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Abstract

Commonly used antitumor treatments, including radiation and chemotherapy, function by damaging the DNA of rapidly
proliferating cells. However, resistance to these agents is a predominant clinical problem. A member of the Rho family of
small GTPases, RhoB has been shown to be integral in mediating cell death after ionizing radiation (IR) or other DNA
damaging agents in Ras-transformed cell lines. In addition, RhoB protein expression increases after genotoxic stress, and
loss of RhoB expression causes radio- and chemotherapeutic resistance. However, the signaling pathways that govern RhoB-
induced cell death after DNA damage remain enigmatic. Here, we show that RhoB activity increases in human breast and
cervical cancer cell lines after treatment with DNA damaging agents. Furthermore, RhoB activity is necessary for DNA
damage-induced cell death, as the stable loss of RhoB protein expression using shRNA partially protects cells and prevents
the phosphorylation of c-Jun N-terminal kinases (JNKs) and the induction of the pro-apoptotic protein Bim after IR. The
increase in RhoB activity after genotoxic stress is associated with increased activity of the nuclear guanine nucleotide
exchange factors (GEFs), Ect2 and Net1, but not the cytoplasmic GEFs p115 RhoGEF or Vav2. Importantly, loss of Ect2 and
Net1 via siRNA-mediated protein knock-down inhibited IR-induced increases in RhoB activity, reduced apoptotic signaling
events, and protected cells from IR-induced cell death. Collectively, these data suggest a mechanism involving the nuclear
GEFs Ect2 and Net1 for activating RhoB after genotoxic stress, thereby facilitating cell death after treatment with DNA
damaging agents.
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Introduction

Current cancer treatment modalities include the use of radio-

and chemotherapeutic agents that damage DNA. In healthy cells,

exposure to these agents activates mechanisms to either repair sites

of DNA damage or if the damage is irreparable, to activate the cell

death machinery. However in cancer cells, prolonged exposure to

these agents can lead to resistance, which is a common clinical

problem. Therefore, understanding the pathways whereby cancer

cells respond to DNA damage may provide insights into how

tumors will respond to therapy and circumvent possible resistance

mechanisms. Members of the Rho family of GTPases have been

well established as playing key roles in the dynamic regulation of

the actin cytoskeleton. It is also clear that they coordinate a wide

variety of diverse cellular processes important in tumorigenesis

including gene expression, cell proliferation and survival [1].

Although a number of studies indicate growth stimulatory roles for

RhoA and RhoC in cancer, the exact role of RhoB in

tumorigenesis is still being defined. Despite sharing 86% homology

to RhoA, in some cell types RhoB exerts more of a tumor-

suppressor role, as loss of RhoB is associated with various types of

human tumors [2,3,4] and an increase in metastatic potential [5].

RhoB has a short protein half-life (,2 h) and its protein

expression is readily inducible upon exposure to a wide-variety of

biological stimuli including growth factors such as platelet-derived

growth factor (PDGF), epidermal growth factor (EGF) as well as

transforming growth factor-b (TGF-b) [6,7,8]. In addition to

growth factors, RhoB is known to be up-regulated in response to

DNA damaging agents (UV, cisplatin [9]), and cellular stress [10].

In this context, Ras-induced loss of RhoB protein reduces the

sensitivity of transformed cells to genotoxic agents in vitro [11].

Furthermore, targeted deletion of RhoB in mouse embryonic

fibroblasts (MEFs) confers cellular resistance of transformed cells

to c-irradiation (IR) or taxol [12].

With predominant roles for Rho proteins in a number of

cellular processes, it is not surprising that the activity of these

molecules is tightly regulated. Rho protein function is modulated

by three main classes of regulatory molecules, which control the

transition of Rho from an inactive GDP-bound form to an active

GTP-bound form. GTPase-activating proteins (GAPs) decrease

Rho protein activity by stimulating their intrinsic GTP hydrolysis

activity [13]. Guanine nucleotide-dissociation inhibitors (GDIs),

sequester GDP-bound Rho in the cytosol keeping them inactive.

Conversely, guanine nucleotide exchange factors (GEFs) increase
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the activity of Rho proteins by promoting the exchange of GDP

for GTP. As important as Rho-protein signaling is in contributing

to the cancer cell phenotype, no GTPase-defective mutants have

been found in human tumors to date. However, as spatio-temporal

activators of Rho, GEFs represent a large class of proteins where

their altered regulation and/or localization can have a dramatic

impact on tumor progression and possibly tumor response to

therapy.

