypothesized that these k-mers represent TFBSs for TFs
linked to circadian regulation.

To investigate if our most impactful promoter/UTR k-mers for
prediction were TFBSs, we aligned known Arabidopsis TFBSs to
each k-mer and filtered the most significant matches (SI Ap-
pendix, Table S5 and Materials and Methods). We then validated
the k-mers that match/likely represent TFBSs using experimental
evidence or insight from the literature, many closely associated with
circadian regulation or circadian related processes. k-mers of in-
terest included (k-mer 1; SI Appendix, Table S5) matches to TFBS
for two photo-responsive TFs (AT3G58630 and ATS5G05550)
(P value 0.0002, e-value 0.18), which form interactions with a
number of circadian-related proteins [e.g., LIGHT INSENSITIVE
PERIOD1 (LIP1), CONSTANS-Like (Col) 11 (48) and REVEILLE
2 (49)]. Another k-mer (k-mer 7; SI Appendix, Table S5) matched
a motif bound by several ethylene-responsive binding proteins
(P = 0.00003, e = 0.02); ethylene synthesis is known to be both
circadian controlled and a moderator of the circadian clock (50,
51). We also found matches for binding sites of known circadian
TFs, including LUX ARRYTHMO (LUX) (52), CIRCADIAN
CLOCK ASSOCIATED 1 (CCAL1) (53), and LATE ELONGATED
HYPOCOTYL (LHY) (54), alongside motifs associated with light-
induced or -repressed sequences (SI Appendix, Table S5).

Four of the positively correlated top 30 most impactful k-mers
defined by SHAP were observed primarily in coding regions rather
than promoter/UTRs across the circadian, predicted transcripts.
Since miRNAs are thought to influence circadian controlled
processes (55, 56) and are common in coding regions, we tested
the possibility that these k-mers could represent miRNAs by
aligning them (plus the surrounding sequence) to mature ath-
miRNA sequences to identify matches (see Materials and Meth-
ods). Two of the four k-mers matched miRNA sequences that
were associated with developmental timing (57) and chloroplast
biogenesis (58). Therefore, for a subset of transcripts, the k-mers
could represent putative miRNA binding sites that have been
experimentally linked to circadian, regulated processes, although
this only accounts for a small proportion of the transcripts (S/
Appendix, Table S5). We next investigated if these k-mers could
represent RNA-binding motifs (see Materials and Methods). RNA-
binding proteins are key regulators of gene expression in eukary-
otes, and because of strong sequence conservation, their recog-
nition preferences can be inferred from RNA-binding motifs. We
validated two of the four coding sequence k-mers, linking them to
RNA-binding motifs associated with circadian, related processes
(SI Appendix, Table S5; P < 0.05). The first motif is targeted by the
RNA-binding protein serine and arginine-rich splicing factor 7
(SRSF7). This links to circadian processes since circadian tem-
perature cycles are known to drive rhythmic SR protein phos-
phorylation to control alternative splicing (59). The Arabidopsis
protein RSZ22 is a known ortholog of the SRSF7 SR factor that
this alignment could represent (60). The second k-mer—matched
motif is targeted by the RNA-binding protein LIN28A (Homo
sapiens). The Arabidopsis protein cold shock protein 1 (CSP1) is a
known homolog of LIN28A, with a similar, functional role in
reprogramming that this alignment could represent (61). CSP1
has been implicated in seed germination timing that is clock
related (62).

