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The fatty acid binding protein 4 (FABP4), one of the most abundant proteins in adipocytes, has been
reported to have a proinflammatory function in macrophages. However, the physiological role of
FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously,
we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6) and vascular
endothelial growth factor (VEGF) production in 3T3-L1 adipocytes. In this study, we examined the
effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER) stress in 3T3-L1 adipo-
cytes. We found that the cellular reactive oxygen species (ROS) and 8-nitro-cyclic GMP levels were
significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering
RNA (siRNA) against Fabp4, although the intracellular levels or enzyme activities of antioxidants
including reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione S-transferase
A4 (GSTA4) were not altered. An in vitro evaluation using the recombinant protein revealed that
FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2). FABP4-knockdown
resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. More-
over, four kinds of markers related to the ER stress response including the endoplasmic reticulum to
nucleus signaling 1 (Ern1), the signal sequence receptor a (Ssr1), the ORM1-like 3 (Ormdl3), and the
spliced X-box binding protein 1 (Xbp1s), were all elevated as the result of the knockdown of FABP4.
Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute
to cytoprotection against oxidative and ER stress in adipocytes.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Fatty acid binding protein 4 (FABP4), also known as adipocyte
FABP (A-FABP) or aP2, is a member of the FABP family, which is
comprised of at least nine isoforms [1]. FABP4 is expressed in
mature adipocytes during its differentiation from preadipocytes
[2]. Animal studies have reported that FABP4-deficient mice were
protected against obesity-mediated insulin resistance, impaired
glucose tolerance and atherosclerosis [3,4]. In macrophages, the
expression of FABP4 is induced by inflammatory stimuli such as
lipopolysaccharides (LPS) [5], oxidized low-density lipoprotein
(oxLDL) [6] and advanced glycation end products [7]. On the con-
trary, in FABP4-knockout macrophages, the production of inflam-
matory cytokines and the activation of the inflammatory
signaling pathway are suppressed [8]. Furthermore, in vascular
endothelial cells, FABP4 expression is induced by pro-angiogenic
stimuli, such as vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (bFGF) [9]. In the aortic endothelium,
FABP4 expression is up-regulated during the progression of athero-
sclerosis in apolipoprotein E (ApoE)-knockout mice [10]. These
findings strongly indicate that the pathological induction of FABP4
may well contribute to the pathogenesis of inflammatory disorders
and vascular dysfunction. However, the physiological role of FABP4
in adipocytes as well as macrophages and endothelial cells is not
currently well understood.

It was recently reported that reactive oxygen species (ROS) reg-
ulate mitotic clonal expansion through activation of the CCAAT/
enhancer binding protein (C/EBP) b during adipogenesis [11]. In
addition, the C/EBPb-mediated activation of the signaling pathway,
including the endoplasmic reticulum to nucleus signaling 1 (Ern1),
which is a homolog of the yeast Ire1, and X-box binding protein 1
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(Xbp1), for the elevation of unfolded protein response (UPR) to alle-
viate endoplasmic reticulum (ER) stress has been shown to be
required for adipogenesis [12]. It has also been reported that the
production of ROS is directly linked to ER stress [13–15], and that
antioxidants reduce ER stress [16,17]. To maintain the primary
function of adipocytes, i.e., fat accumulation and endocrine func-
tion, the appropriate machinery may be necessary to mitigate the
increased cellular stress associated with lipid metabolism and pro-
tein biosynthesis. Thus, we hypothesized that FABP4 may play a
cytoprotective role against an increase in oxidative and ER stress
in adipocytes, since it is well known that the expression of FABP4
is induced during adipogenesis [2].

It has been reported that FABP1, known as liver FABP (L-FABP),
functions as an antioxidant protein [18–20] through the inactiva-
tion of free radicals by its methionine and cysteine amino acids
[21]. However, no direct evidence for associating FABP4 with the
antioxidant function is available. Although a recent study demon-
strated that FABP4 mediates lipid-induced ER stress in macro-
phages [22], how it impacts ER stress in adipocytes has not been
explored.