Here, we report that RhoB is activated in human breast and

cervical cancer cell lines shortly after treatment with agents that

cause DNA damage. Loss of RhoB using shRNA caused partial

resistance to IR-induced cell death and inhibited the initiation of

apoptotic signaling events. Further investigation revealed that the

increase in active RhoB was caused by the specific activation of

nuclear GEFs, epithelial cell transforming sequence 2 (Ect2) and

neuroepithelial transforming gene 1 (Net1). Inhibition of Ect2

and Net1 decreased RhoB activation, attenuated JNK phos-

phorylation and induction of the pro-apoptotic protein Bcl-2

interacting mediator of cell death (Bim) causing cellular

resistance to IR. These studies identify and highlight the

regulatory molecules Ect2 and Net1 that govern RhoB activity

after DNA damage in human cancers, and they may be

important predictors in tumor response to radio- and chemo-

therapeutic agents.

Results

DNA damage activates RhoB
RhoB protein levels are readily inducible upon exposure to

genotoxic agents, many of which generate reactive oxygen species

(ROS). We therefore wanted to determine if ROS-induced DNA

damage specifically alters the levels of GTP-bound, active RhoB.

To accomplish this, HeLa cells were transfected with a non-

targeting siRNA (siNT), an siRNA targeted to RhoB (siRhoB), or

an siRNA targeted to RhoA (siRhoA). The specificity and efficacy

of each siRNA was evaluated by immunoblot (Fig. S1A). HeLa

siNT, HeLa siRhoB and HeLa siRhoA cells were then treated

with H2O2 for 20 min, which is sufficient to create DNA strand

breaks [14] and examined for total Rho activation thereafter using

an antibody containing a common epitope for all three Rho

proteins (RhoA, RhoB, and RhoC). H2O2-treated HeLa siNT and

parental HeLa cells exhibited an overall increase in total Rho

activity (Fig. 1A and Fig. S1B). However, in HeLa cells transfected

with an siRNA targeted to RhoB, very little Rho activation was

observed after H2O2 exposure (Fig. 1B). This was also noted in

H2O2-treated parental HeLa cell lysates using an antibody specific

for RhoB (Fig. S1C) In contrast to RhoB, suppression of RhoA

protein levels by siRNA did not prevent Rho activation after H2O2

treatment (Fig. 1C). These data suggest that the majority of active,

Figure 1. Genotoxic stress increases GTP-bound RhoB. HeLa cells were transfected with (A) an siRNA non-targeting sequence (siNT); (B) an
siRNA sequence targeting RhoB (siRhoB); or (C) an siRNA sequence targeting RhoA (siRhoA). 72 h after transfection, cells were treated with increasing
doses of H2O2 for 20 min, then processed for active GTP-bound Rho using a GST-RBD pulldown and blotted for pan-Rho. Lysates served as loading
controls and were blotted for Rho or a-Tubulin as indicated. MCF-7 cells were mock-treated or irradiated with 5 or 10 Gy. Active GTP-Rho was
determined with GST-RBD pulldowns within 15 min after IR. (D) shows RhoB; (E) shows RhoA. (F) Quantification by densitometry of immunoblots in
(D) and (E) (*, p#0.005; **, p#0.001).
doi:10.1371/journal.pone.0017108.g001
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GTP-bound Rho was attributed primarily to RhoB activation

(Fig. 1B) as there was only a modest increase in active RhoA at

higher H2O2 exposure (Fig. S1D).

To determine if other types of DNA damaging agents could

activate RhoB, or if the effects from the direct administration of

H2O2 were agent specific, we extended our studies to incorporate

the use of ionizing radiation, as it is commonly used for the

treatment of solid tumors, including those of the breast. Many

studies implicating RhoB in cell death after c-IR and other

damaging agents were performed in Ras-transformed cells. We

therefore wanted to further explore the role of RhoB activation in

a non-Ras transformed cellular system and utilized the breast

cancer epithelial cell line, MCF-7 [15], which contains endoge-

nous RhoB. MCF-7 cells were irradiated with 5 and 10 Gy

respectively and RBD pulldowns performed to detect active GTP-

bound Rho proteins. There was an increase in RhoB activity

immediately (within 15 min) following IR that was maintained up

to 5 h afterwards (Fig. 1D, 1F and data not shown). Furthermore,

an increase in RhoB activity was also observed after treatment

with the pyrimidine analog, 5-fluorouracil (5-FU) (Fig. S2A and

Materials and Methods S1). The increase in RhoB-GTP levels was

specific as the levels of RhoA-GTP under identical conditions

remained unaltered (Fig. 1E and 1F). These studies suggest that

GTP-bound RhoB levels, but not RhoA levels, increase after

exposure to IR and other DNA damaging agents.

