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Gas-responsive porous magnet distinguishes
the electron spin of molecular oxygen
Wataru Kosaka 1,2, Zhaoyuan Liu2, Jun Zhang2, Yohei Sato3, Akihiro Hori4, Ryotaro Matsuda4,

Susumu Kitagawa 3 & Hitoshi Miyasaka 1,2

Gas-sensing materials are becoming increasingly important in our society, requiring high

sensitivity to differentiate similar gases like N2 and O2. For the design of such materials, the

driving force of electronic host-guest interaction or host-framework changes during the

sorption process has commonly been considered necessary; however, this work demon-

strates the use of the magnetic characteristics intrinsic to the guest molecules for distin-

guishing between diamagnetic N2 and CO2 gases from paramagnetic O2 gas. While the

uptake of N2 and CO2 leads to an increase in TC through ferrimagnetic behavior, the uptake of

O2 results in an O2 pressure-dependent continuous phase change from a ferrimagnet to an

antiferromagnet, eventually leading to a novel ferrimagnet with aligned O2 spins following

application of a magnetic field. This chameleonic material, the first with switchable mag-

netism that can discriminate between similarly sized N2 and O2 gases, provides wide scope

for new gas-responsive porous magnets.
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In this Internet of Things age1, it is essential to control how
information is processed when only slight differences within
the data exist, leading to the notion of sensing. The develop-

ment of highly sensitive devices for ubiquitous gas and innocuous
small molecule sensing is one of the major challenges in the field
of materials science2. A magnetic change can be beneficial for
providing a responsive signal in such a sensing device, and would
be advantageous for gas detection owing to contactless operation
and detection independent of the sample shape of the host fra-
mework. Further, devices that respond quickly with easy oper-
ability and readability for ON/OFF updates are desirable; the
availability of spin freedom in host-guest interactions for gas
sensing is an innovative technique that could make this possible.
For instance, distinguishing between nitrogen (N2) and oxygen
(O2) gases is exceedingly difficult because of their similar size and
boiling points3,4. Detecting a magnetic change induced by the
intrinsic magnetic nature of these gases (i.e., diamagnetic N2 and
paramagnetic O2) would represent a major breakthrough in gas-
sensing technologies. For this purpose, however, a drastic phase
change in magnetism, not just small modifications of magnetic
properties5,6, is necessary. The gas-induced magnetic response
has also been investigated using FeII spin-crossover systems;7–9

however, magnetic discrimination between O2 and N2 has never
been observed. Meanwhile, drastic magnetic changes induced by
solvation/desolvation10 have prompted lively discussions on
magnetic sponges11–17 and spin-crossover systems18–21. Despite
this, a strong magnetic response to gases in air such as N2, O2,
and carbon dioxide (CO2), which possess relatively small sizes
and low or no reactivity and electric polarity, remains a sig-
nificant challenge for the development of functional porous
magnetic materials.

Here, we report a porous layered ferrimagnet that reversibly
alters its magnetic phase in response to the magnetic type of the
inserted gas, i.e., diamagnetic for N2 and CO2 or paramagnetic for
O2. The fully O2-adsorbed compound changes to an antiferro-
magnet, but application of a magnetic field results in a unique
ferrimagnetic phase where some of the oxygen spins become
aligned synergistically. Recently, the control of spin coupling on
oxygen molecules inserted into molecular porous frameworks22–
27 or graphite28,29, as well as in bulk materials30–33, has been seen
as an important topic. Nevertheless, this is the first case in which
a paramagnetic phase resulting from condensed oxygen mole-
cules plays a key role for long-range ordering in an O2-accom-
modated magnet.

