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Introduction
The concept of registration—mathematical maps between 
coordinate systems—has ancient roots, dating back at least as 
far as ancient Egypt.1 There, land was surveyed with regularly 
knotted ropes that were gathered together—physically imple-
menting isomorphic scaling.2 In the medical imaging domain, 
registration has long been used to align different individuals to 
a common prototypical example of the data (ie, an atlas), or an 
idealized parameterization of an anatomical feature. In general, 
registration helps models target biological variance of interest. 
Variation from non-biological sources is common in medical 
images: for example, magnetic resonance imagings (MRIs) 
encode many technical and environmental artifacts, such as 
operator dependence or patient position in a scanner. In the 
supervised learning setting, there is a large literature on how to 
adjust for such nuisance variation. These approaches include: 
leveraging data augmentations,3 adjustment based on an 
assumed causal model,4 adjustment using auxiliary labels,5 and 
regularizing prediction functions across different domains.6 
The unsupervised learning setting, meanwhile, presents a 

greater challenge as there is no outcome variable to help focus 
the model on relevant signals.

To ameliorate this, we demonstrate how registration affects 
the representations that deep neural networks learn, vastly 
increasing the strength of genetic, diagnostic, and phenotypic 
associations. This is shown across a broad range of registration 
methods from hand-crafted templates to nonlinear deforma-
tion fields, and a correspondingly broad range of medical data 
from the electro-temporal waveforms of electrocardiograms 
(ECGs), to two-dimensional (2D) images such as dual-energy 
X-ray absorptiometries (DXAs) and brain MRI slices, as well 
as three-dimensional (3D) spatio-temporal cardiac MRI 
movies.

The recent availability of large-scale multimodal measure-
ments in biobanks7,8 provides an opportunity to systematically 
study how registration affects representations of physiology. 
Because biobanks often assess individuals with many different 
modalities they allow us to compare and contrast different 
image types.9 Leveraging multimodal data from the UK 
Biobank, this article makes the following contributions (1) 
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quantify the benefit of registration across a broad range of 
medical image modalities, (2) show that several neural net-
work-based methods (VoxelMorph,10 DeepCycle,11 and 
DropFuse)12 can effectively learn registrations allowing for 
more flexible and efficient processing than is possible with 
hand-crafted or atlas-based registrations, and (3) demonstrate 
the breadth of downstream phenotypic analyses enriched by 
registration, scaling to thousands of statistical tests that com-
prise a phenome-wide association study (PheWAS) and the 
millions that constitute a genome-wide association study 
(GWAS).

Anatomical registrations

Many anatomical features have been used for registration. For 
example, 3D anatomical atlases of the brain are used to register 
brain MRIs.13 Likewise, the cardiac cycle of a single heartbeat 
can serve as a template for both ECGs and cardiac MRIs.14 For 
example, the full 10 s of the resting ECG can be registered by 
template matching the QRS complex, followed by alignment, 
scaling, and median computation.15,16 The DXA scans can be 
registered with rigid homeomorphic mappings to an exemplar 
individual.17 Figure 1 shows visual examples of anatomical reg-
istration by template matching and atlas alignment in five dif-
ferent modalities. The top row shows each modality from three 
different individuals overlaid before registration, while the bot-
tom row shows the modalities overlaid after registration.

Learned registrations

Classical registration methods solve a new optimization prob-
lem for every pair, and they are therefore computationally 
expensive.18-21 Recent deep learning methods propose to learn 
the alignment between the medical image and reference 

instead10,22-24; supervised methods train the network and com-
pare the output with pre-computed alignments, while unsuper-
vised methods train their networks by learning a transformation 
from the image to reference, applying it and then comparing 
how well the aligned image matches the reference.25 
VoxelMorph, for instance, uses convolutions and spatial trans-
formations together with a UNet architecture to learn a defor-
mation field for each image/reference pair. It learns amortized 
registration by jointly maximizing agreement between the 
aligned image and the reference, with a transformation smooth-
ness regularizer.10

While deformation fields can preserve or even increase 
parameterization of a modality, many registration techniques 
reduce dimensionality. Taking reduction to its logical extreme, 
DeepCycle uses a single-parameter autoencoder. This one-
dimensional latent space is encoded with the inductive bias of 
periodicity, registering single-cell RNA expression data to the 
mitotic cell cycle.11 Multimodal fusion methods, such as 
DropFuse, use contrastive cross-modal learning to register dif-
ferent modalities into a 256-dimension latent space, also greatly 
reducing data size.12 Similar strategies have been pursued in a 
line of recent works where contrastive encoders learn joint rep-
resentations of multimodal data such as natural images and 
their captions,26,27 or paired clinical measurements.28,29 Figure 
2 provides a graphical summary of the learned registration 
techniques.