RhoB activity is required for IR-induced cell death in
breast cancer cells

RhoB activation after IR occurs quickly and robustly (Fig. 1D

and 1F), but does this activation have any functional consequences

for cellular survival? To test this hypothesis, endogenous RhoB

expression was suppressed using a short-hairpin RNA to RhoB.

MCF-7 cells stably transfected with RhoB-shRNA (MCF-7-

shRhoB) showed a marked reduction in RhoB protein levels

compared with MCF-7 cells infected with the shRNA vector alone

(MCF-7-shvector) (Fig. 2A). Importantly, knock-down (KD) of

RhoB did not affect RhoA protein levels (Fig. 2A). We first

examined the effects of loss of RhoB protein on cellular survival

after IR. Clonogenic assays were performed on MCF-7-shvector

and MCF-7-shRhoB cells that were either mock-treated or

irradiated at 2.5 and 5 Gy. No significant differences in survival

were noted at sub-lethal doses of IR, however, the survival

difference between these two cell lines was readily apparent at

higher radiation exposures (Fig. 2B). MCF-7-shRhoB cells were

statistically more resistant to 5 Gy than their genetically matched

MCF-7-shvector counterparts (Fig. 2B). Similar findings were

observed after 5-FU treatment (Fig. S2B). Furthermore, radio-

resistance could be reverted in MCF-7-shRhoB cells upon ectopic

re-expression of an shRNA-resistant wild-type myc-RhoB con-

struct (Fig. 2C). Collectively, these data suggest that RhoB plays a

role in IR-induced cell death.

The nuclear GEFs Ect2 and Net1 are activated following
IR

Our data suggest that RhoB is activated after the DNA

damaging agents H2O2 and IR, and that RhoB is partially

required for cell death after IR. However, much of the upstream

regulatory processes that govern the control of RhoB activity

following DNA damage have not been elucidated. Our laboratory

and others have demonstrated that low doses of ROS can directly

activate RhoA in fibroblasts and human endothelial cells [16,17].

This direct activation requires two critical cysteine residues located

at amino acid positions 16 and 20 within the phosphoryl binding

loop of the protein [17]. Since the redox sensitive motif in RhoB is

Figure 2. Knock-down (KD) of RhoB confers cellular resistance to IR in human breast cancer cells. (A) Immunoblots showing RhoB, RhoA
and a-Tubulin protein levels from whole cell extracts of MCF-7-shvector and MCF-7-shRhoB cell lines. (B) MCF-7-shvector and MCF-7-shRhoB cells
were mock-treated or irradiated with 2.5 Gy or 5 Gy and colony forming ability (CFA) was determined approximately 14–20 days after IR. (C) Ectopic
re-expression of RhoB sensitizes cells to IR. (left panel) MCF-7-shRhoB cells expressing either vector alone or shRNA-resistant wild-type (wt) myc-RhoB
were mock-treated or irradiated with 2.5 Gy or 5 Gy and CFA determined 14–20 days after treatment (*, p,0.001; **, p#0.05). (right panel)
Immunoblot showing the re-expression of an shRNA resistant wt myc-RhoB in MCF-7-shRhoB cells.
doi:10.1371/journal.pone.0017108.g002
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identical to RhoA, we wanted to determine if RhoB was

modulated in a similar manner. Surprisingly, we found that the

cysteine residues within the phosphoryl binding loop of RhoB are

not sufficient to modulate protein activity after ROS treatment

(Fig. S3A). This suggested to us a unique pathway of regulation

which differs from RhoA, and is likely mediated by the classical

regulatory proteins - GEFs and GAPs.

To determine which GEFs were responsible for the upstream

activation of RhoB after DNA damage, we performed precipita-

tion assays with the nucleotide free RhoB mutant, RhoB(17A).

Our laboratory has previously validated the use of this assay for

the specific isolation of activated GEFs, which bind with high

affinity to the nucleotide free state [18,19]. MCF-7 cells were

irradiated with 5 Gy and pulldowns were performed with GST-

RhoB(17A) immediately after IR. Immunoblots of the precipitates

were then probed with antibodies to various GEFs to determine

which were activated based on their association with the

nucleotide-free mutant. We narrowed down our search based on

GEF subcellular localization. Since RhoB is activated shortly

(,15 min) after DNA damage, we speculated that the signals

responsible for its activation were connected directly to DNA

damage signaling pathways. We therefore focused our attention on

the nuclear GEFs, Ect2 and Net1. For comparison, we also

examined two well-characterized cytoplasmic GEFs; Vav2, which

has been shown to exchange upon RhoB [20] and p115 RhoGEF.

