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Antimicrobial resistance (AMR) is a global health threat. Antibiotics, heavy metals,
and microplastics are environmental pollutants that together potentially have a
positive synergetic effect on the development, persistence, transport, and ecology
of antibiotic resistant bacteria in the environment. To evaluate this, a wide array of
experimental methods would be needed to quantify the occurrence of antibiotics,
heavy metals, and microplastics as well as associated microbial communities in the
natural environment. In this mini-review, we outline the current technologies used to
characterize microplastics based ecosystems termed “plastisphere” and their AMR
promoting elements (antibiotics, heavy metals, and microbial inhabitants) and highlight
emerging technologies that could be useful for systems-level investigations of AMR in
the plastisphere.

Keywords: antimicrobial resistance, microplastics, heavy metals, plastisphere, emerging technologies,
antibiotics

INTRODUCTION

The increasing resistance of pathogenic bacteria to common antibiotics (AB) found in human and
veterinary settings worldwide (WHO, 2018) highlights the urgent need for improved surveillance
programs (Dadgostar, 2019) and research to hinder further escalation of antimicrobial resistance
(AMR) (Interagency Coordination Group on Antimicrobial Resistance, 2019). Although the
number is debatable (de Kraker et al., 2016), according to O’Neill (2016), the global annual death
toll due to AMR could rise to 10 million by 2050.

The emerging contaminant—plastic—has potential to further enhance AMR by providing
porous micro ecosystems termed “plastisphere” (Keswani et al., 2016). In the environment, plastic
does not biodegrade but fragmentizes into smaller fractions such as microplastics (MPs) (1 µm–
5 mm) (Frias and Nash, 2019) or further into nanoplastics (NPs) (≤1 µm) (Gigault et al.,
2018). MPs have been increasingly detected in all the ecosystems, though due to rapid microbial
colonization and subsequent density changes, about 70% of the MPs in the aquatic environment
sedimentates and thus the sediments, along with soils that receive MPs contamination from sludge
application, have been considered as the sinks of MPs (Nizzetto et al., 2016; Corradini et al., 2019;
Schmiedgruber et al., 2019). Plastic is also ingested and inhaled by humans (Cox et al., 2019; de
Wit and Bigaud, 2019) as indicated by detection of plastic in stool samples (Schwabl et al., 2019)
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and human lung tissue (Pauly et al., 1998), respectively.
Compared to MPs, NPs have been scarcely studied due to
limitations of current analytical techniques (Nguyen B. et al.,
2019), yet Besseling et al. (2019) have speculated future NP
concentrations in mass may become 1014 times higher than
currently measured MP concentrations.

The plastisphere creates a habitat that promotes attachment
of and subsequent biofilm production by microbes (Zettler et al.,
2013). In this habitat, the microbes are also in close vicinity of
MP-associated pollutants, such as (ABs) and heavy metals (HMs)
(Figure 1). This combination of being surrounded by pollutants
while being protected by biofilm can lead to possible change in the
microbial species distribution (Munier and Bendell, 2018; Imran
et al., 2019). ABs are considered to be the primary drivers of
AMR (Kraemer et al., 2019), originating largely from inefficient
wastewater treatment processes and pharmaceutical discharge
(Wilkinson and Boxall, 2019). HMs are accumulating in the
environment via waste flows from industrial activities (mining,
smelting, fertilizer use, sewage sludge application), but may also
be mobilized due to natural processes (e.g., bedrock weathering)
(Ali et al., 2019; Zhou et al., 2020). HM pollution drives the
selection for metal resistance genes (MRGs) and correlates with
increased occurrences and amount of antibiotic resistance genes
(ARGs) (Figure 1; Baker-Austin et al., 2006; Li et al., 2017;
Nguyen C.C. et al., 2019).

It is hypothesized that weathering can intensify both HM
(Prunier et al., 2019) and AB association (Zhou et al., 2020)
with MPs and potential migration of additives (Commission
Regulation, 2011) from the polymer. Indeed, the European
Chemical Agency has identified 1,550 additives (European
Chemical Agency, 2019), many of which are known to leach into
the environment (De-la-Torre et al., 2020; Bolívar-Subirats et al.,
2021) as they are generally not chemically bound to polymers and
can thus potentially migrate (Hahladakis et al., 2018). Metals and
metal-based additives are mostly used as colorants and fillers, and
research on release rate of toxic HM additives (e.g., Cd, Pb, Sb, Sn)
in plastics during recycling is ongoing (Hahladakis et al., 2018).
Long-term impact of MP pollution on the development of AMR
is yet unclear, but AB retention, ARG presence, and exchange
of ARGs through horizontal gene transfer among bacteria on
MPs has been shown (Imran et al., 2019; Yang et al., 2019;
Zhu et al., 2019).