Genetic analysis of medical images

The advent of large genotyped Biobanks enables whole-
genome association testing with traits derived from medical 
images such as MRIs, retinal images, and ECGs.30-32 Active 
research has extended these genomic analyses from traits to 
spaces, performing the association tests in unsupervised ways. 

Figure 1.  Examples of three individuals overlaid as red, green, and blue color channels before and after registration. The top row shows the original 

modality and the bottom row shows the registered version. From left to right, the modalities are the resting ECG, DXA 5 (hip), DXA 2 (lumbar spine), T1 

brain MRI, and DXA 11 (whole-body skeletal).
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For example, GWAS of each dimension in a variational 
autoencoder, or the principal components of that encoding or 
even with ECG voltages from medians over every millisecond 
of input.33-36 Building on this work, we demonstrate how reg-
istration uniformly results in richer phenotypic and genotypic 
associations over a diverse set of methods and modalities.

Methods
We train modality-specific DenseNet-style37 convolutional 
encoders and decoders to reconstruct both registered and 
unregistered medical images from latent space bottlenecks. 
Table 1 details the registration techniques considered and the 
modalities involved. Many implementations of registration are 
considered, including registration learned from scratch, opti-
mized from a predefined type of mathematical transformation 
(eg, homeomorphic or warp fields), or algorithmically hard-
coded. The learned registrations map between individuals via 
deformation fields (VoxelMorph), with the inductive bias of 
periodicity (DeepCycle) or contrastively across modality 
(DropFuse). These previously described models are briefly 
summarized below. Code for these experiments is available in 
the Broad Institute’s ML4H github repository: https://github.
com/broadinst i tute/ml4h/t ree/master/model_zoo/
registration_reveals_genetics.

DeepCycle

DeepCycle learns to encode data using a single-parameter 
latent space registered to the unit circle, demonstrating the 
extreme reductions possible with registration. A convolutional 
encoder learns a single parameter bottleneck, θ, which is regis-
tered onto the unit circle by computing (cosine(θ), sine(θ)). A 
convolutional decoder then reconstructs the full size input 
image. This model is only trained to minimize mean-squared 
reconstruction error. This vastly under-parameterized repre-
sentation still can generate high-fidelity reconstructions, as 
well as generalizable and biologically informative representa-
tions, see Supplementary Video 1.

VoxelMorph

VoxelMorph is trained to minimize both smoothness and sim-
ilarity losses. The smoothness loss encourages anatomical plau-
sibility while the similarity loss ensures the fidelity of the learned 
registration. We trained VoxelMorph with four-chamber long 
axis cardiac MRI (cMRI) cine series and smoothness loss 
weight of 0.5. For purposes of comparison, the individual with 
median body mass index (BMI) was selected as an exemplar 
and all cMRI movies were VoxelMorphed to them.

Figure 2.  Three deep-learning methods used to register medical images. DeepCycle registers MRI frames to the cardiac cycle by encoding each from 

with a single parameter, θ, VoxelMorph learns spatial warps via pairwise amortized registration while retaining overall image dimensions and DropFuse 

uses dropout and cross-modal fusion to register multiple modalities together into a 256-dimensional latent space.

https://github.com/broadinstitute/ml4h/tree/master/model_zoo/registration_reveals_genetics
https://github.com/broadinstitute/ml4h/tree/master/model_zoo/registration_reveals_genetics
https://github.com/broadinstitute/ml4h/tree/master/model_zoo/registration_reveals_genetics
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DropFuse

DropFuse is cross-modal autoencoder trained to minimize a 
reconstruction loss combined with a contrastive loss, which 
ensures that paired ECG and MRI samples are mapped to 
nearby points in the latent space, while discordant modality 
pairs are pushed away. The embeddings from each modality are 
fused with random dropout at each latent space coordinate. 
The model is trained with ECG, MRI, and DXA series pairs. 
The encoders for each modality are serialized separately so that 
inference requires only one modality to be available.