From these studies we found no activation of the cytoplasmic

GEFs, Vav2 and p115 RhoGEF either before or after IR as

indicated by binding to the nucleotide-free mutant of RhoB

(Fig. 3A). In addition, treatment with H2O2 did not significantly

increase Vav2 or p115 activity (Fig. S3B and S3C) although it

caused an increase in RhoB-GTP levels (Fig. S1C). In contrast,

both Net1 and Ect2 were activated $5 fold after IR (Fig. 3A and

3B). These increases in Ect2 and Net1 activity were also noted

after exposure to 5-FU and H2O2 (Fig. S3B-E).

To ensure that the lack of activation of Vav2 and p115

RhoGEF after IR were not simply due to an inability of these

GEFs to exchange upon RhoB, we overexpressed these GEFs in

MCF-7 cells and measured RhoB activation. Expression con-

structs for Vav2, p115 RhoGEF, Net1 and Ect2 were each

individually overexpressed in MCF-7 cells and GST-RBD

pulldowns performed 24 h following transfection. Overexpression

of all tested GEFs resulted in increased RhoB-GTP levels,

suggesting that the lack of GEF activation after IR was not due

to an inability of the GEFs to facilitate guanine nucleotide

Figure 3. The nuclear GEFs Ect2 and Net1 are activated after IR. (A) MCF-7 cells were mock-treated or irradiated with 5 Gy and pulldowns
performed with GST-RhoB(17A) to identify active GEFs. (B) Quantification of blots in (A) as described in Materials and Methods (*, p#0.05; **, p,0.001).
(C) MCF-7 cells were transfected with constructs to the indicated GEFs. 24 h after transfection, GST-RBD pulldowns were performed to detect active
RhoB. (D and E) MCF-7 cells were serum starved overnight and treated with (D) 100 ng/mL of EGF for 1 h or (E) treated with serum-containing
medium for 1 h and pulldowns performed with GST-RhoB(17A). Immunoblots were probed with an antibody to (D) Vav2 or (E) p115 RhoGEF.
doi:10.1371/journal.pone.0017108.g003
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exchange upon RhoB (Fig. 3C). Furthermore, stimulation of cells

with EGF increased Vav2 activity as demonstrated previously [21]

(Fig. 3D) and the addition of serum increased p115 RhoGEF

activity (Fig. 3E). Collectively, these data indicate that the nuclear

GEFs Ect2 and Net1, but not the cytoplasmic GEFs p115

RhoGEF and Vav2 are activated after IR.

Ect2 and Net1 are responsible for activating RhoB and
leading to cell death after IR

The specific roles of Ect2 and Net1 were then examined as to

their effect on RhoB activation after exposure to IR. MCF-7 cells

were transfected with an siRNA targeted to either Ect2 (siEct2),

Net1 (siNet1), both (siEct2/Net1), or a non-targeting (siNT)

control. KD of steady state protein levels was achieved using either

siRNA to Ect2 or Net1 (Fig. 4A). Using this system, MCF-7 cells

were irradiated and assayed for RhoB activity. As previously

demonstrated, RhoB activity increased after IR in MCF-7 siNT

cells (Fig. 4B). However, in siEct2/Net1 cells, RhoB activity was

not increased after IR in comparison to the non-targeting control

(Fig. 4B). Individual KD of Ect2 and Net1 alone was able to

diminish some RhoB activity after IR, but was not as effective as

knocking down both GEFs simultaneously (Fig. 4B). These data

suggest that IR-induced increases in RhoB activity are a result of

both Ect2 and Net1 activation.

Figure 4. Knock-down of Ect2 and Net1 suppresses RhoB activation and cell death after IR. (A) Immunoblots of Ect2 and Net1 protein
levels 72 h after transfection with siRNA oligos targeted to KD Ect2 and Net1, respectively. (B) KD of Ect2 and Net1 suppresses RhoB activation after IR.
MCF-7 cells were transfected with a non-targeting oligo (siNT), or oligos targeted to Ect2 (siEct2) or Net1 (siNet1) singly, or a combination of Ect2 and
Net1 (siEct2/Net1). 72 h after transfection, cells were mock-treated or irradiated with 5 Gy and GST-RBD pulldowns performed to detect active, GTP-
bound RhoB. (C) KD of nuclear GEFs Ect2 and Net1 protects breast cancer cells from radiation-induced lethality. MCF-7 cells were transfected with a
non-targeting siRNA or siRNAs to Ect2 and Net1 singly or in combination. 72 h after transfection, cells were mock-treated or irradiated with 5 Gy or
10 Gy then assayed for CFA approximately 14–20 days later.
doi:10.1371/journal.pone.0017108.g004
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It has previously been shown that RhoB is necessary for