In this mini-review, we discuss the role of plastisphere in
the development of AMR, and the current technologies used to
address various aspects of AB-HM-MP pollution and highlight
the data gaps, novel techniques, and approaches.

CHARACTERIZATION OF
PLASTISPHERE-ASSOCIATED
ANTIBIOTICS AND HEAVY METALS

MP abundance and polymer type are determined by microscopy
and spectroscopy methods (Figure 2). The first steps(s) in
analyzing plastic from environmental samples usually comprises
of different separation and/or purification procedures. Separation
frequently consists of passing samples through sieves or filter

membranes (Fu et al., 2020). The purification process commonly
involves treatment with, for example, ethanol (Zettler et al., 2013;
Dussud et al., 2018), purified sea water (Dussud et al., 2018), or
strong acidic and/or alkaline solutions (Cole et al., 2014; Imhof
et al., 2016). Stereomicroscopes are used for the general estimate
of MPs in environmental samples but also to characterize their
surface, size, and shape (Gimiliani et al., 2020; Zhang Y. et al.,
2020). Roughness and hydrophobicity of MPs is evaluated by
tensiometry, measuring the contact angle of water drops (Dussud
et al., 2018; Hossain et al., 2019). For visualization with a greater
resolving power, scanning electron microscopy (SEM) (Arias-
Andres et al., 2018; Li et al., 2018), or atomic force microscopy
(AFM) (Dussud et al., 2018) are used. The main difference
between stereomicroscopy and SEM is their resolution limit of
around 200 and 2 nm, respectively. AFM has a third dimension of
magnification (the z-axis), enabling constructing landscape maps
of surfaces. Spectroscopy methods based on molecular vibration
such as Raman spectroscopy (Zettler et al., 2013; Amaral-Zettler
et al., 2015; Imhof et al., 2016), Fourier Transform Infrared
Spectroscopy (FTIR)(Bryant et al., 2016; Laganà et al., 2019;
Zhang Y. et al., 2020), and attenuated total reflection-FTIR
(Amaral-Zettler et al., 2015; Viršek et al., 2017) allow to decipher
MPs chemical makeup for more precise identification. X-ray
diffraction can provide the crystalline structure of MPs (Li et al.,
2018). Nevertheless, there is a gap in research, because current
technologies still have difficulties in accurately detecting and
characterizing the chemical properties of extensively degraded
plastics (especially MPs ≤50 µm and NPs) from complex
environmental samples (Lehner et al., 2019). Examples include
lacking a standard procedure for separating and/or purifying
samples from different matrices and using purification steps that
may damage the plastic (Lö et al., 2017), microscopy techniques
not providing information on plastic composition (Müller et al.,
2020), and spectroscopy techniques like Raman and FTIR not
having the resolution power needed for NP characterization
(Imhof et al., 2016; Mason et al., 2018; Fu et al., 2020).

Absorption of light and mass-to-charge ratio are used to
measure the content of HMs within and on the surface of
MPs via atomic absorption spectroscopy (Brennecke et al., 2016;
Cabral et al., 2016; Munier and Bendell, 2018) and inductively
coupled plasma mass spectrometry (ICP-MS) (Rochman et al.,
2014; Cabral et al., 2016; Imhof et al., 2016), respectively
(Figure 2). The latter being the gold standard for detecting
and characterizing metals. AB affinity for MP has been studied
in batch adsorption experiments in laboratory settings. High-
performance liquid chromatography (HPLC) coupled to a diode
array detector (Guo et al., 2019; Guo and Wang, 2019) and
to a triple quadruple detector (Bolívar-Subirats et al., 2021)
and ultra-performance liquid chromatography coupled to a
photodiode array detector (Zhang et al., 2018) but also UV-
visible spectroscopy have been used to determine MP-sorbed
AB (Wan et al., 2019; Yu et al., 2020a,b; Figure 2). In
addition, FTIR has been used to characterize the interaction
mechanisms between MPs and ABs (Wan et al., 2019; Yu
et al., 2020a,b; Figure 2). Although technology has allowed in-
depth analysis of HMs and ABs, there is a knowledge gap
on how the affinity for pollutants differs from MPs and NPs
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FIGURE 1 | Plastisphere is a potential hotspot for evolution of antimicrobial resistance (AMR). Persistence and surface characteristics of microplastics make it an
excellent reservoir of microbes and pollutants, such as heavy metals (HMs) and antibiotics (ABs). Together they form miniature ecosystems, plastispheres, where
AMR is promoted by (i) cross-resistance where resistance mechanisms to HMs and ABs are physiologically coupled, for example, efflux pumps (Baker-Austin et al.,
2006; Seiler and Berendonk, 2012); and (ii) co-resistance where antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) are present on the same
mobile genetic element and thus genetically coupled, whereby selection for metal resistance in, for example, animal gut, and anthropogenically contaminated soils
and water bodies lead to automatic selection of ARGs (Baker-Austin et al., 2006; Seiler and Berendonk, 2012; Li et al., 2017).