Results
To quantify the overall biological signal captured by a represen-
tation, we aggregated a broad range of phenotypes of clear bio-
logical import, including age, sex, BMI, heart rate, disease 
diagnoses, and principal components of genetic ancestry, see 
Supplementary Figures 1 to 3 for the complete lists of pheno-
types used with each modality. Importantly, the phenotypes 
considered include both general biological features such as age 
and sex, along with more modality-specific phenotypes, such as 
the QT interval of the ECG. We then build linear probes to 
detect how much each representation has learned about each 
phenotype. It has been shown that linear separability increases 
monotonically as we probe deeper into the model40; thus by 
analyzing the deepest bottleneck layer, we get the best estimate 
for how much each phenotype is recoverable from each latent 
space. Both continuous and categorical phenotypes are consid-
ered. The linear probes are fivefold cross-validated to bootstrap 
confidence intervals on the linear and logistic regression 

models trained on representations of each modality before and 
after registration. These results are summarized in Table 2.

Improvements in the area under the ROC curve and the 
coefficient of determination, R2, are shown for all of the modal-
ities and all of the registration techniques. Many of these tasks 
are quite difficult, for instance diabetes diagnosis from an 
ECG. This is not the typical way diabetes is diagnosed or even 
part of typical workup. The fact that there is some discrimina-
tive power for these tasks is interesting, but the larger message 
of Table 2 is that the relative performance on these difficult 
tasks is much higher for modalities after registration.

Notably, even lossy registrations can yield more biological 
signals, for example from the 5000 time points of the 10 s rest-
ing ECG to the 600 time points in the registered median 
waveform. Although much lower in overall dimensionality, 
registration greatly reduces intra-individual variations such as 
phase and baseline drift. This frees up the latent space to 
“spend” its expressive capacity representing more population 
variation, which powers downstream analyses.

Registered modalities reveal more genetic variation

The prediction of principal components of ancestry described 
above indicated that registration often resulted in stronger 
genomic association. To precisely pinpoint the genetic loci 
involved, we perform association tests between the latent spaces 
and millions of single-nucleotide polymorphisms (SNPs) 
throughout the entire genome. This “unsupervised” GWAS 
works directly on the autoencoder representations. Specifically, 
for each SNP, we check if the latent space centroids of the three 

Table 1.  Modalities and registrations.

Modality N Original shape Registered 
shape

Reduction Registration 
method

Parameter 
tuning

ECG 42k 5000, 12 600, 12 8× QRS Peak Align15 Hard-coded

DXA 11 39k 928, 352 928, 352 1× Homeomorphic38 Optimized

DXA 11 39k 928, 352 928, 352 1× VoxelMorph10 Learned

Brain MRI 44k 216, 256, 216 182, 218,182 1.2× FreeSurfer39 Optimized

Cardiac MRI 45k 96, 96, 50 96, 96, 50 1× VoxelMorph10 Learned

Cardiac MRI 45k 96, 96, 50 50 9000× DeepCycle11 Learned

Cardiac MRI + ECG 38k 96, 96, 50
600, 12

256 1800×
28×

DropFuse12 Learned

DXA 11
+ DXA 12

39k 928, 352
928, 352

256 135× DropFuse12 Learned

DXA 2
+ DXA 5

39k 768, 768
768, 768

256 2300× DropFuse12 Learned

DXA, dual-energy X-ray absorptiometry; ECG, electrocardiogram; MRI, magnetic resonance imaging.
Each modality, its original shape, shape after registration, the resulting reduction in dimensionality, the method used to register the modality, and the way the parameters 
of the registering transformation are derived (ie, hard-coded with domain knowledge, optimized parameters of a known transformation or learned a new transformation 
via neural net approximation).
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diploid genotypes (homozygous variant, heterozygous, and 
homozygous reference) are separable, as quantified by multi-
variate analysis of variance (MANOVA). Prior to performing 
MANOVA across the sets, we account for confounders from 
population stratification and batch effects, by removing these 

sensitive features from the latent space with iterated nullspace 
projection.41

The GWAS results are shown with Manhattan plots from 
registered and unregistered modalities superimposed in Figure 3. 
In general, registered modalities have both more and stronger 

Table 2.  Registered modalities capture more phenotypic and genetic associations.