For the remaining k-mers in the top 30 most impactful
(Fig. 3C), those not associated with promoters/UTRs/miRNAs/
RNA binding sites, we investigated their spatial distribution across
the transcripts (SI Appendix, Fig. S4). Strikingly, there was a clear
tendency for them to appear near to the start or else in the first
half of the transcript that includes the first exon. By comparison,
when we look at the spatial distribution of the promoter-derived
k-mers from the top 30 most impactful features (SI Appendix, Fig.
S5), they were distributed more uniformly across the promoters
which they occurred in. We investigated if there were any changes
in nucleotide composition between our most predictive k-mers
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Fig. 3. Arabidopsis circadian/noncircadian ML binary classification using k-mer profiles. (A) For our best performing classifier LightGBM, we compare F1
scores for the test data and after cross validation (CV). These f1 scores were generated using different k-mer lengths (4 to 7 bp), with or without the use of
oversampling (OS) since our classes are not perfectly balanced (S/ Appendix, Glossary). (B) To obtain each reduced set of k-mers, we use XZ (Chi2) feature
selection. We show the best F1 score after fivefold cross-validation for each set of reduced features. (C) The top 30 most impactful features for predicting class
1 (circadian), considering all samples in training and test as calculated using SHAP (S/ Appendix, Glossary). Feature value denotes the frequency of a k-mer per
transcript. When the frequency of a k-mer per transcript is high (red) and it has a positive SHAP value, this high frequency is driving the prediction of a
circadian transcript. This is often coupled to the lower frequency of the same k-mer per transcript (blue) having a negative SHAP value, so the absence of the
k-mer is driving the prediction of a noncircadian transcript. On the contrary, when the frequency of a k-mer per transcript is high (red) and has a negative
SHAP value, the high frequency is driving the prediction of a noncircadian transcript. This is often coupled to the lower frequency of the k-mer per transcript
(blue) that has a positive SHAP value, so the absence of the k-mer is driving the prediction of a circadian transcript. Features (e.g., the k-mer TATTGC) are
labeled as “TATTGC” for counts from the promoter and “TATTGC.1" for counts from the mRNA. The corresponding plot for the class 0 (noncircadian)
transcripts contains the same list of k-mers, but the SHAP value plots will be the exact inverse of this figure.

compared to our nonpredictive k-mers (S Appendix, Fig. S4N). As
a baseline for comparison, we compared these k-mer groups to the
mRNA and promoter sequences that were used to generate
k-mers to train the Arabidopsis DNA sequence-based model. S/
Appendix, Fig. S4N highlights that promoter sequences show a
slightly higher percentage of GC content than mRNA sequence
(34% versus 39%, respectively). Our most predictive k-mers have
a percentage of GC content of 38% that falls in between the
baseline for mRNA and promoter, while our nonpredictive k-mers
significantly deviate from this profile showing a percentage of GC
content of 70%. It appears that a high percentage of GC content is
more likely to result in a nonpredictive k-mer.

Transcript-Specific Explanations Reveal Subclasses within the Binary
Circadian Class. Our DNA sequence-based model discriminated
transcripts under circadian regulation from those that are not,
which is useful to identify circadian regulatory elements from
model explanations. However, circadian rhythms reflect a variety
of waveform shapes. As such, we bioinformatically identified
coexpression modules (SI Appendix, Glossary) from the tran-
scriptomic profiles of the circadian transcripts that were used to
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train our ML models using weighted gene coexpression network
analysis (WGCNA) (63). This resulted in eight modules with dis-
tinct circadian expression profiles. These modules embody groups
of transcripts that can be differentiated by their phase of expression
with the following phases/groups observed (SI Appendix, Fig. S6):
morning phases of 0 h (cluster 7) and 4 h (cluster 5/6), day phase of
8 h (cluster 3), day/evening phase of 12 h (cluster 2), evening phase
of 16 h (cluster 1), and night phase of 20 h (cluster 4/8).

We next sought to group our circadian transcripts into sub-
groups representative of different phases of expression, but rather
than using transcriptomic information, we wanted to use the
SHAP impact values of their k-mers. This effectively divides our
DNA sequence-based model’s binary class circadian into multiple
subclasses, providing further insight into transcript rhythmicity. To
enable this, we used model explanation of our best DNA
sequence-based predictive model, but rather than identifying the
most impactful k-mers in general (global explanation) for pre-
dicting class 1 (circadian), as previously, we identified the most
impactful k-mers for the classification of each circadian transcript
individually (local explanation) (SI Appendix, Glossary). For this,
we focus on the TP circadian transcripts in which MetaCycle and
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our ML model both predict the transcripts as circadian. Local
explanations are transcript specific and could highlight k-mers that
are regulating each transcript’s expression. Each transcript has a
calculated SHAP impact value per feature (8,192 k-mers), and
with this set of values, we denote the SHAP value profile for a
transcript. In an SHAP value profile, the k-mer with the highest
SHAP value is the most influential on the transcript’s classification
as circadian. Comparison of these profiles allows us to compare
and subdivide the transcripts using DNA sequence composition
related to gene regulation, rather than transcriptomic profile.