Results
Crystal structure of the pristine framework. To develop gas-
responsive porous magnets, we chose a layered ferrimagnet,
[{Ru2(3,5-F2PhCO2)4}2{TCNQ(MeO)2}]·3(DCM)·1.5(DCE) (1-
solv; 3,5-F2PhCO2

–= 3,5-difluorobenzoate; TCNQ(MeO)2=
2,5-dimethoxy-7,7,8,8-tetracyanoquinodimethane; DCM=
dichloromethane; DCE= 1,2-dichloroethane), obtained from an
electron-donor (D)/-acceptor (A) 2:1 assembly that involves an
electron transfer15,34–40, where the paddlewheel-type [Ru2(3,5-
F2PhCO2)4] subunit (abbreviated as [Ru2]) is D and TCNQ
(MeO)2 is A. Compound 1-solv crystallized in the triclinic space
group P−1, where two different [Ru2] units and one TCNQ
(MeO)2 molecule, with respective inversion centers, were struc-
turally isolated (Z= 1) with a charge assignment of [–{Ru(1)2II,
III}+–μ4-TCNQ(MeO)2•––{Ru(2)2II,II}–] (Fig. 1a,b, Supplemen-
tary Fig. 1a, Supplementary Table 1−3, Supplementary Note 1
and 2). The set of two [Ru2] units and TCNQ(MeO)2 constructs a
fishnet-like two-dimensional network lying on the (100) plane
that stacks along the a-axis (Fig. 1a,b). The inter-layer distances
defined by the vertical (l1) and inter-unit translational (l2= a-

axis; Fig. 1b) distances between the planes are 9.78 Å and 10.65 Å,
respectively (Supplementary Table 8), and the crystallization
solvents (3(DCM)·1.5(DCE)) are located between the layers with
a solvent accessible volume of 713 Å3 (32% of total volume).

Crystal structure of the dried phase. Compound 1-solv gradu-
ally releases the crystallization solvents upon increasing tem-
perature, producing the solvent-free porous compound [{Ru2(3,5-
F2PhCO2)4}2{TCNQ(MeO)2}] (1), which is stable at temperatures
up to 450 K with its crystallinity intact (Supplementary Fig. 2a).
Similar to 1-solv, 1 crystallized in the triclinic P−1 space group
(Z= 1, Fig. 1c,d, Supplementary Fig. 1b, Supplementary Table 1
−3, Supplementary Note 1 and 2). Although the fishnet-like
network was preserved with a slightly shortened (relative to 1-
solv) l1 of 9.46 Å, while with a lengthened l2 of 10.84 Å (= a′-axis;
Fig. 1d), the structural features of the network are drastically
altered from an almost flat form in 1-solv to a wavy form in 1
(Fig. 1c,d,e), resulting in a reduction of the void volume to 147 Å3

(7.5% against total volume). Of note, the electronic state of [Ru2]
and TCNQ(MeO)2 units in 1 remains unchanged (Supplementary
Table 2, 3, Supplementary Note 1). Compound 1 becomes 1-solv
when exposed to DCM/DCE vapor for 12 h at 300 K (Supple-
mentary Fig. 2b), indicating a common magnetic sponge behavior
(vide infra).

Magnetic sponge behavior. The spins of the [Ru2II,II] (S= 1) and
[Ru2II,III]+ (S= 3/2) moieties interact antiferromagnetically with
the radical spin of TCNQ(MeO)2•–41,42 over the layered network
forming a ferrimagnetically ordered layer, which is followed by
three-dimensional ferrimagnetic ordering with inter-layer ferro-
magnetic interactions15,34,36,38–40. The magnetic transition tem-
perature TC (or TN for antiferromagnetic ordering) for this type
of layered magnetic material should be strongly affected by intra-
layer exchange interactions between the [Ru2]0/+ units and
TCNQ(MeO)2•–, as well as inter-layer dipole interactions15,36,38–
40,43. Figure 1f shows the temperature dependence of field-cooled
dc magnetization (FCM) of 1-solv and 1 in a 1 kOe dc field (Hdc).
In both compounds, an abrupt increase in the FCM is observed
near 80 K without a subsequent decrease at lower temperatures.
This occurs independent of the applied fields, indicating the onset
of ferrimagnetic ordering35,37 (details of the comparison between
1-solv and 1 are described in Supplementary Fig. 3 and Supple-
mentary Note 3 and 4); however, their TC values differ (i.e., 83 K
and 76 K for 1-solv and 1, respectively), as evaluated from rem-
nant magnetization (RM) (inset of Fig. 1f) and ac susceptibility
data (Supplementary Fig. 3b, e, Supplementary Note 3).