In a previous study, we reported on a simple method for prepar-
ing differentiated 3T3-L1 adipocytes in the form of a monolayer
denoted as density-based separation followed by re-plating of
enriched adipocytes in monolayer (DREAM) and succeeded in the
efficient and significant silencing of FABP4 in the differentiated
adipocytes [23]. By this method, we were able to elucidate a new
role of FABP4 in the regulation of interleukin-6 (IL-6) and VEGF-
A production in adipocytes through modulation of the thrombin
receptor. Thus, in the current study, we investigated the further
importance of FABP4 in the modulation of oxidative and ER stress
in adipocytes via loss-of-function analyses.

2. Results

2.1. The knockdown of FABP4 elevates intracellular ROS and 8-nitro-
cyclic GMP levels in 3T3-L1 adipocytes

We first confirmed the effective silencing of the Fabp4 mRNA
and FABP4 protein at 48 h after the transfection of siFabp4 into
the differentiated 3T3-L1 adipocytes prepared by the DREAM pro-
tocol [23]. RT-PCR and Western blotting analyses indicated that the
knockdown of the mRNA and protein was successful (Fig. 1A and
B). Thus, under these experimental conditions, we assessed intra-
cellular ROS levels using a fluorogenic probe (CellROX). As a result,
the geometric mean value of CellROX fluorescence in the siFabp4-
transfected adipocytes was approximately 11% higher than that in
the control cells (Fig. 1C). The difference was statistically signifi-
cant (n = 6, P = 0.002), but the elevation was not drastic. Therefore,
to evaluate the induction of oxidative stress by FABP4 knockdown
in adipocytes, we also examined the intracellular level of 8-nitro-
cGMP, which is generated from nitric oxide (NO), ROS and cGMP
and is involved in the adaptive response to oxidative stress [24–
27]. The immunocytochemical analysis revealed that the intracel-
lular 8-nitro-cGMP was substantially increased by the down-regu-
lation of FABP4 expression in the differentiated 3T3-L1 adipocytes
(Fig. 1D and E). These results strongly suggest that the 11% eleva-
tion in intracellular ROS levels caused by FABP4 knockdown may
be sufficient to induce oxidative stress in adipocytes.

2.2. Knockdown of FABP4 does not alter the cellular GSH level, SOD
activity and glutathione S-transferase A4 (GSTA4) expression in 3T3-
L1 adipocytes

We next examined the issue of whether the cellular GSH level
and SOD activity are affected by FABP4 knockdown. The
antioxidant level and enzyme activity in the siFabp4-transfected
adipocytes were not significantly different from those in the con-
trol cells (Fig. 2A and B). Curtis et al. recently reported that the
down-regulation of GSTA4 in adipocytes leads to increased protein
carbonylation, oxidative stress and mitochondrial dysfunction
[28]. Thus, we assessed the expression of the GSTA4 protein in
the siFabp4-transfected adipocytes. However, it was also not
altered by FABP4 knockdown (Fig. 2C). From these results, we con-
cluded that the elevation of intracellular ROS levels observed in
this study was mainly directed to a decrease in FABP4 expression.

2.3. The recombinant FABP4 protein has antioxidant activity to H2O2,
but not to superoxide

In order to confirm the above hypothesis, we assessed the activ-
ity of FABP4 as an antioxidant protein in vitro. We initially exam-
ined whether FABP4 is able to dismutate superoxide, which is
the primary ROS generated during oxygen metabolism. A His6 pep-
tide was used as a negative control. As shown in Fig. 3A, the resid-
ual superoxide levels in the FABP4 and His6-containing samples
were approximately 10% lower than that in the buffer sample that
did not contain FABP4 and His6, while the difference between the
FABP4 and His6-containing samples was not statistically signifi-
cant, indicating that the 10% reduction of superoxide in the recom-
binant FABP4 might be attributed to the N-terminal His6-tag, and
that FABP4 itself has no scavenger activity for superoxide. Thus, we
next examined the antioxidant ability of FABP4 for H2O2, which is
formed by conversion from superoxide by SOD and is known as a
major mediator of cellular oxidative stress. The recombinant FABP4
significantly scavenged H2O2 in a concentration-dependent man-
ner, whereas the His6 peptide did not (Fig. 3B). In addition, an
unrelated protein (bovine serum albumin, BSA) also showed no
alteration in H2O2 levels (Fig. S1). Furthermore, mass spectrometry
and SDS–PAGE analyses showed that the H2O2 treatment resulted
in a marked increase in the molecular mass of the recombinant
FABP4 protein (Fig. S2). These results suggest that FABP4, which
is constitutively expressed in the differentiated adipocytes, may
function as an intracellular antioxidant protein and plays a crucial
role in the resistance to the oxidative stress induced by H2O2.