After deriving local explanations, we filtered the most circa-
dian transcripts according to their SHAP explanation (“most
positive cumulative SHAP value”; see Fig. 44 and Materials and
Methods and SI Appendix, Glossary). Then, we focused on known
circadian genes that were within this set (i.e., experimentally
validated and known TP genes from previous studies). We
clustered the derivative transcripts of these genes based on the
similarity of their SHAP value profiles, which represent the
relative impact of the k-mers on their classification as circadian
(Fig. 4B). In groups to the right of the dendrogram (purple),
85% of transcripts peak in their expression in the morning/day,
whereas in groups to the left 77% of transcripts peak in the
evening/night (phases determined by MetaCycle). Therefore,
circadian transcripts with more similar k-mer SHAP value profiles
also had similar expression phases, thus dividing our circadian
class into subclasses representing phases of rhythmicity using
k-mer information. Since we selected the top five most impactful
k-mers per transcript for clustering, clustered transcripts represent
those with similar combinations of k-mers that we hypothesize to
be guiding expression phase. For example, PRR3 and LUX had
similar SHAP value profiles, and we validated this by observing
their similar transcriptomic expression profiles, with the evening
phases of expression of ZT15 and ZT13, respectively. Exceptions
included the two LNK genes, which have morning phase transcript
expression profiles but have SHAP profiles similar to evening- and
night-expressed genes. This suggests that LNKI/LNK2 may be
regulated by a separate mechanism to that regulating other dawn-
expressed genes. We also observed TIC, which peaks at dusk in the
transcriptomic data, in the morning/day cluster; previously, rhyth-
micity of TIC was not detected in whole seedlings (64), whereas
here we confidently classify this transcript as circadian from aerial
tissue (MetaCycle q = 0.004). Previous work concluded that TIC
functions in the late evening (65) but plays a role regulating LHY
that is in the same morning/day cluster as 7IC; this may explain its
appearance here (64). Finally, we also see the night gene PHYB in
the morning/day cluster, perhaps because of the presence of the
similarly regulated PHYA in this cluster (66).

From our transcript SHAP value profile clustering (Fig. 4B),
for subclasses of transcripts with similar expression phases, the
most impactful k-mers per subclass could represent sequences
that are regulating time-of-day—specific expression. Identifying
these using model explanation could facilitate the estimation of
circadian expression phase without the need for a transcriptomic
time course. To test this, we split the transcripts into morning/
day/evening/night and investigated which k-mers differentiated
the groups. We identified the top 30 most variable k-mers be-
tween the four groups’ consensus SHAP explanations; these k-
mers vary most in their impact between the groups (see Materials
and Methods) (SI Appendix, Table S6). Since we are comparing
k-mers that differentiate groups of transcripts that are separated by
their phase of expression, we validated our hypothesis by matching
the k-mers to binding sites that have been experimentally associ-
ated with specific times of day. For example, the late night-specific
Telo-box (67), a G-box-related sequence thought to associate with
late night and dawn genes (68), and the evening element (EE) (69)
that appeared twice in the top 30 with two k-mers matching it.
When we compared the importance of these k-mers between the
morning, day, evening, and night groups, the EE had a higher
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impact on model prediction in the evening group than in the other
three groups, and this difference was statistically significant com-
pared to both morning and night (Fig. 4C and SI Appendix, Table
S7). Additionally, the Telo-box had a higher impact on model
prediction when observed in the night group compared to all other
groups, and this difference was statistically significant compared
to day and evening, fitting with its late night specificity (Fig. 4D and
SI Appendix, Table S7).