Gas sorption capability. In addition to the magnetic sponge
capabilities for crystallization solvents, 1 has the ability to adsorb
gases such as CO2, N2, and O2; the gas-adsorbed phase is defined
as 1⊃Gas. Figure 2a shows their sorption isotherms (a log-scale
plot is shown in Supplementary Fig. 4). For N2, 1 has a non-
porous nature at 77 K because of the slow diffusion of gaseous
molecules into the void space; however, 1 acts as an adsorbent at
120 K, where the 1st gate-opening is observed at a pressure of 3.2
kPa, as found in other low-dimensional porous systems44, and
reaches an adsorption amount of 27 mL (stp) g−1 (2.3 mol per
formula unit) at 99 kPa. The CO2 adsorption isotherm at 195 K
shows a steep rise at relatively low pressures, where the adsorp-
tion amount is 102 mL (stp) g−1 (8.7 mol per formula unit) at 99
kPa45, even though a gate-opening modification should be
involved. The O2 adsorption isotherm at 90 K shows a stepwise
feature; 1st and 2nd gate-opening transitions at ca. 0.1 kPa and
36 kPa, respectively, reaching an adsorbed amount of 110 mL
(stp) g−1 (9.5 mol per formula unit) at 99 kPa; however, only the
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1st gate-opening at ca. 3.1 kPa is observed when measured
at 120 K, eventually reaching an adsorbed O2 amount of 64 mL
(stp) g−1 (5.5 mol per formula unit) at 99 kPa.

Crystal structures under gases. To elucidate the gas-inserted
structure, in situ powder X-ray diffraction (PXRD) of 1 were
measured under 100 kPa of N2 at 130 K, O2 at 94 and 130 K, and
CO2 at 204 K (Fig. 2b), which illustrate the occurrence of struc-
tural transformations upon gas adsorption. Two types of gas-
adsorbed temperature-dependent phases exist at 130 and 94 K
under O2, which can be associated with the 2nd gate-opening step
in the adsorption isotherm for O2. Additionally, the PXRD pat-
tern of 1⊃O2 at 130 K is very similar to that of 1⊃N2 at 130 K
in that it does not undergo the 2nd gate-opening transition.

Hereafter, O2-adsorbed phases observed at 130 K and 94 K are
denoted as 1⊃O2-I and 1⊃O2-II, respectively. Notably, the gas-
induced structural changes are reversible (Supplementary Fig. 5);
after evacuating the CO2 gas from 1⊃CO2, the PXRD pattern
reverts to the original pattern of 1. In the case of 1⊃N2, slight
heating to 150 K in addition to evacuation is required to promote
desorption of N2. Of note, the PXRD pattern for 1⊃O2-II
becomes that for 1⊃O2-I by evacuating at 94 K, but it does not
return to the pattern of 1, indicating that the 1⊃O2-I phase
corresponds to an intermediate phase stabilized at low pressures
of O2 even at 94 K (vide infra), which eventually turns into 1 after
evacuating at 300 K.