2.4. The knockdown of FABP4 reduces resistance to oxidative stress
induced by exogenous H2O2 in 3T3-L1 adipocytes

We next examined the antioxidant function of FABP4 in the dif-
ferentiated 3T3-L1 adipocytes. At 48 h after the transfection of
siFabp4 or siControl, 3T3-L1 adipocytes were treated with
300 mM H2O2 or vehicle for 1 h. As shown in Figs. 4A and S3,
although cell viability was not significantly different between the
siFabp4- and siControl-transfected cells when they were treated
with vehicle, cell viability in the siFabp4-treated cells was signifi-
cantly lower than that in the siControl-treated cells after exposure
to 300 mM H2O2. This result indicates that FABP4 has the ability to
protect adipocytes from H2O2-induced oxidative stress.

Moreover, it is known that FABP4 expression in macrophages is
induced during differentiation from monocytes and by treatment
with various reagents including phorbol 12-myristate 13-acetate
(PMA), an activator of protein kinase C, peroxisome proliferator-
activated receptor (PPAR) c agonists, LPS, and oxLDL [5,6,29–31].
Thus, we next examined the issue of whether or not the elevated
FABP4 levels also exhibited an antioxidant function in macro-
phages. The elevation of FABP4 was induced by treating
Raw264.7 cells, a mouse monocyte/macrophage cell line, with
2 lM rosiglitazone (Rosi), a synthesized PPARc agonist (Fig. 4B).
Under this condition, the Raw264.7 cells were treated with
90 mM H2O2 or vehicle for 1 h, and cell viability was then mea-
sured. As a result, cell viability in the Rosi-treated cells was signif-
icantly higher than that in the vehicle-treated cells (Fig. 4B). These
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Fig. 1. Increased oxidative stress mediated by the knockdown of FABP4 in differentiated 3T3-L1 adipocytes. (A and B) RT-PCR and Western blotting analyses for confirmation
of FABP4 knockdown. At 48 h incubation of the differentiated 3T3-L1 adipocytes with 50 nM siFabp4 or siControl, the total RNA samples and cell lysates were subjected to RT-
PCR (a) and Western blotting (b), respectively. Typical images obtained in three independent experiments are shown. NT: non-treatment. (C) Measurement of the
intracellular ROS level. At 48 h transfection of siFabp4 or siControl, the 3T3-L1 adipocytes were fluorescently stained with CellROX Deep Red reagent and BODIPY493/503 for
detection of cellular ROS and lipid droplets, and then subjected to flow cytometric analysis. The geometric mean values of CellROX fluorescence in the BODIPY-stained (fat
accumulated) cells were acquired as the intracellular ROS levels. Data represent as mean ± SD (n = 6). �P < 0.005 (student’s t-test). (D) Immunocytochemical detection of 8-
nitro-cGMP. At 48 h after transfection, the cells were fixed and immunostained with a pair of anti-nitroguanosine and Alexa568-labeled secondary antibodies (Red). Cell
nuclei and lipid droplets were stained with Hoechst33342 (Green) and BODIPY (Blue). Typical CLSM images of 3 independent experiments were shown. Scale bars represent
50 lm. (E) Quantification of intracellular 8-nitro-cGMP contents. Mean fluorescent intensity (FI) (average intensity of pixels per cell) for 30 adipocytes per condition was
measured. Open and closed circles represent the mean FI values in each cell, and black bars indicate the average values of mean FI in 30 cells. #P < 0.0001 (Student’s t-test).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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findings suggest that FABP4 might also function as an antioxidant
protein in macrophages as well as in adipocytes.