degraded from larger plastic due to weathering processes to
primary MPs and NPs.

CHARACTERIZATION OF
PLASTISPHERE-INHABITING BACTERIA

MPs in water bodies form an ideal substratum for bacterial
biofilm formation as they adsorb nutrients and organic matter
from the essentially nutrient-poor water habitat supporting the
growth of bacteria. Generally, the colonization of MPs is a very
rapid process (within 24 h) depending on a variety of factors
(Oberbeckmann et al., 2015) of which environmental factors and
not the plastic type have recently been shown to be the most
significant influencer for microbial composition on MPs (Wright
et al., 2020).

Bacterial association with MPs is analyzed by SEM and
fluorescence microscopy) (Zettler et al., 2013; Bryant et al.,
2016; Arias-Andres et al., 2018; Dussud et al., 2018; Hossain
et al., 2019; Figure 2). Fluorescence can further examine the
gene exchange rate within biofilm communities and planktonic
bacteria (Arias-Andres et al., 2018), accomplished via fluorescent
self-transmissible plasmids (Arias-Andres et al., 2018). To study
the extracellular polymeric substances of the biofilm matrix,
confocal laser scanning microscopy (CLSM) is used (Hossain
et al., 2019; Figure 2). This is due to CLSM’s ability of obtaining
high-resolution images in various depths of a sample, usually 50–
100 µm in biological samples (Jonkman et al., 2020). Overall,
research in this area has greatly expanded due to the above-
mentioned technologies; however, there is a gap in analysis and

modeling of microbial colonization of both MPs and NPs in
different environmental settings. Change in species diversity is
mostly investigated by sequencing variable regions from the
conserved 16S ribosomal RNA (16S rRNA) (Knapp et al., 2017;
Zhao et al., 2018; Zhao Y. et al., 2019; Chen et al., 2019; Learman
et al., 2019; Meier et al., 2020; Figure 2). Sequencing methods,
including whole genome sequencing (WGS), are also ideal for
studying effect of HMs on resistance-related genes in bacteria
(Pathak et al., 2020; Figure 2).