Case Study: Explanation for PHYA to PHYE Guides Reclassification of
PHYC. The PHYTOCHROME (PHY) genes encode red and far-
red photoreceptors directly involved in setting the clock. Previ-
ous studies have identified circadian regulation of PHY tran-
scripts A to E as rhythmic with patterns ranging from strong to
weak (70, 71). Here, from the (8) transcriptomic data PHYC/
PHYD/PHYE were all called noncircadian by MetaCycle with
g-values of 0.99, 0.60, and 0.13, respectively, while, from the
same dataset, the software BooteJTK (72) (that had few differ-
entially annotated transcripts compared to MetaCycle; SI Ap-
pendix, Note S1) classed PHYD/E as circadian and only PHYC
as noncircadian (g-value = 0.2), with some evidence of a weak,
cyclic pattern. From this and previous work, these genes could be
rhythmic, but this may not be clear in the transcriptomic data,
likely because of reported low-amplitude expression patterns and
dependent on testing conditions, particularly for PHYC/E (SI
Appendix, Fig. S74). These genes were missing from our ML
analysis and can be used as unseen test datapoints (S Appendix,
Glossary) for the ML models. The mixture of strong (PHYA/B)
and weak cyclical patterns (PHYD/E and potentially PHYC) are
ideal for a test of the limits of the ML models. Working with the
assumption that all of the PHY primary transcripts A to E are
circadian as a baseline for comparison, for the PHY primary
transcripts A to E, SI Appendix, Table S8 highlights MetaCycle’s
40% accuracy, only classifying PHYA/B as circadian, compared
to our ML (12 timepoint) model’s 80% accuracy, since we ad-
ditionally classify PHYD/E as circadian. This is supported by the
BooteJTK analysis and visually evident rhythmic expression in
the transcriptomic data for PHYE and to a lesser extent for
PHYD (SI Appendix, Fig. S7A). We maintain our 80% accuracy
when we generate k-mer profiles for the PHY transcripts A to E
and use our DNA sequence- or k-mer-based ML model to
predict circadian/noncircadian. Both of our ML models (tran-
scriptomic and DNA sequence-based) classify PHYC as non-
circadian, with the other primary PHY transcripts predicted
circadian. Even the DNA sequence-based ML model discrimi-
nated PHYC from the other PHY transcripts to align with the
transcriptomic information, despite sequence similarity between
them. Moreover, the transcriptomic expression profile for PHYC
provides an unconvincing, circadian rhythm, with an amplitude
tending toward zero (0.02), compared to the other transcripts (S
Appendix, Fig. STA). This may reflect previous work that con-
cluded a weak or noncycling steady state of PHYC mRNA po-
tentially due to posttranscriptional, circadian regulation (70, 71).

We used the SHAP explanations for the PHY transcripts A to
E to identify the regulatory elements that were most impactful in
guiding their classifications using the DNA sequence-based
model. We compared the SHAP impact values between each of
the PHY transcripts A/B/D/E (circadian) and PHYC (non-
circadian) to identify those k-mers or regulatory elements that
are most impactful in predicting PHYA/B/D/E to be circadian
but also in predicting PHYC to be noncircadian (six identified in
SI Appendix, Table S9). The change in frequency of these k-mers
(within the transcript) is most likely to be responsible for the
circadian/noncircadian, predictive differences between the tran-
scripts according to our model (SI Appendix, Note S4, Figs. S7 B
and C, and S8). To investigate if altering any of the six identified
k-mers (SI Appendix, Table S9) had more or less potential to
induce rhythmicity in PHYC, we sequentially evolved the
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Investigating Arabidopsis circadian TP transcripts after ML DNA sequence-based classification. This figure relates to the LightGBM ML model that we

selected as our best classifier. (A) Violin plot showing the range of SHAP values across TP transcripts (correctly predicted circadian). A positive SHAP value for a
k-mer, for a transcript, indicates the k-mer is driving a circadian prediction, while a negative SHAP value indicates the k-mer is driving the prediction of
noncircadian for that transcript. SHAP values are summed for each transcript to produce a cumulative SHAP value. (B) Dendrogram clustering known core
circadian transcripts according to their profiles of SHAP values if the transcripts were also present in Q1 to Q3 of A. We clustered transcripts using hierarchical
clustering with average linkage and Euclidean distance (see Materials and Methods). Dendrogram branches are colored using a color threshold to color all
descendant links below a cluster node k the same color if k is the first node below the cut threshold t (~5). Dendrogram labels colored according to peak
phases of expression: morning (0 to 5.99999 h), day (6 to 11.99999 h), evening (12 to 17.99999 h), and night (18 to 23.99999 h), as determined by 1) MetaCycle
or 2) the module of origin of the transcript from our eight WGCNA-generated modules. (C and D) Violin plots show the range of SHAP values across all TP

transcripts in groups morning/day/evening/night for the k-mers GATATT (C) (EE) and AAACCC (D) (Telo-box).

spectrum of PHYC, one k-mer at a time, to mimic the robustly
rhythmic PHYA/B transcripts more and more with each itera-
tion. We used our DNA sequence-based ML model to classify
the evolved transcripts. Firstly, removing k-mers GGTAGA then
TTTCTG sites resulted in predictive probabilities for the circa-
dian class of 0.42 and 0.48, respectively (increasing from 0.38).
Secondly, adding AAATAA increased the predictive probability
of circadian class membership to 0.58. Finally, adding TCTCCG
resulted in a circadian class predictive probability of 0.75, placing
this transcript’s classification confidently as circadian. Some
potential regulatory elements were more important than others,
having a larger effect on the classification of the transcript; for
example, k-mers in the 5’'UTR had a larger effect. Additionally,
we show that multiple elements combine to have a greater im-
pact on transcript classification and potentially regulation.