2.5. Knockdown of FABP4 induces endoplasmic reticulum (ER) stress
and elevation of intracellular Ca2+ levels in 3T3-L1 adipocytes

Some reports indicate that oxidative stress and ER stress are
closely linked events and that H2O2-mediated oxidative stress also
induces ER stress. Thus, we next assessed whether the ER stress
response was promoted by knockdown of FABP4 in 3T3-L1 adipo-
cytes. We analyzed the expression of several ER stress markers
including Ern1, Xbp1, signal sequence receptor a (Ssr1) and
ORM1-like 3 (Ormdl3) in siFabp4-transfected adipocytes. As shown
in Fig. 5A, while the unspliced Xbp1 (Xbp1u) and total Xbp1 mRNA
levels were not altered, four types of ER stress markers were up-
regulated as the result of the knockdown of FABP4, strongly sug-
gesting that FABP4 plays an inhibitory role in ER stress associated
with oxidative stress in adipocytes. To explore the mechanisms
responsible for the elevated ER stress in FABP4-silenced adipo-
cytes, we examined intracellular Ca2+ levels using a fluorescent
Ca2+ probe Fluo-8. As a result, the fluorescence intensity of Fluo-
8 was significantly increased by the knockdown of FABP4 in the
3T3-L1 adipocytes (Fig. 5B and C), suggesting that the impaired
Ca2+ homeostasis caused by FABP4 knockdown might be attributed
to the induction of ER stress in adipocytes.
3. Discussion

FABP4 is thought to be an important pathological mediator in
chronic inflammation and vascular injury. The findings reported
herein demonstrate that FABP4, which is expressed in adipocytes,
has a role in alleviating oxidative and ER stress. The attenuation
of these types of cellular stress via FABP4 might play a key role
in the maintenance of adipocyte homeostasis, since the excess
level of cellular oxidative and ER stress leads to adipocyte dysfunc-
tion, to include an impaired glucose/lipid metabolism and endo-
crine capacity [32,33].

The findings show that FABP4 expressed in the differentiated
3T3-L1 adipocytes is associated with lowering the level of intracel-
lular ROS. The knockdown of FABP4 in adipocytes caused a 11%
increase in cellular ROS levels without any other stimulation, com-
pared to control cells (Fig. 1B). It was assumed that this change was
not drastic due to the incomplete depletion of FABP4. Indeed, 30–
40% of the FABP4 protein remained, even after a 48 h treatment of
siFabp4 (Fig. 1A). Since the concentration of FABP4 in adipocytes
was estimated to be as high as 250 lM [34,35], the residual FABP4
could suppress the surplus elevation in ROS levels. However, a
marked increase in 8-nitro-cGMP was induced by FABP4 knock-
down (Fig. 1C). 8-nitro-cGMP is an endogenous nucleotide that
was first discovered under inflammation conditions and functions
as a cytoprotective mediator of NO signaling [24–27]. Although the
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role of 8-nitro-cGMP in adipocytes has been not investigated, the
possibility that it might be increased by the elevated cellular ROS
due to FABP4 knockdown cannot be excluded, based on these data.
Peroxynitrite (ONOO�), formed by increased NO and ROS, is a
potent and nitrating species, and causes for the increase in the pro-
tein nitration as well as the formation of 8-nitro-cGMP. The accu-
mulation of 3-nitrotyrosine is also known as an oxidative stress
marker [36]. Therefore, in order to fully elucidate the cytoprotec-
tive function of FABP4 in adipocytes, further investigations such
as the quantitative assessment for protein nitration still remain.

It has been reported that the intracellular GSH content and SOD
activity increase during adipocyte differentiation in 3T3-L1 cells
[37,38], indicating that the adequate regulation of the cellular
redox state may be responsible for normal adipocyte function.
We found that the knockdown of FABP4 in the differentiated
3T3-L1 adipocytes caused cellular ROS levels to become elevated
without any alteration in intracellular GSH content and SOD
activity (Fig. 2A and B). In addition, the expression of GSTA4 was
also not altered by FABP4 knockdown (Fig. 2C). GSTA4 catalyzes
the glutathionylation of a,b-unsaturated aldehydes such as 4-
hydroxy-2-nonenal (4-HNE) to generate a conjugation product that
is eliminated from the cell [39]. In a previous study, it was reported
that the mitochondrial ROS was increased in GSTA4-silenced 3T3-
L1 adipocytes and mitochondrial function in adipocytes from
GSTA4-null mice was significantly compromised [28]. However,
our results indicate that the elevation of cellular ROS induced by
FABP4 knockdown in the 3T3-L1 adipocytes did not result from
the modulation of GSTA4 expression. These findings suggest that
adipocytes might have alternate machineries to protect themselves
against oxidative stress. In this regard, we demonstrated the exis-
tence of FABP4 as alternate antioxidant protein against H2O2