Metagenomics with possible combination of
metatranscriptomics permits analysis of the species present
in the microbial community, including non-culturable bacteria,
while simultaneously studying regulation of ARGs, MRGs, and
other genes at the mRNA/functional level within the whole
community (Cabral et al., 2016; Meier et al., 2020; Figure 2).
Functional metagenomics is useful for screening of resistance
genes that are expressed in specific environments such as HM
polluted sites, while further allowing discovery of possible genes
with novel functions (Cheng et al., 2012; Staley et al., 2015).
Further methods for routine examination are polymerase chain
reaction (PCR) techniques (Medardus et al., 2014; Knapp et al.,
2017; Chen et al., 2019), although here, only a limited number
of genes are investigated (Zhang Y. et al., 2020). This can be
overcome by high-throughput qPCR chip technologies (Zhao
et al., 2018; Zhao Y. et al., 2019) and WGS (Learman et al., 2019;
Figure 2). Alternations in gene expression levels caused by HM
exposure can be determined by reverse transcription PCR for
specific genes (Leng et al., 2019) or with metatranscriptomics
for the whole transcriptome (Cabral et al., 2016). Many different
ecosystems have now been investigated for ARGs and MRGs,
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FIGURE 2 | Flow chart with current and novel (written in bold and blue color) approaches for studying the effects of plastisphere-associated pollutants (heavy
metals, antibiotics) on antimicrobial resistance. Abbreviations for technologies in alphabetical order: AAS, Atomic absorption spectroscopy; AFM, Atomic Force
Microscopy; AFM-IR/Raman, Atomic force microscopy infrared/Raman; CLSM, Confocal Laser Scanning Microscopy; DeepARG, Deep learning model for antibiotic
resistance genes; EM, Electron microscopy; FCM, Flow cytometry; PFGE, Pulsed-field gel electrophoresis; FM, Fluorescence microscopy; FTIR, Fourier transform
infrared microscopy; GC-MS, Gas chromatography–mass spectrometry; GREACE, Genome Replication Engineering Assisted Continuous Evolution; HPLC,
High-performance liquid chromatography; HT-qPCR, High-throughput qPCR; ICP-MS, Inductively coupled plasma mass spectrometry; LM, Light microscopy;
MALDI-MSI/FISH, Matrix assisted laser desorption/ionization–Mass spectrometry imaging/Fluorescence in situ hybridization; microSPLIT, Microbial Split-Pool
Ligation Transcriptomics; Py-GCToF, Pyrolysis–Gas Chromatography Time of Flight Mass Spectrometry; RT-PCR, Reverse transcription polymerase chain reaction;
SEM, Scanning Electron Microscopy; UPLC, Ultra-performance liquid chromatography; UV-VIS, Ultraviolet–visible spectrophotometry; XRD, X-ray diffraction; WGS,
Whole genome sequencing; 1D/2D-LC-MS/MS, One dimensional/Two dimensional online separation-liquid chromatography-tandem mass spectrometry; 2D-PAGE,
Two-dimensional gel electrophoresis. References in numerical order: (1) = (Zhang Y. et al., 2020), (2) = (Imhof et al., 2016), (3) = (Fu et al., 2020), (4) = (Sullivan et al.,
2020), (5) = (Gimiliani et al., 2020), (6) = (Kaile et al., 2020), (7) = (Dussud et al., 2018), (8) = (Hossain et al., 2019, (9) = (Li et al., 2018), (10) = (Munier and Bendell,
2018), (11) = (Bolívar-Subirats et al., 2021), (12) = (Zhang et al., 2018), (13) = (Yu et al., 2020b), (14) = (Pousti et al., 2019), (15) = (Secchi et al., 2020), (16) = (Leng
et al., 2019), (17) = (Meier et al., 2020), (18) = (Pathak et al., 2020), (19) = (Zhao Y. et al., 2019), (20) = (Li X. et al., 2019), (21) = (Qin et al., 2019), (22) = (Cuadrat
et al., 2020), (23) = (Kuchina et al., 2020), (24) = (Scheler et al., 2020), (25) = (Bar et al., 2007), (26) = (Hinzke et al., 2019), (27) = (Li W. et al., 2019), (28) = (Geier
et al., 2020).

yet a comprehensive overview of the ARG and MRG prevalence
remains to be done. Another gap is single-cell bacterial research,
as the effect of HMs and plastic on AMR at the level of single-
bacterium is virtually non-existent. This is mainly due to lack
of technologies being able to extract and analyze their genetic
material (Kuchina et al., 2020).

Sequencing in combination with long-term experiments can
detect mutations that occur in bacteria during prolonged growth
in HM rich environments (Chi et al., 2017; Li X. et al., 2019; Qin
et al., 2019). These experiments include serial long-term culturing
of resistant mutants exposed to subtoxic levels of HMs, followed
by WGS (Li X. et al., 2019). Genome Replication Engineering
Assisted Continuous Evolution is another alternative, in which
evolution of resistant mutants is accelerated before sequencing
(Qin et al., 2019; Figure 2). In vivo experiments with mice being
exposed to HMs via oral administration followed by sequencing
of the gut microbiota have shed light on the effect of HMs
in mammals in vivo (Chi et al., 2017). There are several ways