Modality Registered ROC AUC Native ROC AUC Registered R2 Native R2 Registration

ECG 0.670 (0.644, 0.696) 0.551 (0.548, 0.553) 0.412 (0.405, 0.420) 0.043 (0.035, 0.051) QRS Peak Align15

bMRI 0.702 (0.699, 0.706) 0.690 (0.686, 0.694) 0.196 (0.169, 0.222) 0.156 (0.147, 0.166) FreeSurfer39

cMRI 0.571 (0.567, 0.575) 0.562 (0.560, 0.564) 0.210 (0.198, 0.221) 0.048 (-0.047, 0.142) DeepCycle11

cMRI 0.619 (0.612, 0.626) 0.593 (0.587, 0.598) 0.416 (0.409, 0.423) 0.284 (0.254, 0.315) VoxelMorph12

cMRI
ECG

0.631 (0.630, 0.633)
0.672 (0.670, 0.675)

0.593 (0.587, 0.598)
0.551 (0.548, 0.553)

0.468 (0.457, 0.479)
0.355 (0.346, 0.365)

0.284 (0.254, 0.315)
0.043 (0.035, 0.051)

DropFuse12

DXA 2
DXA 5

0.640 (0.637, 0.643)
0.640 (0.637, 0.643)

0.620 (0.617, 0.622)
0.626 (0.623, 0.628)

0.126 (0.121, 0.131)
0.105 (0.099, 0.111)

0.080 (0.073, 0.086)
0.065 (0.057, 0.074)

DropFuse12

DXA 8
DXA 11

0.687 (0.684, 0.690)
0.706 (0.703, 0.710)

0.662 (0.657, 0.666)
0.706 (0.698, 0.713)

0.144 (0.137, 0.151)
0.201 (0.194, 0.209)

0.036 (0.025, 0.047)
0.153 (0.148, 0.158)

DropFuse12

AUC, area under the curve; bMRI, brain MRI; cMRI, cardiac MRI; DXA, dual-energy X-ray absorptiometry; ECG, electrocardiogram; MRI, magnetic resonance imaging; 
ROC, receiver operating characteristic.
ROC AUC and coefficient of determination are averaged across fivefold splits of a broad range of modality-relevant tasks spanning phenotypes, diagnostics, and 
components of genetic ancestry. See Supplementary Figures 1 to 3 for performance on each of the tasks aggregated here.

Figure 3.  Manhattan plots of the T1 brain MRI (top) and the resting 12-lead ECG (bottom) with unregistered representations (lead SNPs shown in red) 

and with registered representations (lead SNPs shown in purple). For P-values and exact loci, see Supplementary Tables 1 to 3.
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associations. One notable exception for the brain MRIs is the 
gene WNT16, which is a site previously associated with bone 
density, height and body plan, not specific to the brain. In con-
trast, the top peak in the registered GWAS, labeled c15orf54 
(chromosome 15 open reading frame 54), has previously been 
associated with brain region volumes and cortical structure, 
and this site is not significant in the native coordinate 
GWAS.42,43 Similarly, the loci in genes FOXD2, GMNC, 
DAAM1, and PTCH1 all have previously reported associations 
with brain-specific traits including white matter microstructure, 
cortical surface areas, and Alzheimer’s disease biomarkers,44-46 
see Supplementary Table 1 for all T1 brain MRI lead SNPs, 
LocusZoom for the full GWAS summary statistics: https://
my.locuszoom.org/gwas/761153/.

The GWAS of the median-waveform registered 12-lead 
resting ECG revealed 86 genome-wide significant loci in con-
trast to 0 genome-wide loci for the full 10 s unregistered ECG. 
The 86 loci have many previous associations with cardiovascu-
lar and specifically electrocardiographic traits. Note the large 
number of ion channel genes identified, specifically the sodium 
channels SCN5A and SCN10A and the potassium channels 
KCNQ4, KCND3, KCNH2, and KCNQ1. These genes play a 
critical role in cardiac conduction and have been associated 
with many cardiovascular disorders including atrial fibrillation, 
Brugada syndrome, long QT syndrome, and other cardiac con-
duction diseases.47-49 Besides the ion channels, many of the 
other loci identified with nearest genes including TTN, TBX3, 
PITX2 have extensive previous associations with cardiovascu-
lar traits and disorders.33,50-54 Supplementary Table 2 contains 

the complete list of resting ECG lead SNPs, and full  
GWAS results are available at: https://my.locuszoom.org/
gwas/520108/.

“Miami” plots, which superimpose two Manhattan plots 
after multiplying the y-axis of the unregistered modality by –1 
for DXA series 12 scans, are shown in Supplementary Figure 
4.55 We identified 21 genome-wide significant loci, including 
the genes CPED1, AKAP11, and GDF5, which have previous 
associations with bone mineral density, body height, and osteo-
arthritis.56 All registered DXA 12 lead SNPs are listed in 
Supplementary Table 3. In contrast, the GWAS of the DXA 12 
latent space learned before registration identifies just two loci. 
The full GWAS results for the DXA 12 modality are available 
at: https://my.locuszoom.org/gwas/204146/.