(Fig. 3B). Some reports have concluded that FABP1 has the ability
to inactivate the free radicals by virtue of its methionine and cys-
teine amino acids [18,21]. It has been also reported that the
increased FABP1 levels are associated with reduced cellular ROS
levels without any alteration in the levels of antioxidant enzymes
including SODs, glutathione peroxidase and catalase [19,20].
Although the homology of the amino acid sequence is below 30%
between FABP1 and FABP4, FABP4 also contains two cysteine and
five methionine residues in both the mouse and human forms. It
has been also shown that the cysteine residue (Cys117) of FABP4
is a molecular target of protein modification by 4-HNE [35], which
is a reactive aldehyde formed from lipid peroxidation and
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significantly contributes to oxidative disease due to its potent reac-
tivity [40,41]. In the in vitro evaluation for the reduction of H2O2 by
FABP4, we also assessed the scavenging effect of an unrelated pro-
tein (BSA) for H2O2, and found no reduction in H2O2 levels (Fig. S1).
It was previously reported that BSA showed the reduction of H2O2

in a concentration-dependent manner, with an IC50 of 7.86 mg/ml
(118.26 lM) [42]. Therefore, the 5 and 15 lM of BSA utilized in this
study might be too low to permit scavenging effect for H2O2 to be
measured. From these findings, FABP4 might effectively react with
H2O2 and is likely involved in the cellular antioxidant mechanism
in adipocytes. This interpretation was strongly supported by the
finding that FABP4 knockdown in the differentiated 3T3-L1 adipo-
cytes significantly decreased the resistance to exogenous oxidative
stress induced by H2O2 (Figs. 4A and S3). In addition, we also found
a significant increase in resistance to oxidative stress in the
Raw264.7 macrophages, when they were pre-treated with Rosi
for the induction of FABP4 expression (Fig. 4B). These findings
suggest that FABP4 can function as an antioxidant protein, and this
would not be specific to adipocytes. However, in macrophages,
further examinations are still needed to exclude any other possibil-
ities, since the elevation of FABP4 in macrophages is only one of the
many actions of Rosi. Furthermore, we found that the molecular
mass of the recombinant FABP4 was changed from 14.4 to
19.6 kDa as the result of the H2O2 treatment (Fig. S2). In the
SDS–PAGE analysis, the upper-shift of the FABP4 band by H2O2

was not recovered by treatment with dithiothreitol (DTT), a reduc-
ing agent, indicating that the increase in molecular mass of FABP4
might not be caused by the formation of S–S bonds. However, the
molecular mechanisms for the effective reduction of H2O2 by
FABP4 are still unclear. Further studies will be needed to clarify
what specific amino acid residues are oxidized.

Moreover, we evaluated the expression of several ER stress-
related genes in FABP4-silenced 3T3-L1 adipocytes. Ern1 encodes
an intrinsic endoribonuclease ERN1 (also known as IRE1a), which
is activated by ER stress, splices the Xbp1 mRNA and produces
the spliced XBP1 protein (XBP1s). XBP1s is a transcription factor
and induces a subset of UPR target genes that are responsible for
the ER stress response [43,44]. Ssr1, encoding signal sequence
receptor a (also known as translocon-associated protein (TRAP)
a) is simultaneously induced by the IRE1a/XBP1 pathway in
response to ER stress [45]. Ormdl3 encodes a transmembrane pro-
tein that is localized in the ER and may be involved in ER stress via
calcium signaling [46]. RT-PCR analyses revealed that these ER
stress/UPR-associated genes were up-regulated by FABP4 knock-
down in differentiated 3T3-L1 adipocytes (Fig. 5A), indicating that
a loss of FABP4 may induce the ER stress in adipocytes. In addition,
we also found that intracellular Ca2+ levels were significantly
increased as the result of FABP4 knockdown (Fig. 5B and C). It
was previously reported that cellular oxidative stress induced an
increase in intracellular Ca2+ levels [47]. Although the molecular
mechanism responsible for the elevation of Ormdl3 expression
through FABP4 knockdown is currently unclear, it is possible that
the ER stress observed in this study may be secondarily induced
by oxidative stress and impaired Ca2+ homeostasis as a result of
FABP4 knockdown. In a previous study, we reported that the
knockdown of FABP4 resulted in an alteration in the post-transla-
tional modification process of the VEGF-A protein in differentiated
3T3-L1 adipocytes [23]. A dysregulation of protein processing such
as glycosylation may impair the effective secretion of VEGF-A [48]
and thus cause ER stress [49]. From these findings, it is possible
that FABP4 could physiologically play an important role in the
quality control of protein biosynthesis and processing through its
ability to control the level of ER stress in adipocytes. To the con-
trary, it is also known that FABP4 is necessary for ER stress associ-
ated with lipotoxicity in macrophages under pathological
conditions [22]. In order to clarify the inconsistent findings under
the physiological and pathological conditions, further investiga-
tions will be needed. Furthermore, it is known that adipocytes
express FABP5, epidermal-FABP (E-FABP), as well as FABP4, and
that FABP5 also functions as an antioxidant protein by scavenging
reactive lipids including 4-hydroxynonenal (4-HNE) [50] and leu-
kotriene A4 [51]. Therefore, it is possible that FABP5 silencing in
the 3T3-L1 adipocytes leads to the elevation of oxidative stress,
as is the case of FABP4. However, it has been also reported that
FABP5 constitutes a minor fraction of FABPs in adipocytes, the
amount being about 100-fold smaller than that of FABP4 in adipo-
cytes [52]. Thus, in adipocytes, the contribution of FABP5 to the
protection against oxidative stress might be less than that of
FABP4. This issue would be addressed by the silencing of FABP5
in adipocytes.