Finally, the crystal structures of 1⊃N2, 1⊃O2-I, and 1⊃CO2

were determined by in situ single crystal X-ray diffraction
(SCXRD) under gas-pressure controlled atmospheres
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Fig. 1 Structural modulation and magnetic sponge behavior upon solvation/desolation. a–d Views of the crystal structures of 1-solv (a, b) and 1 (c, d);
figures a, c and b, d show projections along the a (a’) axis and c (c’) axis, respectively, where atoms N, O, C, F, and Ru are represented in blue, red, gray,
green, and purple, respectively, and the crystallization solvents given in figures a and b are represented in cyan. The vertical inter-layer distance (l1) is
indicated in blue digit in b and d, and the inter-unit translational distance (l2) corresponds to the a- or a′-lattice axis for each compound (Supplementary
Table 8). The cell axes a′–c′ in c and d represent those for a transformed lattice (see Supplementary Methods), which were adopted for easy comparison
with the lattice of 1-solv. e Schematic representation for the interchange between 1-solv and 1 upon solvation/desolvation, where the colored arrow
indicates a plausible direction of ordered spins. f Temperature dependence of magnetic susceptibility (χ) for 1-solv (red) and 1 (black) measured under a
1 kOe dc field (Hdc) on field cooled process. Inset: Remnant magnetization (M) at Hdc= 0Oe (heating process) measured after taking a FCM (1.8–120 K)
under a 3 Oe dc field, where the dashed lines indicate the respective TC values

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07889-1 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5420 | https://doi.org/10.1038/s41467-018-07889-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Supplementary Fig. 6, 7, 9, and 10, Supplementary Table 4−6,
Supplementary Note 5−7), and it of 1⊃O2-II was evaluated
from the in situ PXRD data using the Rietveld refinement
technique (Supplementary Fig. 8, Supplementary Table 7,
Supplementary Note 6). For 1⊃N2, 1⊃O2-I, and 1⊃CO2, the

accommodated gases were reasonably determined with occu-
pancy numbers of 4N2, 5.2O2, and 5CO2, respectively, which were
displayed in Fig. 2c and Supplementary Fig. 9 and 10 (the O2

molecules for 1⊃O2-II have less accuracy, so only the framework
structure is discussed). The inter-layer distances, which are
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defined by l1 and l2 (= a′-axis) between planes, have decreased
(but l2 > 10.3 Å; Supplementary Table 8, where inter-layer
ferromagnetic interaction is expected even for 1⊃O2-I and
1⊃O2-II)39,40 in all 1⊃Gas structures compared to 1, which
manifests structurally as a change from the wavy layer form in
1 to a quasi-flat layer form in 1⊃Gas, resulting from a reduction
in the Ru−N−C bending angle (av. 159–161° for 1⊃Gas vs.
140.3° for 1, Supplementary Table 8). Hence, the guest-molecule
accessible volume between the layers in 1⊃Gas increase relative
to 1 (147 Å3), as expected from the gas adsorption capability
(335–546 Å3 for 1⊃Gas, Supplementary Table 8). Importantly,
the structural frameworks of 1⊃N2 and 1⊃O2-I at 130 K are
almost identical; three distinguishable gas-accommodation sites
(Site-A–C; Supplementary Fig. 10) were commonly realized even
for 1⊃CO2, where a close-up view of gas-sandwiched mode at
Site-A, which was most likely associated with the difference of
magnetism between 1⊃N2 and 1⊃O2-I (vide infra), was
depicted in Fig. 2d. The Site-A included two molecules of N2 or
O2 with a similar arrangement; two gas molecules at Site-A
were relatively close to the TCNQ(MeO)2 moieties, where
the barycenter-to-barycenter distance between N2/O2 and the
quinonoid ring (C6) of the TCNQ(MeO)2 moiety was 3.79(5) and
3.86(5) Å, respectively, and the inter-guest barycenter distance of
N2···N2/O2···O2 was 4.82(6) and 4.85(6) Å, respectively (Fig. 2d).
The torsion angle of C6···N2/O2···N2/O2 was 114.8(3)˚ and
114.6(3)˚ for 1⊃N2 and 1⊃O2-I, respectively (Fig. 2d). To
accommodate an additional 4–8 mol per formula unit of gas, a
subsequent enlargement in the inter-layer distance is required,
as observed in 1⊃O2-II and 1⊃CO2 (Fig. 2c).