We aligned known Arabidopsis TFBSs to the UTR-based k-mers
from PHYA/B that most positively impacted PHYCs circadian
reclassification during our evolution to suggest biological reasons
why these sites may be having such a large effect. AAATAA aligned
to the TFBS of MYB56 that is involved in the regulation of an-
thocyanin levels in response to circadian rhythms (73) (SI Appendix,
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Table S5). While TCTCCG-matched TFBS of AT3G58630 that has
a protein—protein interaction with LIP1, a gene known to function
in the clock regulating light input downstream of photoreceptors
such as PHYB (74).

We collated a further 41 known key circadian genes, with pub-
lished evidence of rhythmic expression from the literature and
compared the classification accuracy of their associated primary
transcripts between MetaCycle, our transcriptomic ML model,
and our DNA sequence ML model (SI Appendix, Table S10).
MetaCycle shows an overall accuracy of 80.49%, classifying
the 41 transcripts as circadian, compared to 95.12% with the ML
transcriptomic model (SI Appendix, Table S11). Approximately 10
of the 41 genes (SI Appendix, Table S10) were not used to train
either of our ML models and were unseen datapoints, mainly from
MetaCycle not assigning a highly confident classification to
their transcripts (q < 0.01) because of low-amplitude expression
profiles. These are problematic transcripts for classification and
measure the worst-case scenario for predictions. Using 12 tran-
scriptomic timepoints, our ML model was more accurate at
correctly classifying these transcripts as circadian, despite their
problematic, low-amplitude rhythms (80% accuracy versus 20%

Gardiner et al.

Interpreting machine learning models to investigate circadian regulation and facilitate

exploration of clock function


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103070118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103070118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103070118

for MetaCycle). This suggests that our model can generalize well
to unseen transcripts. Interestingly, our model that used DNA se-
quence achieved a higher accuracy of 90% on the unseen datapoints,
which was close to its recorded accuracy on all 41 genes (92.68%),
sidestepping the problems associated with low amplitudes using ge-
netic sequence features.

Predictions Using DNA Sequence Generalize to Other Arabidopsis
Ecotypes. Our ML model (using DNA sequence) can accurately
make predictions on unseen datapoints. We assessed this in both
our initial testing (with held out test data; SI Appendix, Glossary)
and in our case study analysis of known circadian genes. We next
assess how well our model performs on a different source to that
used for model training (Col-0). We selected the Arabidopsis
ecotype Ws-2 primarily for this test but also to highlight the
suitability of our approach for a divergent species like wheat
(details in SI Appendix, Note S5 and Fig. S9). For Ws-2, we firstly
generated k-mer spectra for related transcripts and used the two-
timepoint, transcriptomic dataset generated by ref. 10 to label Ws-
2 transcripts circadian/noncircadian to gauge accuracy (SI Ap-
pendix, Table S1, Note S6, and Fig. S10). From this analysis,
71.4% of Ws-2 DNA sequence-based classifications matched their
labels derived from (10) transcriptomic data. This is ~5% lower
than the accuracy given by the DNA sequence-based model using
Col-0 (mean F1 score of 0.766 on cross-validation) (SI Appendix,
Note S7). The 5% decrease may be impacted by imperfect Ws-2
labeling; our Ws-2 labeling strategy using two transcriptomic
timepoints was >90% accurate for Col-0 (SI Appendix, Note S6
and Fig. S10), and from previous work, we expect an additional
dropout in performance between species (0.02 for matched
timepoints).