Clustering SNPs in latent space elucidates  
genetic architectures

The SNP representations can be clustered to identify genetic 
structure in latent spaces. In particular, we perform hierarchical 
clustering based on the direction from the mean embedding of 
the homozygous reference group to the mean embedding of 
the heterozygous and homozygous variant groups for each lead 
SNP identified in a GWAS. Figure 4 contrasts latent space 
GWAS on three different brain MRI representations learned 
from the cerebellum, using only white matter, only gray matter, 
and the whole cerebellum. The consistency of the SNP cluster-
ing between training runs and sub-regions of the cerebellum 
demonstrates the reproducibility of both the SNP findings and 

Figure 4.  At top left is clustering of SNPs from autoencoders trained only on the white matter of the cerebellum, in the middle from latent spaces using 

only the gray matter of the cerebellum, and at top right from models trained on the whole cerebellum. Bottom panel shows Manhattan plots of the three 

cerebellar latent spaces with distinct but overlapping architecture.

https://my.locuszoom.org/gwas/761153/
https://my.locuszoom.org/gwas/761153/
https://my.locuszoom.org/gwas/520108/
https://my.locuszoom.org/gwas/520108/
https://my.locuszoom.org/gwas/204146/
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their high-dimensional latent space representations. 
Specifically, the blue arrows in Figure 4 highlight an SNP in 
the gene SLC35B3, which is significant in all three brain repre-
sentations and consistently in an outgroup—a distal branch of 
the hierarchical clustering. This gene, of the Solute Carrier 
Family 35, member B3 has previous associations with motion 
sickness,57 working memory,58 and autosomal dominant oph-
thalmic outbursts.59 In contrast to the consistent singularity of 
SLC35B3, the clustering also finds a consistent grouping of 
genes highlighted with blue squares in Figure 4. In that square, 
across all three cerebellar representations, we find the genes 
LHX1, MSX1, RELN, EPHB1, and SASH1. Compellingly, 
these loci all have previous associations with brain morphol-
ogy60 and cognitive traits.61 The full GWAS results for the cer-
ebellum are available on LocusZoom: https://my.locuszoom.
org/gwas/181958/.

Hierarchical clustering in cross-modal spaces can identify 
modality-specific and modality-shared genetic clusters. For 
instance, working in the cross-modal ECG space, we find clus-
ters corresponding to SNPs affecting the QT interval (SNPs 
associated with NOS1AP and KCNQ1) and SNPs related to 
the P-wave (SNPs associated with SCN10A and ALPK3), 
highlighted with green boxes in Figure 5 left. We also identify 
a large cluster corresponding to SNPs affecting multiple car-
diac traits such as those associated with BAG3, SLC35F1, or 
GOSR2. This larger group is shared between the MRI and 

ECG spaces, as highlighted by the two large blue squares in 
Figure 5. The full GWAS results for the ECG and cardiac 
MRI are available at: https://my.locuszoom.org/gwas/908783/.

Registered modalities reveal more diagnostic 
variation

Phecodes are a taxonomy of billing codes aggregated into diag-
nostic labels to be more reflective of true disease phenotypes.62 
After determining phecode status from billing codes for the 
UK Biobank population, we conducted PheWAS before and 
after registration. In 50% of the subjects, we derived latent 
space vectors between the centroids of individuals with and 
without each diagnosis.63 The remaining 50% of the individu-
als were embedded into the latent space and projected onto this 
vector. The resulting phecode vector component was tested for 
association with the phecode diagnosis from the EHR using a 
logit model corrected for age, sex, and race. After Bonferroni 
corrections for multiple testing, we show associations in QQ 
plots colored by phecode category with significant phecode 
associations labeled. Figure 6 shows a comparison between the 
PheWAS of the cross-modally registered cardiac MRI latent 
space and the cardiac MRI latent space trained in native coor-
dinates. Registered latent spaces consistently identified more 
significant associations, specifically for cardiac MRIs 104 com-
pared to 51 and for ECGs 63 compared to 2 (see Supplementary 

Figure 5.  Hierarchical clustering of lead SNPs from the cross-modal latent space of the ECG (top left) and cardiac MRI (top right). The blue square 

highlights a similar clade in both models with SNPs from CASQ2, BAG3, GOSR2, NKX2-5, while the green squares highlight two clades in the ECG latent 

space not seen with the MRI. The bottom panel shows a Miami plot of ECG (red) and cardiac MRI (purple).

https://my.locuszoom.org/gwas/181958/
https://my.locuszoom.org/gwas/181958/
https://my.locuszoom.org/gwas/908783/
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Figure 5), and for brain MRIs 38 compared to 28 (see 
Supplementary Figure 6).