to explore how HMs can have an effect on the protein and
metabolite level in bacterial monocultures. A frequently used
method for proteomics is two-dimensional gel electrophoresis
(Bar et al., 2007; Figure 2). Another way to explore protein
expression is through liquid chromatography-tandem mass
spectrometry (LC-MS/MS) where proteins are first separated
by LC and then ionized and characterized by mass-to-charge
ratio and relative abundance (Li W. et al., 2019; Figure 2).
Western blotting is another widely applied technique (Leng
et al., 2019). For studying metabolites, gas chromatography-
mass spectrometry is usually performed (Leng et al., 2019;
Figure 2). Although working with monoculture bacteria does
not mimic the true situation of microbial interaction in the
environment, possible impact of HMs and plastics on the
proteomics/metabolomics level in different types of bacteria is
currently still a research gap in need of investigation. This gap
needs to be addressed in the light of recent studies, such as the
one by Li W. et al. (2019), showing that an alternation in bacterial
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metabolic pathways may affect their AMR. Exposure to HMs has
already shown the ability to alter metabolic pathways of bacteria
in the gut (Chi et al., 2017); nonetheless, there is still much to be
learned on possible influence of HMs and perhaps plastics on the
different pathways and the interplay with AMR.

OVERCOMING THE CHALLENGES TO
THE PLASTISPHERE
CHARACTERIZATION RESEARCH GAPS

The most optimal solution for future development of a standard
method for quantifying and characterizing the composition of
smaller fractions of MPs, including NPs (<1 µm), might be
to merge completely new analytical methods with the existing
technologies (Nguyen B. et al., 2019; Fu et al., 2020). For
now, combining AFM with infrared spectroscopy or Raman
seems promising, since AFM offers relatively simple sample
preparation, and samples can be conserved during analysis
(Fu et al., 2020; Figure 2). One disadvantage is, however,
that obtaining quality imaging of the sample depends on how
flat and smooth the sample is (Fu et al., 2020), making it
difficult for simultaneous investigation of NPs and larger MPs.
To obtain a more complete overview, at least in aqueous
samples, we recommend analysis of plastics on PTFE membranes
combined with Pyrolysis-Gas Chromatography Time of Flight
Mass Spectrometry (Py-GCToF) (Sullivan et al., 2020; Figure 2).
This analytical method is based on analyzing thermal degradation
products, and it has shown to be fast, reliable, and have high
resolution (Sullivan et al., 2020). A second option for aqueous
samples that might be more easily standardized for future
environmental identification and quantification of MPs and NPs
(0.2–2 µm), is flow cytometry in combination with staining and
cell sorting (Kaile et al., 2020).

Change in MPs and NPs composition and their affinity for
pollutants and microbes can be uncovered by merging analytical
and sequencing technology with in situ and ex situ experiments.
Ex situ batch sorption experiments provide the opportunity to
focus on specific parameters (Li et al., 2018; Zhang H. et al.,
2020), while in situ studies are necessary to observe the real-life
complex interaction of MPs and NPs with their surroundings
(Oberbeckmann et al., 2017). Depending on the environment
investigated, suitable analytical techniques for detection and
characterization of MPs and NPs in such experiments could
be either Py-GCToF (Sullivan et al., 2020) or micro-FTIR and
Raman spectroscopy (Lö et al., 2017; Figure 2). HPLC and
ICP-MS could further be used for AB and HM detection,
respectively (Cabral et al., 2016; Zhang H. et al., 2020; Figure 2).
Finally, microbial analysis in the experiments would need to
include both analytical tools for studying biofilm (e.g., CLSM)
and metagenomic sequencing for discovering possible ARGs
and MRGs as well as species diversity (Cabral et al., 2016;
Hossain et al., 2019).

Accumulation of MPs in the food chain and the effect
on spread of AMR should be investigated by long-term
in vivo studies combined with multidisciplinary tools such
as NGS sequencing, ICP-MS, and vibrational spectroscopy

methods. Previous in vivo studies focusing on influence of
MP accumulation are inconsistent in their methods and yield
conflicting results (Van Raamsdonk et al., 2020). One issue with
standardizing in vivo studies is the complexity of the sample
material, making it difficult to detect MPs. This could be solved
by an enzymatic purification method for MPs/NPs developed
by Lö et al. (2017), which can remove organic and inorganic
material from different matrices while not affecting the polymers
and couple it to micro-FTIR and Raman spectroscopy (Figure 2).
Lö et al. (2017) provides a step-by-step guide to the enzymatic
purification, which includes optional subdivision of samples,
usage of specific buffers, and lipase and amylase for samples with
high lipid or polysaccharide content.