We used our DNA sequence-based model to identify transcripts
that differentiated in rhythmicity between Arabidopsis ecotypes.
Then, we used model explanation to explain which regulatory el-
ements influenced this to validate findings. Such functionality gives
tremendous power for downstream gene expression manipulation,
even in the absence of transcriptomic information. As an initial
proof of concept for this, we ranked the transcripts according to the
predictive probability of them being circadian for Col-0 and the
corresponding predictive probability of them being noncircadian
for Ws-2. We identified 12 transcripts that were classified as circa-
dian for Col-0 but noncircadian for Ws-2 by the DNA sequence—
based model (predictive probability >0.8) (SI Appendix, Table S12).
Our most confident or top ranked transcript was AT1G58602.1-
RECOGNITION OF PERONOSPORA PARASITICA 7 (RPP7)
(i.e., most probable circadian transcript in Col-0 [probability 0.999]
and most probable noncircadian in Ws-2 [probability 0.991]).
RPP genes confer resistance to races of Peronospora parasitica in
an ecotype-specific manner. Functional RPP7 is thought to mediate
resistance to infection by the Peronospora isolate Hiksl. Work by
ref. 75 found that while Col-0 has a functional RPP7 and is resistant
to Hiksl, Ws-2 is susceptible to attack by this pathogen. This
coincides with our DNA sequence predictions suggesting that the
circadian regulation of RPP7 is important for defense functionality.
This conclusion is supported in the experimental, transcriptomic
data, in which RPP7 in Ws-2 shows consistent low expression but in
Col-0 is expressed rhythmically at higher levels (SI Appendix, Fig.
S114) (75). RPP7 has been linked to circadian regulation: firstly
because resistance (R)-genes in the RPP family were reported to be
under CCAL control (76) and secondly via RPP7’s required inter-
actor EDM2 that is involved in the promotion of floral transition by
regulating the floral repressor FLC (77).

Previous evidence supports our observed differentiation in the
rhythmicity of RPP7 between Col-0 and Ws-2. We next use model
explanation to understand which elements differ between Col-
0 and Ws-2; in this example, in Ws-2, this could represent the el-
ements to change to render it resistant to Hiks2. As such, for each
k-mer, we compared the SHAP impact values from the DNA
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sequence-based model between the Col-0 and Ws-2 homologs of
AT1G58602.1 (RPP7). We ranked the k-mers in ascending order,
as the difference in SHAP impact values between the homologs
increased, to highlight the regulatory elements that were most
impactful in guiding the differential, circadian/noncircadian pre-
dictions (SI Appendix, Fig. S11). The top five ranked k-mers closely
linked either to the circadian clock or to disease resistance mech-
anisms or both (SI Appendix, Note S8). We then sequentially
evolved the k-mer spectrum for AT1G58602.1 in Ws-2, a k-mer, at a
time to match Col-0 more and more with each iteration. Each it-
erative, evolved transcript was classified using the DNA sequence—
based model, in which we observed that the predictive probability of
the circadian class for each evolved transcript quickly increased (S1
Appendix, Fig. S11B). The adaptation of 26 Ws-2 k-mers to match
Col-0 changed the prediction for Ws-2 from noncircadian to circa-
dian, and the adaptation of 124 Ws-2 k-mers was needed to reach
the maximum predictive probability of 0.999. The predictive prob-
ability of the circadian class for Ws-2 was highly positively correlated
(0.676), with the difference in SHAP values between the Col-0 and
Ws-2 k-mers (SI Appendix, Fig. S11C). Our analysis shows that some
regulatory elements have a larger effect on transcript classification
than others and that this effect is quantifiable using model expla-
nation. We show the potential for large combinations of regulatory
elements to work together, potentially each contributing a small
amount, to result in a large overall impact on gene classification and
potentially regulation (e.g., the 26 k-mers that we changed here to
convert Ws-2 to be classified as circadian).

AT1G58602.1 showed no expression in Ws-2 across the two
transcriptomic timepoints (SI Appendix, Fig. S114). To highlight
that our DNA sequence-based model was classifying circadian
Col-0O/noncircadian Ws-2 transcripts, not simply expressed/non-
expressed, we investigated other transcripts from SI Appendix,
Table S12. We identified four additional transcripts in our
ranked top 10, in which we observe expression of both Ws-2 and
Col-0 consistently across the two transcriptomic timepoints (S
Appendix, Fig. S12). Here, the expression profile of Ws-2 is still
seen to be largely flat versus potentially cyclical profiles of Col-0.

Identifying Transcriptional Biomarkers that Predict Internal Circadian
Time. Here, we use ML to determine the circadian time of sam-
pling (i.e., predicting the phase of the endogenous circadian clock)
using a set of transcriptional biomarkers from any single, tran-
scriptomic timepoint. Previous studies have developed such
models for human and mammalian transcriptome datasets (41-43,
78,79). We developed a method that we applied to plant data that
innovatively uses model interpretation to identify Arabidopsis
biomarker transcripts to guide predictions. This incorporates
biomarker selection from across circadian phases to increase
accuracy and robustness.