DeepCycle Groks the cardiac cycle

The most lossy registration method considered (arguably the 
lossiest registration possible) is with the DeepCycle convolu-
tional encoder, which uses only a single parameter to encode 
the entire frame from a cardiac MRI movie. In comparison 
with a convolutional autoencoder without the inductive bias of 
periodicity, the DeepCycle MRI representations capture more 
biological signal, as quantified in row 3 of Table 2. Visual 
inspection of the DeepCycle decoder’s reconstructions reveal 
that the parameter, θ, encodes the cardiac cycle, see 
Supplementary Figure 7. Without the inductive bias of perio-
dicity, encoding instead captures the exposure value of the 
MRI, see Supplementary Video 1. Compellingly, the 
DeepCycle cardiac MRI convolutional autoencoder trained 
using only 50 frames spanning the heart beat from a single 
individual, still generalizes to the larger population. Loss curves 
from these models consistently exhibit the recently described 
Grokking phenomena.64 Initially, training loss decreases while 
validation loss stagnates, but after 10 to 15 epochs validation 
loss also decreases, as the model learns to better “Grok” the true 
data distribution, as illustrated in Supplementary Figure 8. In 
general, registration leads to quicker and cleaner model conver-
gence as shown by the example loss curves in Supplementary 
Figure 9.

Discussion
This work was motivated by the observation that autoencoder 
latent spaces trained from medical images in their native coor-
dinate systems used much of their expressive power encoding 

aspects of the images of limited biological significance. The top 
principal components in these spaced encoded information like 
limb orientation in DXAs or the baseline wander of ECGs. We 
show that registration allows models to learn representations, 
which use more expressive power encoding biological informa-
tion such as physiological state and genetic background. This 
finding is consistent across diverse registration methods, imag-
ing modalities, and organ systems.

Notably, even lossy registrations result in more biological 
signals. Although much lower in overall dimensionality, regis-
tration greatly reduces intra-individual variations. This frees up 
the latent space to “spend” its expressive capacity representing 
the population variation that powers the downstream biologi-
cal association studies. Still, the linear probes that we used to 
predict phenotypes only provide a floor on how predictable a 
phenotype is; nonlinear reconstruction methods might be able 
to recover some phenotypes that linear models cannot. More 
expressive explainer models, such as sparse autoencoders65 
might more cleanly predict the phenotypes present in a repre-
sentation. Future methods can explicitly disentangle the 
learned phenotypes, for instance, by factorizing modality-spe-
cific vs modality-shared signals into separate subspaces.

Limitations

There are situations where registration can introduce bias and 
distort associations. Anatomical atlases constructed in one 
population may not be appropriate for other populations with 
different demographics, ancestry, or disease states. An advan-
tage of the registration learning methods (VoxelMorph, 
DeepCycle, and DropFuse) over template-matching methods 
is that they do not require prototypical individual(s) to be 
selected as reference. Still, learning methods are limited by the 

Figure 6.  Phenome-wide association study QQ plots showing −log10(P-value) for the cardiac MRI registered by DropFuse (104 associations) and 

unregistered (51 associations). Phecodes are grouped and colored by diagnostic category.
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variation present in their training data. The UK Biobank, stud-
ied here, is not representative of the world at large. Larger, 
more representative biobanks need to be built and existing 
models need to be inspected and/or corrected for potentially 
harmful bias. In our genetic analysis, we removed known con-
founds with iterative nullspace projection after model training, 
but this can also attenuate biological associations.

Conclusions
The best registration method for a given analysis will depend 
on many factors including computational resources, availability, 
quality and applicability of anatomical atlases, as well as the 
level of interpretability desired. Some registration techniques 
are complementary. For example, two modalities registered in 
space by VoxelMorph can later be cross-modally fused with 
DropFuse. Building up unified, biologically informative latent 
spaces by combining many modalities and types of registration 
is an exciting avenue of future research.
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