In conclusion, we demonstrate, for the first time, that FABP4,
which is constitutively expressed in adipocytes, has a new role in
cytoprotection against oxidative stress and, at least partially, ER
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stress. Since the chronic accumulation of cellular stress in
adipocytes contributes to the development of metabolic disorders
such as diabetes and cardiovascular diseases, a more complete
understanding of how FABP4 functions as an endogenous stress
inhibitor would be helpful for the prevention of obesity-related
diseases.

4. Materials and methods

4.1. Materials

Dulbecco’s modified eagle’s medium (DMEM) was obtained
from Wako Pure Chemical (Osaka, Japan). 3-Isobutyl-1-methyl-
xanthine (IBMX), dexamethasone (DEX) and insulin (bovine pan-
creas) (INS) were purchased from SIGMA (St. Louis, MO, USA).
The siTrio Full Set, Mouse (Fabp4, NM_024406) and negative con-
trol were obtained from Cosmo Bio (Tokyo, Japan).

4.2. Cell cultures

3T3-L1 cells were obtained from the Human Science Research
Resources Bank (JCRB9014). The cells were propagated in growth
medium as described previously [23,53]. At 2 days post-conflu-
ence, differentiation was induced by adding IBMX (0.5 mM), DEX
(1 lM), and INS (1.7 lM) (designated as ‘‘day 0’’). At day 2, the
medium was changed to growth medium supplemented with
16.4 lM D-biotin and 1.7 lM INS (maturation medium). The
differentiated 3T3-L1 cells at day 8 were detached and re-plated
as described previously [23] with minor modifications. In the
current study, cell detachment process was carried out using
0.5 mg/ml type II collagenase (SIGMA) without trypsin. At 24 h
after re-plating, the adherent cells were used for the following
examinations.
Raw264.7 cells were obtained from the American Type Culture
Collection (ATCC). The cells were propagated and maintained in
DMEM (high glucose) supplemented with 10% FBS.

4.3. Transfection of the differentiated 3T3-L1 cells with siRNA

The siRNA transfection to the re-plated 3T3-L1 adipocytes was
carried out with Lipofectamine RNAiMAX (Life Technologies, Carls-
bad, CA, USA) according to the manufacture’s protocol.

4.4. RT-PCR analysis

Total RNA samples were prepared using the TRI Reagent
(SIGMA), according to the manufacturer’s recommended
procedure. Reverse transcription and PCR amplification were
carried out as described previously [54]. The gene specific primers
used in current study are summarized in Table S1. PCR products
were subjected to 2% agarose gel electrophoresis and the gels were
viewed by means of an Image Analyzer (model LAS-4000mini, GE
Healthcare, Tokyo, Japan) after staining with ethidium bromide.

