
elife.elifesciences.org

Swartz. eLife 2013;2:e00873. DOI: 10.7554/eLife.00873	 1 of 3

Poisonous animals such as scorpions, spiders, 
snakes and various marine organisms pro-
duce a bewildering array of toxins that 

target the nerve cells of humans and other  
animals. Although our understanding of these 
toxins and how they work remains incomplete, 
physiologists and pharmacologists have exploited 
them to explore the function of ion channels—the 
proteins that control the movement of ions in and 
out of cells. These proteins are located in the lipid 
membrane of the cell, and the ions enter or leave 
the cell via a pore that runs through the protein.

Biophysicists seeking to understand the mecha-
nisms by which ion channels provide exquisitely 
selective pathways for ions to pass through  
biological membranes, or how voltage signals 
can control the opening and closing of the 
channels with breath taking fidelity, have used 

toxins as probes to identify the key structural  
and functional elements of these proteins 
(Figure 1A). Scorpion toxins that block protein 
pores hold a special place in the annals of ion 
channel biophysics and now, writing in eLife, 
Rod MacKinnon and colleagues at Rockefeller 
University—including Anirban Banerjee as first 
author—report that they have used X-ray crystal-
lography to determine the structure of charyb-
dotoxin, a scorpion toxin, bound to the pore of a 
voltage-dependent potassium ion (Kv) channel 
(Figure 1A; Banerjee et al., 2013).

The story begins at Brandeis University back 
in the 1980s, when Chris Miller and colleagues 
discovered that the venom of the Israeli scorpion, 
Leiurus quinquestriatus, contained a small protein 
that bound to a single site on the external end of 
a BK channel—BK is short for ‘big potassium’, 
and a BK channel is a particular type of Kv channel 
that allows a large current of potassium ions to 
pass through it (Miller et al., 1985). Envisioning 
the end of the channel as a whirlpool, they named 
this protein charybdotoxin after Charybdis, the 
daughter of Poseidon, who was turned into a 
whirlpool generating sea monster by Zeus. The 
one-to-one stoichiometry between charybdotoxin 
and the channel hinted that the toxin targeted 
the pore because it was assumed at the time that 
Kv channels are formed by four identical subunits 
and that the pore would be located at the interface 
between them.

MacKinnon joined the Miller lab in 1986, and 
together they measured how the dissociation rate 
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of the toxin depended on the concentration of 
potassium ions on the inside of the cell membrane 
(MacKinnon and Miller, 1988). They found that 
increasing the internal potassium concentration 
caused the toxin to dissociate more rapidly, which 
led them to propose that the toxin bound to the 
external end of pore itself, as opposed to another 
part of the protein, and that potassium ions  
entering the pore from the inside could interact 
with the toxin (Figure 1B). In effect, this simple 
and elegant experiment suggested that charyb-
dotoxin was a literal pore-blocker. When the 
first gene for a Kv channel was identified and 
sequenced (Papazian et al., 1987), Miller and 
MacKinnon set out to use their newly discovered 
pore-blocking toxin to identify the region of the 
channel protein that forms the outermost end of 
the pore. It was not long before they found that 
mutations within the loop between two putative 
membrane-spanning segments had large effects 
on toxin binding: this was the ground-breaking 
result which suggested that this region must form 
the external end of the pore (MacKinnon and 
Miller, 1989).

While much has been learned using these 
pore-blocking toxins in subsequent years, and 
X-ray structures of ion channel proteins now seem 

to abound, it has turned out to be exceptionally 
difficult to solve the structure of an ion channel 
with a toxin bound to it. The exceptions include 
the structures of snake or cone snail toxins bound  
to ion channels that are activated by neuro-
transmitter molecules (Rucktooa et al., 2009; 
Tsetlin et al., 2009), a tarantula toxin bound 
to acid-sensing ion channels (Baconguis and 
Gouaux, 2012; Dawson et al., 2012) and, now, 
the structure of charybdotoxin bound to a Kv 
channel (Banerjee et al., 2013).

Getting this Kv channel to crystallize with 
charybdotoxin bound was only the first chal-
lenge in this project. The next was finding a way 
to interpret the electron density maps resulting 
from an asymmetric toxin located on the four-fold 
axis of crystallographic symmetry that generates 
the Kv channel assembly. To help guide their 
model building, MacKinnon and colleagues 
produced three additional versions of charyb-
dotoxin with heavy atom substitutions, showed 
that they remain competent to block the channel, 
and then crystallized each in complex with the 
channel. 

The structure of the charybdotoxin-Kv channel 
complex that emerged is remarkable in several 
respects. First, it shows that the 27th amino acid of 

Figure 1. The crystal structure (A) of the voltage-dependent potassium ion channel studied by Banerjee et al. as viewed from outside the cell: the 
pore that allows the potassium ions (K+) to enter and leave the cell is defined by four protein subunits (shown in yellow) and is at right angles to the 
plane of the page. The pore domain, which is about 40 Å wide and 45 Å deep, also contains four sites within its lumen that K+ ions can bind to. This 
ion channel opens and closes in response to changes in the voltage of the lipid membrane around the cell: these changes are detected by voltage 
sensors (blue). Some toxins inhibit opening of the pore by binding to these voltage sensors, but charybdotoxin (not shown) targets the pore itself.  
(B) Cartoon representation of charybdotoxin (CTX) binding to the external end of a BK channel and plugging the pore (inspired by Figure 10 of 
MacKinnon and Miller, 1988). The outermost K+ ion binding site is in equilibrium with internal K+ ions, and when this site is occupied it repels the 
bound toxin.
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the toxin (which is a lysine base) is found at the 
four-fold axis of the channel, and that this amino 
acid snakes its way into the pore to get tantalizingly 
close to the outermost of the four binding sites 
for potassium ions that are responsible for the po-
tassium ion selectivity of the channel. This feature is 
particularly satisfying because it is precisely what 
MacKinnon and Miller had proposed in 1988 to 
explain how the potassium ions inside the cell can 
permeate along the pore and influence the dissoci-
ation of toxin bound to the external end of the pore 
(Figure 1B). It also explains why mutant toxins 
that do not contain a lysine base at this position 
are less effective at blocking this ion channel and 
are no longer sensitive to the concentration of 
internal potassium (Park and Miller, 1992).

The structures reported by Banerjee et al. are 
also generally consistent with results of previous 
experiments that identified specific amino acids 
in scorpion toxins that interact with amino acids 
within the outer pore of Kv channels, which made it 
possible to create a virtual map of the interaction 
surface between these two types of proteins 
(Hidalgo and MacKinnon, 1995; Naranjo and 
Miller, 1996). Another interesting feature of these 
new X-ray structures is that charybdotoxin does 
not alter the structure of the channel when it 
binds: rather, it blocks the flow of ions by fitting 
neatly into the pore like a cork.

With these new structures the story of the 
scorpion toxin and the potassium channel has 
come full circle. These fascinating venom toxins 
led the way to finding the pore before structures 
were available, and now we have the first images 
of the toxin snuggling up to the pore and placing 
a lysine base into the ion selectivity filter inside 
the pore. For the moment, the number of solved 
toxin-channel structures is still small, but this 
number is sure to increase in the future, and it will 
be exciting to see what they can teach us about 
the mechanisms of ion channel proteins.
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