Magnetic properties under diamagnetic gases, CO2 and N2.
Upon gas adsorption, a significant structural change is induced
without alteration in the oxidation state of each unit in the D2A
layer; in situ infrared (IR) spectroscopy proves the preservation of
TCNQ(MeO)2•–, even under a 100 kPa gas atmosphere (Supple-
mentary Fig. 11). Therefore, in situ magnetic measurements were
conducted in Quantum Design MPMS-7S by accurately handling
the gas pressure; the pressure in a homemade cell (Supplementary

Fig. 12) containing the sample was evacuated down to 0.1 Pa with
a turbo-molecular pump at 353 K and the gas was introduced at
200 K up to an inner gas pressure of ~116 kPa. The gas-sealed cell
was then cooled at a sweep rate of 0.5 K min–1 to 120 K for N2,
195 K for CO2, and 100 K for O2. Each cell was maintained at its
respective temperature for 10 h to reach adsorption equilibrium.
Once the inner pressure of each cell was obtained, the gas-sealed
cell was held at 100 K or 120 K for the FCM measurements.

Figure 3a shows the temperature dependence of FCM at 100
Oe for 1⊃N2 and 1⊃CO2 prepared in situ, together with that
for 1. Upon insertion of N2 and CO2, TC drastically increases
to 88 K for 1⊃N2 and 92 K for 1⊃CO2 from 76 K for 1 (under
vacuum) even under a weaker magnetic field of 5 Oe (Supple-
mentary Fig. 13), establishing the existence of a ferrimagnetic
ground state under N2 and CO2 atmospheres, where TC was
determined from a disappeared point of RM (Supplementary
Fig. 14). Since N2 exists in the gas phase at 88 K in bulk, the
change in TC is not caused by external N2. In addition, N2 and
CO2 are diamagnetic species. Therefore, the variation in TC
results from the adsorbed gases. Given that the decrease in TC
from 1-solv to 1 was induced by considerable structural changes,
inversely, the increase in TC for 1⊃N2 and 1⊃CO2 relative to
1 likely results from a reduction in structural deformation; the
wavy layer in 1 is modified into a quasi-flat layer in 1⊃N2 and
1⊃CO2 and/or a modification in the inter-layer environment
occurs, resulting from closely packed gases (Fig. 3c). Even with
such a drastic change in TC, the magnetic-field dependence of
the magnetization (M–H) is essentially preserved from 1 (Fig. 3b),
although the coercive field (Hc) of 1⊃ CO2 is somewhat larger
than that of 1 and 1⊃N2. Note that the anomalous steps around
zero field for 1, 1⊃N2, and 1⊃CO2 (1⊃O2 as well; vide infra)
could be caused by a small number of free crystals that follow
the magnetic field.

Magnetic properties under a paramagnetic O2 gas. The mag-
netic behavior of the material under an O2 atmosphere is com-
pletely different from that under N2 and CO2 and varies with
the O2 pressure (PO2) (Fig. 4). Similar to 1⊃N2 and 1⊃CO2, the
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TC of 1⊃O2 increases once at low pressures of PO2 < 1 kPa (e.g.,
TC= 90 K at PO2 ≤ 0.1 kPa; vacuum pressure level at 100 K).
However, under higher pressures, the FCM curve shows an
anomaly with a cusp, indicating the onset of antiferromagnetic
ordering; for example, TN= 71 K at 1 kPa, which gradually
increases to TN= 98 K at 100 kPa with increasing O2 pressure
(Fig. 4a). The variation in TN with O2 pressure was also con-
firmed by the magnetization measurements by varying the O2

pressure at each temperature (Supplementary Fig. 15). The initial
increase in TC at low O2 pressures (PO2 < 1 kPa) is likely caused
by the same mechanism found in 1⊃N2 and 1⊃ CO2 (Fig. 3c),
which could be attributed to the redress of the layered structure,
i.e., the modification from a wavy form of 1 to a quasi-flat form in
1⊃O2-I (the first step in Fig. 4b). Meanwhile, the drastic change
of the magnetic phase from ferrimagnetism to antiferromagnet-
ism could be obtained whether for: (1) a structural change
associated with the transformation from 1⊃O2-I to 1⊃O2-II, or
(2) the magnetic contribution of the adsorbed O2 molecules.
To examine these possibilities, PXRD patterns (from both of
common lab level and high resolution synchrotron level) were