4.5. Western blotting

The cells were lysed with buffer containing 1% Triton X-100,
50 mM Tris–HCl (pH 7.5), 200 mM NaCl, 2 mM phenylmethylsul-
fonyl fluoride (PMSF), 1 � protease inhibitor cocktail (Nacalai tes-
que, Kyoto, Japan), and 1 � PhosSTOP Phosphatase inhibitor
cocktail (Roche, Mannheim, Germany). The protein concentrations
in cell lysates were determined with a BCA Protein Assay Kit
(Pierce, Rockford, IL, USA). The cell lysates were subjected to
immunodetection, as described previously [55]. The antibodies uti-
lized in this study are listed in Table S2. Chemiluminescent signals
were detected with an Image Analyzer (LAS-4000mini).
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4.6. Flow cytometric analyses of intracellular reactive oxygen species
(ROS) production

The re-plated 3T3-L1 adipocytes were transfected with siFabp4
or siControl as mentioned above. At 48 h after transfection, the
cells were washed twice with Hank’s balanced salt solution (HBSS)
(Wako), and then stained with 5 lM CellROX Deep Red reagent
(Life Technologies) and 5 lM BODIPY493/503 (Life Technologies)
for 30 min at 37 �C. The fluorescently stained cells were washed
twice with HBSS, and then incubated in 5 mM EDTA in PBS for
5 min. The detached cells were collected in new tubes, washed
with phosphate buffered saline (PBS) containing 0.5% BSA (SIGMA)
and 2 mM EDTA, and then analyzed using a FACS Calibur flow
cytometer (BD Biosciences, San Jose, CA, USA). The geometric mean
values of CellROX fluorescence in the BODIPY-stained adipocytes
were acquired as the intracellular ROS levels.

4.7. Immunofluorescent detection of 8-nitro-cGMP

The differentiated 3T3-L1 adipocytes were re-plated onto a gel-
atin-coated 35 mm glass-based culture dish. At 24 h after re-plat-
ing, the cells were transfected with 50 nM of siControl or siFabp4
for 48 h. The cells were then washed with PBS, fixed with Bouin’s
solution (SIGMA) for 15 min at room temperature. After washing
with PBS three times, the fixed cells were permeabilized with 1%
Triton-X100 in PBS for 15 min, and then blocked with 1% BSA in
PBS for 1 h at room temperature. After blocking, the cells were
incubated with an anti-nitroguanosine mAb (clone NO2G52, Cosmo
Bio) for 16 h at 4 �C. After washing three times with PBS, the cells
were incubated with Alexa568-conjugated anti-mouse IgG (Life
Technologies) for 2 h at room temperature. Cell nuclei and lipid
droplets were fluorescently stained with 40 lM Hoechst33342
(Nacalai tesque, Kyoto, Japan) and 5 lM BODIPY493/503 for
30 min at room temperature. After washing with PBS three times,
the cells were observed by confocal laser-scanning microscopy
(CLSM) (model A1, Nikon, Tokyo, Japan). Mean fluorescent inten-
sity (average intensity of pixels per cell) for 30 cells per condition
was determined using the ImageJ software (http://rsb.info.nih.gov/
ij/).

4.8. Quantification of intracellular reduced glutathione (GSH) level

The re-plated 3T3-L1 adipocytes were transfected with siFabp4
or siControl. At 48 h after transfection, the cells were washed with
PBS and then scraped. A small part of the samples was utilized to
determine protein content by the BCA method as described above.
An equal volume of 5% meta-phosphoric acid (SIGMA) was added
to each sample. After vortexing and sonication, the samples were
centrifuged at 3000�g for 10 min at 4 �C. GSH content was deter-
mined using a BIOXYTECH GSH-400 kit (OXISResearch, Portland,
CA, USA) according to the manufacture’s protocol. The standard
curve was prepared using the purified GSH (Enzo Life Sciences,
Farmingdale, NY, USA). The results were shown as an average
GSH content per mg protein in three independent examinations.

4.9. Determination of superoxide dismutases (SODs) activity

The re-plated 3T3-L1 adipocytes were transfected with siFabp4
or siControl. At 48 h after transfection, the cells were washed with
PBS twice, lysed with ice-cold 20 mM HEPES buffer (pH 7.2) con-
taining 1 mM EGTA, 210 mM mannitol and 70 mM sucrose, and
centrifuged at 1500�g for 5 min at 4 �C. SOD activity in the super-
natant was determined using a Superoxide Dismutase Assay Kit
(Cayman, Ann Arbor, MI, USA). A small part of the cell lysates
was utilized to determine protein content by the BCA method.
The results are shown as average SOD activity per mg of protein
in three independent examinations.