To train our model, we used the transcripts per million—
normalized, circadian dataset described earlier (8) and the two
further transcriptomic datasets (9, 10) for validation and testing
(see Materials and Methods and SI Appendix, Glossary). Firstly,
we aggregated a selection of metrics to rank and select transcript
subsets from ref. 8 according to their confidence of rhythmicity
for model training (see Materials and Methods). SI Appendix,
Table S13 highlights the mean absolute errors (MAEs) of the
predictions of circadian time without hyperparameter optimiza-
tion (SI Appendix, Glossary) on the three temporal, transcriptomic
datasets using different sized subsets of the highest-ranked,
rhythmic genes. The lowest MAE, based on the (10) test dataset,
was 104 min and was observed with a selected subset of 50 tran-
scripts. Using the confidence of rhythmicity for transcript priori-
tization, we noted that the representation of our subsets of
transcripts across the eight coexpression modules, generated by
the WGCNA gene coexpression network analysis, was not uniform
(SI Appendix, Fig. S134 and Glossary). This reflects an uneven
representation across the phases of rhythmic expression.
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Therefore, we prioritized the selection of transcripts using model
interpretation in the form of feature selection to make the fre-
quency distribution across the modules more uniform (see Mate-
rials and Methods and SI Appendix, Glossary). Optimizing
performance based on the validation dataset, our best performing
model overall used a final subset of 15 transcripts (SI Appendix,
Table S14) and had an MAE of 21 min on the training data,
56 min on the (9) validation data, and 46 min on the test data from
ref. 10. SI Appendix, Fig. S13 B and C highlight that after feature
selection there was a decrease in the generalization error on av-
erage across the (10) test dataset, with the improvements in MAE
decreasing as the number of genes increased. This supports the
theory that features containing different, temporal patterns of
varying strengths outperform features containing strong but highly
correlated patterns.

The performance of our best model (15 transcripts with an
MAE of 46 min on the test data) is in line with the ~1-h test error
reported by ref. 78 using their state-of-the-art method ZeitZeiger.
As such, we applied ZeitZeiger to our datasets (8-10) to compare
directly with our model. To reflect our previous approach, the
dataset (8) was used to fit ZeitZeiger, with predictions then being
generated on the validation (9) and testing (10) datasets to com-
pare with the predictions generated by our method. Our approach
significantly outperformed ZeitZeiger on the test dataset (MAE
of 46 compared to 143 min; ST Appendix, Fig. S14), demonstrating
our efficacy at generating highly accurate predictions for circadian
time. We also noted a large disparity in training, validation, and
test errors by ZeitZeiger (MAE of 6 min on training, 119 on
validation, and 143 on test) that suggests overfitting (SI Appendix,
Glossary). We hypothesized that our selection of biomarker tran-
scripts, to ensure even representation across the phases of rhyth-
mic expression, would yield a more robust or generalizable
mapping from expression data to internal, circadian time (i.e., less
overfitting); this analysis supports this hypothesis.

The 15 transcripts in our final subset act as a small subgroup of
biomarker transcripts that are sufficient to predict the circadian
time (SI Appendix, Table S14). Interestingly, the 15 transcripts did
not include any core clock genes. This analysis was conducted using
the ecotype Col-0. However, using the Ws-2 data (10), an MAE on
this ecotype of only 53 min was observed (5 min lower than for Col-
0 on which the model was trained). Generally, we observed no
relationship between circadian time and prediction error, except
for in the training dataset, in which errors at the 20-h timepoint
were significantly larger than the other times (SI Appendix, Fig.
S13D). However, variation in error across the timepoints typically
stayed under 90 min, allowing the sufficient resolution of circadian
time, given that typical sampling strategies are between 2 to 4 h.

Conclusions

We describe a series of ML-based approaches that enable cost-
effective analysis and insight into circadian regulation in Arabi-
dopsis. One of the drawbacks of ML is a lack of clarity as to why
it makes specific predictions. We illuminate what is inside the
black box via an explanation or interpretation of ML models.
Although we demonstrate this for circadian rhythms, this ap-
proach has widespread implications for other complex gene
expression patterns.

When we predict circadian transcripts using low numbers of
mRNA sequencing (mRNA-seq) timepoints. Although there is an
information loss and resultant drop in F1 score when selecting as
few as three timepoints, not only do we improve accuracy com-
pared to existing methods but we also use model interpretation to
optimize sampling strategies. Some of the most accurate, reduced
sampling strategies that we identify align with existing approaches
(e.g., timepoints spaced evenly across a day to most effectively
capture the sine wave [up-down-up/down-up-down] profile). But
our observed bias for certain timepoints, with others appearing to
be much less informative, provides insight into how to most
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effectively downsample. Our other identified, reduced sampling
strategies were unexpected (e.g., consecutive timepoints or those
across the intersect of day 1 and 2).