measured by varying the O2 pressure at a fixed temperature in the
range of 70–100 K (Supplementary Fig. 16 and 17), and the
structural transition pressure (Pc) from 1⊃O2-I to 1⊃O2-II at
each temperature was plotted in a T–PO2 phase diagram together
with TN, where the TN line separates the magnetic phases between
the paramagnetic/ferrimagnetic phase and the antiferromagnetic
phase, and the Pc line distinguishes between the 1⊃O2-I and
1⊃O2-II phases (Fig. 5). Importantly, the TN line is independent
of the Pc line, and antiferromagnetism in the 1⊃O2-I phase
is present (the pale blue area in Fig. 5). Since the 1⊃O2-I
and 1⊃N2 structures are identical with l2 > 10.3 Å expected as
a regime for inter-layer ferromagnetic interactions39,40,
and indeed, 1⊃N2 is ferrimagnetic, the antiferromagnetism in
1⊃O2-I results from the magnetic contribution of the adsorbed
O2 molecules, which is caused by long-range antiferromagnetic
correlations via intercalated O2 spins; the most likely packing
mode associated with the O2-mediated magnetic pathway was
shown in Fig. 2d. Further, the continuous shift in TN is likely
dependent on the number of O2 spins between layers, which act
as magnetic mediators couple layer’s ordered spins together
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(Fig. 4b). Thus, the present porous layered magnet 1 magnetically
discriminates O2 from N2 and CO2, at least at PO2 ≥ 1 kPa.

The magnetic switching between the ferrimagnetic phase under
vacuum with the 1⊃O2-I structure and the antiferromagnetic
phase of 1⊃O2 is quite fast and reversible (Fig. 6); the change
from the ferrimagnetic phase to the antiferromagnetic phase is
completed in <1 min at 85 K.

Generally, the solid states of bulk O2 exist in the α-dimer form
with a spin singlet at T < 24 K30,46. Compound 1⊃O2-II
eventually has ~9 O2 molecules per D2A layer unit, like a buried
oxygen layer between ferrimagnetic D2A layers; at least, some of
them certainly act as a paramagnetic mediator in the pores.
Interestingly, the antiferromagnetic phase of 1⊃O2-II trans-
forms to a ferrimagnetic phase in the presence of an applied
magnetic field (Supplementary Fig. 18), giving the much higher
saturated magnetization (Ms) value of 9.29NμB compared to 2.22

NμB for 1 at 7 T (1.8 K), including a fully opened hysteresis curve
(Hc= 0.70 T) (Fig. 4c). On the basis of the M–H curve for 1, the
differential plots clarify the contribution of the O2 spins in the
bulk magnetism of 1⊃O2-II (Fig. 4d), giving rise to a new
magnetic field-induced ferrimagnet. These magnetic alternations
by gases are completely reversible upon adsorption/desorption
under vacuum with heating (Supplementary Fig. 19).

Discussion
The magnetic change caused by the introduction of guest gas
molecules into a porous magnet can be attributed to three trig-
gers: (i) an electronic trigger that causes spin emergence in the
frameworks as a result of host-guest electron transfers (i.e., for-
mation of new magnetic pathways in the framework); (ii) a
structural trigger resulting from magnetostructural modifications
associated with gate-opening/-closing transitions induced by gas
adsorption/desorption, respectively (i.e., modification of the
magnetic pathways); and (iii) a paramagnetic guest trigger
resulting from the formation of new magnetic pathways or
dipole–dipole interactions where paramagnetic gas molecules
themselves magnetically mediate the transition to another mag-
netic ground state. The present gas-responsive porous magnet
results from triggers (ii) and (iii); in particular, the insertion of
free oxygen molecules achieves a magnetic phase change from a
ferrimagnet to an antiferromagnet based on trigger (iii). The fact
of magnetic ordering via paramagnetic O2 molecules gives an
opportunity to investigate the intrinsic nature of oxygen mole-
cules in closed nano-sized porous spheres and provides a new
application methodology based on paramagnetic molecules as
switchable magnetic mediators. As a rapidly emerging field, this
class of gas-responsive porous magnets is the most important
target in the development of functional molecular porous
materials.