NOVEL APPROACHES AND METHODS
FOR ADDRESSING AMR KNOWLEDGE
GAPS IN THE PLASTISPHERE

Obtaining a wider overview of microbial communities, including
spread of ARGs and MRGs in different habitats, is feasible
with modern NGS approaches. There are two aspects that
should be considered in future analyses: (1) presence of
non-culturable bacteria and (2) expression level of resistant
genes in the bacterial communities. Integrating metagenomics
and metatranscriptomics with machine-learning tools such
as DeepARG, trained to find the existing and novel ARGs
and MRGs, is a suitable option for this challenge (Arango-
Argoty et al., 2018; Cuadrat et al., 2020; Figure 2). Studying
heterogeneous modulation of gene expression by HMs (and
MPs/NPs) in a single bacterium is possible, but single-cell
RNA sequencing (scRNA-seq) studies are still scarce due to
differences from eukaryotic cells such as low mRNA content
and lack of polyadenylation. This challenge could be overcome
by the scRNA-seq platform Microbial Split-Pool Ligation
Transcriptomics (Kuchina et al., 2020; Figure 2). The approach
was recently adapted for Bacillus subtilis and Escherichia coli by
Kuchina et al. (2020) and has advantages such as: (1) no need for
single cell physical isolation, (2) compatibility with a wide range
of cell shapes and sizes; and (3) enables use of un-encapsulated
and fixed cells (Ma et al., 2019).

Proteomic and metabolomic pathways in bacteria play an
important role in AMR (Li W. et al., 2019). 1D and 2D-LC-
MS/MS spectrometry and mass spectrometry imaging (MSI)
can be used for analyzing the impact that MPs and HMs
potentially have on proteomics/metabolomics activity levels
in the bacteria. In their extensive testing of LC-MS/MS
spectrometry, Hinzke et al. (2019) suggest the most cost-effective
method for maximizing the number of identified proteins
by MS is online separation by 1D-LC. For a more precise
guidance for specific objectives, we refer to the flow chart
and overall work of Hinzke et al. (2019) (Figure 2). Though,
regardless of technology used, it is essential that proteome
bioinformatics progresses in parallel with the recent advances in
MS methods; otherwise, proteomic analysis will remain limited
(Ameen and Raza, 2017; Petriz and Franco, 2017). In congruence,
technology needed for analysis of metabolites is restricted as
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well (Dunham et al., 2017). One promising method is MSI,
because it provides chemical and spatial analysis and methods
can easily be adapted to specific environmental samples. MSI
works by distinguishing chemical compounds via their mass-
to-charge ratio, and currently, there are three MSI methods
commercially available for analyzing bacteria (Dunham et al.,
2017). Though the main limiting factor is that any single MSI
experiment only gives a fraction of the metabolites present in
samples (Dunham et al., 2017). Nevertheless, we believe that
when combined with other technologies, it could pave the way for
future metabolomic research as exemplified by the work of Geier
et al. (2020), where matrix-assisted laser desorption/ionization
MSI was combined with FISH microscopy (Figure 2). This
enabled linking metabolomes to groups of 50–100 microbial
cells in complex environmental samples and be able to resolve
single-cell bacteria in the near future (Geier et al., 2020).

Microbial colonization and ability to form biofilm are also
heterogenous characteristics of microbes, and they play a key
role in AMR. Microfluidic platforms show great potential for
enabling complex biofilm studies (Yawata et al., 2016; Pousti
et al., 2019), including the scarcely researched effect of flow
rate and motility of bacteria on attachment (Secchi et al., 2020;
Figure 2). Bacteria communities, both hetero and isogenic, can
contain cells with diverse range of resistance (El-Halfawy and
Valvano, 2015). Droplet microfluidic technology could be the
most promising tool for such investigation because it allows
high-throughput culturing of bacteria at wide range of isolated
conditions (Kaminski et al., 2016; Scheler et al., 2020; Figure 2).

CONCLUSION

In this mini-review, we highlighted technologies that have been
used for analyzing different aspects of plastisphere-associated
AMR. Although we found that many different aspects of AMR
have been explored through multiple studies using advanced
methods, knowledge gaps remain. To address these gaps, we
summarize currently available technologies potentially suitable
for future research. This should provide analytical tools for
scientists of diverse backgrounds seeking answers for complex
urgent problems: HM- and AB-contaminated plastisphere-
associated promotion of AMR.
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