Most significantly, we use only DNA sequence features for ac-
curate, circadian classification, requiring no prior knowledge of
regulatory elements or transcriptomic data. This offers advantages
over existing methods to not only predict expression but to decipher
regulation at the same time since, using an explainable Al algorithm,
we define regulatory elements on the fly as we make predictions.
Automated definition and prioritization of these feature profiles for
transcripts, de novo using Al, has the potential to support functional
annotation of genomes and precision agriculture. This application
could redefine how we generate testable hypotheses to understand
gene expression control. Our predictive accuracy is possibly higher
than our current estimates, as our DNA-based approach scores the
potential of a gene to be circadian regulated. However, it is possible
that this regulation may be restricted to specific tissue types or de-
velopmental stages. Therefore, our experimental, generated labels
may be underestimating the number of rhythmic genes.

Finally, we predict circadian time, while using model inter-
pretation to derive Arabidopsis marker transcripts. These se-
lected transcripts could be used to test single datapoints in
existing and emerging Arabidopsis datasets to investigate how
genotypes, treatments, and environmental conditions affect cir-
cadian clock function. Additionally, since transcriptomic datasets
are typically expensive in terms of both time and money, the
reduction of profiling to marker genes within a single timepoint
could yield a huge saving in resources.

Materials and Methods

More detailed information on the materials and methods used in this study
are provided in S/ Appendix, Materials and Methods.

Data Generation and Processing. The datasets used in this analysis are detailed
in SI Appendix, Table S1. Previously published Arabidopsis datasets have
details for data generation in the relevant associated publication. For the
wheat time course, detailed data generation methods are available in S/
Appendix. Detailed methods for the bioinformatic processing, MetaCycle
analysis, and clustering of mRNA-seq datasets are in S/ Appendix.

Binary Classification: ML Model Training, Tuning, and Validating. We used Scikit
Learn (version 3.7) for the ML binary classification analysis to predict if a gene
was circadian or not with either transcriptomic or DNA sequence-based
feature sets (80). The following classifiers were tested: Logistic Regression,
Gaussian process, Random Forest, XGBoost, LightGBM, Support Vector Ma-
chine (linear kernel), Decision Tree, and K nearest neighbors. Detailed
methods for the feature generation, normalization, feature selection, model
training (S/ Appendix, Table $15), model testing, model explanation [using
SHAP (47, 81)], validations of explanations, and analyses associating sub-
classes with phase of expression are in S/ Appendix.

Identifying Marker Genes to Tell the Circadian Time Using a Single Transcriptomic
Timepoint. We developed an ML-based pipeline to predict the circadian time
(phase) at any single, transcriptomic sampling timepoint using gene expression
data from a set of marker genes using an artificial neural network in Ten-
sorFlow (version 2.0.0) (82). We provide the code for this in a Jupyter Note-
book and instructions to run this code at https:/github.com/AHallLab/
PredictingCircadianTime. The three transcriptomic datasets used previously (S/
Appendix, Table S1) from refs. 8 to 10 were used for training, validation, and
testing, respectively. Detailed methods of feature generation, normalization,
feature selection, model training, testing, and validation are in S/ Appendix.

Data Availability. All of the datasets used in this analysis are detailed in S/
Appendix, Table S1. All previously published datasets have details for data
generation in the relevant associated publication. For the wheat time course,
reads are available from the European Nucleotide Archive (ENA) under project
name PRJEB40948 at https://www.ebi.ac.uk/ena/browser/view/PRIEB40948
(83). The algorithms and hyperparameters used for the detailed ML models are
statedin S/ Appendix, Table S2. The data used as input into the ML models is
available as supplementary data files to this submission as follows: File S1 is a
csv file that includes transcript names, the 12 transcriptomic timepoints (8)
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used to train our Arabidopsis transcriptomic ML models, and the last column
denotes the circadian/noncircadian labels for each transcript (File_S1-Arabi-
dopsis_thaliana.TAIR10_12TP.csv). Similarly, File S2 is a csv file that includes
transcript names, the 24 transcriptomic timepoints used to train our wheat
transcriptomic ML models, and the last column denotes the circadian/non-
circadian labels for each transcript [File_S2-Wheat_24TP.csv]. For our circadian
time prediction, custom code is required, and as such, we provide the code in a
Jupyter Notebook and instructions to run this code at https:/github.com/
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