Methods
Physical measurements. IR spectra were measured with KBr pellets using a Jasco
FT/IR-4200 spectrometer. Thermogravimetric analyses (TGA) were performed
using a Shimadzu DTG-60H apparatus under a N2 atmosphere in the temperature
range from 298 K to 673 K at a heating rate of 5 Kmin–1. Unless otherwise noted,
PXRD were collected on a Rigaku Ultima IV diffractometer with Cu-Kα radiation
(λ= 1.5418 Å) at room temperature for the sample sealed in a silica glass capillary
with an inner diameter of 0.5 mm with θ scan. PXRD patterns for 1⊃O2 and
1⊃N2 with the synchrotron radiation (λ= 0.799999(6) Å) were collected at SPring-
8 (BL44B2)47. Magnetic susceptibility measurements were performed using a
Quantum Design SQUID magnetometer MPMS-XL on a polycrystalline sample in
the temperature range of 1.8–300 K at a dc field of 1 kOe. Diamagnetic contribu-
tions were collected for the sample holder, Nujol, and for the sample using Pascal’s
constants48. Fresh samples taken immediately from the stock liquids were used for
the magnetic measurements of 1-solv, and the formula determined by single-crystal
X-ray crystallography was used for data analyses. Details for in situ IR spectra and
gas adsorption-magnetic measurements are described in Supplementary Methods.
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X-Ray crystallographic analysis for 1-solv, 1, 1⊃N2, 1⊃O2-I, and 1⊃ CO2.
Crystal data for 1-solv, 1, 1⊃N2, 1⊃O2-I, and 1⊃CO2 were collected at 134 K,
112 K, 130 K, 130 K, and 195 K, respectively, on a CCD diffractometer (Rigaku
Saturn724) with multi-layer mirror monochromated Mo-Kα radiation (λ=
0.71075 Å). Details for the measurements and structural determination are
described in Supplementary Methods. These data have been deposited as CIFs at
the Cambridge Data Centre as supplementary publication nos. CCDC-1519242,
1519241, 1519243, 1519244, and 1519240 for 1-solv, 1, 1⊃N2, 1⊃O2-I, and 1⊃
CO2, respectively. Structural diagrams were prepared using VESTA software49.
The void volumes in the crystal structures were estimated using PLATON50.

Gas adsorption measurements. The sorption isotherm measurements for N2 (at
77 and 120 K), O2 (at 90 and 120 K), and CO2 (at 195 K) gas were performed using
an automatic volumetric adsorption apparatus (BELSORP max; BEL Inc). A known
weight (ca. 30 mg) of the dried sample was placed into the sample cell and then,
prior to measurements, was evacuated using the degas function of the analyzer for
12 h at 353 K. The change in pressure was then monitored and the degree of
adsorption was determined by the decrease in pressure at the equilibrium state.

Gas atmosphere PXRD measurements and Structural determination of
1⊃O2-II. A ground sample of 1 was sealed in a silica glass capillary with an inner
diameter of 0.5 mm. The PXRD pattern was obtained with a 0.02° step using an
Ultima IV diffractometer with Cu-Κα radiation (λ= 1.5418 Å) with θ scan. To
obtain the PXRD patterns under the gas-adsorbed conditions, the glass capillary
was connected to stainless-steel (SUS) lines with valves to dose and remove the gas,
which were connected to a gas-handling system (BELSORP max; BEL inc). The
temperature was controlled by a N2 gas stream. Structures are determined using
DIFFRACplus TOPAS® v4.2 software, FOX software51, and RIETAN-FP soft-
ware52. Details for structural determination are described in Supplementary
Methods. These data have been deposited as CIFs at the Cambridge Data Centre as
supplementary publication nos. CCDC-1519245.

Data availability
The data sets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request. The X-ray
crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under
deposition numbers 1519240-1519245. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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