In addition, the in vitro scavenger activity of FABP4 against
superoxide was also assessed using the recombinant mouse FABP4
protein (Cayman). Since the recombinant FABP4 is a N-terminal
hexahistidine (His6)-tagged protein, the synthesized His6 peptide
(Abbiotec, San Diego, CA, USA) was also subjected to the assay as
a control. The recombinant FABP4 and His6 peptide were dissolved
in 50 mM sodium phosphate buffer (pH 7.2) containing 20% glyc-
erol and 150 mM NaCl, and 1.5 lM of FABP4 and His6 was then
incubated with a radical detection reagent and xanthine oxidase
supplied in the SOD assay kit according to the manufacture’s pro-
tocol. The relative level of residual superoxide in each sample was
calculated as a percentage against that in the negative control (buf-
fer alone).

4.10. In vitro hydrogen peroxide (H2O2) measurement

For assessing the antioxidant activity of FABP4 against H2O2, 5
or 15 lM of recombinant FABP4 and His6 peptide, as mentioned
above, were incubated with 44 lM of H2O2 at 37 �C for 30 min.
Fatty acid-free BSA (SIGMA) was also utilized as an unrelated pro-
tein control. The residual H2O2 concentration was then measured
using a Hydrogen Peroxide (urinary) Assay Kit (Cayman). The rela-
tive H2O2 level in each sample was calculated as a percentage
against that in the negative control (buffer alone).

4.11. Mass spectral and SDS–PAGE analyses of the recombinant FABP4
protein

After incubation of the recombinant FABP4 (15 lM) with H2O2

or vehicle (water) as described above, the samples were analyzed
by MALDI-TOF mass spectrometry.

Moreover, the samples were also subjected to 20% SDS–PAGE
with or without treatment with 50 mM dithiothreitol (DTT). After
electrophoresis, the gel was stained with EzStain AQua (ATTO,
Tokyo, Japan).

4.12. Cell viability assay

The differentiated 3T3-L1 adipocytes were re-plated into 6 well
culture plate at the density of 1.5 � 105 cells/well. At 24 h after re-
plating, the cells were transfected with 50 nM siFabp4 or siControl
as mentioned above. After 48 h incubation, the transfected cells
were washed with HBSS, and then treated with 300 mM H2O2 or
vehicle (H2O) in DMEM for 1 h at 37 �C. After washing with HBSS
twice, the cells were fixed with 10% formalin in PBS and stained
with 0.5% crystal violet (SIGMA) in 20% MeOH for 10 min. After
washing four times, the dye was extracted with 0.2% Triton X-
100, and the absorbance was then measured at 540 nm.

The Raw264.7 cells were seeded into 6 well culture plates at a
density of 1 � 105 cells/well. At 24 h after inoculation, the cells
were treated with 2 lM Rosi or vehicle (DMSO) for 24 h at 37 �C.
After washing with HBSS, the cells were treated with 90 mM
H2O2 or vehicle (H2O) for 1 h at 37 �C and cell viability was then
assessed as described above.

4.13. Detection of intracellular calcium in living cells

The differentiated 3T3-L1 adipocytes were re-plated on a gela-
tin-coated 35 mm glass-based culture dish. At 24 h after re-plating,
the cells were transfected with 50 nM of siControl or siFabp4 for
48 h. The cells were washed twice with HBSS and then incubated
with 5 lM Fluo-8-AM (ABD Bioquest, Sunnyvale, CA) for 20 min
at 37 �C. After washing with HBSS, the cells were observed by

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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CLSM. The mean fluorescent intensity (average intensity of pixels
per cell) for 67–73 cells per condition was determined using the
ImageJ software.

4.14. Statistical analyses

All statistical analyses were performed using the JMP6
statistical package (SAS Institute, Cary, NC, USA). Student’s t-test
and one-way ANOVA followed by Tukey–Kramer’s honestly
significant difference (HSD) tests were used to evaluate statistical
significance. A P value of <0.05 was considered to be significant.
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