mediating cell death in various cancer cells [22], and we have

shown that it is similarly required for IR-induced cell death in

MCF-7 cells (Fig. 2B). Since KD of Ect2 and Net1 were sufficient

to suppress RhoB activity after IR, we wanted to test whether these

cells would also exhibit cellular resistance to IR in a manner

analogous to the loss of RhoB (Fig. 2B). MCF-7 cells were

transfected with the indicated siRNAs and 72 h after transfection

the cells were irradiated and colony forming ability (CFA) assessed

14 days after treatment. Because Ect2 has been shown to be

required for cell proliferation [23], it is important to note that

under the conditions used in these studies, transient Ect2 KD had

only modest effects on cell proliferation. Mock-irradiated cells

exhibited normal CFA, which decreased approximately 80% after

irradiation. Single knock-down of Ect2 or Net1 significantly

increased CFA at 5 Gy, ,50% compared with control levels

(Fig. 4C). In irradiated cells that were transfected with siRNA

targeting both GEFs (e.g. siEct2/Net1) there was a significant

increase in CFA at 5 Gy and 10 Gy compared with the siRNA

control, 50% and 60% respectively. Furthermore, knocking-down

both GEFs increased survival at 10 Gy compared to each single

KD alone (Fig. 4C). However, this increase in survival in Ect2 and

Net1 KD cells was not as protective as KD of the GTPase itself

(Fig. 2B) possibly due to the efficiency of KD (stables vs. transients)

or other GEFs that may also be involved in the response to DNA

damage. Collectively, these data suggest that Ect2 and Net1 play a

role in RhoB-mediated cell death as loss of both GEFs decreased

RhoB activity and partially protected cells from IR-induced cell

death.

Loss of Ect2 and Net1 suppresses IR-induced apoptotic
signaling pathways

IR has been shown to induce apoptosis in a variety of cell types

through the activation of c-Jun N-terminal kinase (JNK) and p38

mitogen-activated protein kinase (MAPK) [24]. We therefore

wanted to determine if IR-induced cell death downstream of RhoB

activation also involved the JNK pathway. MCF-7-shvector and

MCF-7-shRhoB cells were irradiated, and lysates harvested at

various times after IR were monitored for JNK phosphorylation by

immunoblot analysis. MCF-7-shvector cells showed an increase in

JNK activation as indicated by an increase in JNK phosphorylation

as early as 48 h after IR (Fig. 5A). However, in MCF-7-shRhoB

cells, JNK activation was dramatically suppressed, which correlates

with the increase in survival of these cells (Fig. 5A and Fig. 2B). To

test whether KD of Ect2 and Net1 exhibited a similar effect on the

JNK pathway, MCF-7 cells were transfected with siNT or siEct2/

Net1, irradiated 48 h after transfection and JNK phosphorylation

examined 24–72 h later. MCF-7 cells transfected with siNT

exhibited an increase in JNK phosphorylation that was suppressed

by the transfection of siEct2/Net1 in a manner comparable to RhoB

KD (Fig. 5B). However, knock-down of each GEF singly was not

able to completely suppress JNK phosphorylation after IR,

suggesting individually, Ect2 or Net1 may be able to compensate

for one another (Fig. S4A).

Since we found that RhoB controls cell death upstream of JNK

activation, we wanted to test if this pathway was functioning

through the activation of Bim; a known JNK target. MCF-7-

shvector and MCF-7-shRhoB cells were irradiated, and Bim

protein levels monitored at various times after IR. The induction

of the ,23 kDa Bim isoform, BimEL was more pronounced in

irradiated MCF-7-shvector cells then in MCF-7-shRhoB cells

(Fig. 5C) and followed the kinetics of JNK activation with the most

robust induction at 96 h (Fig. 5A and Fig. 5C). An increase in Bim

immunofluorescence was also observed in MCF-7-vector cells, but

not MCF-7-shRhoB cells after IR (Fig. 5E). Alone, siRNA-

mediated KD of Ect2 or Net1 was not sufficient to inhibit

increases in BimEL protein levels (Fig. S4B), however, KD of both

Ect2 and Net1 was also able to decrease BimEL induction and Bim

immunofluorescence compared to siNT control cells (Fig. 5D and

5E). These data illustrate that IR-induced activation of RhoB by

the nuclear GEFs Ect2 and Net1 is necessary for the triggering of

the apoptotic machinery involving JNK activation and BimEL

induction.

Discussion

The exposure of eukaryotic cells to genotoxic agents results in a

variety of cellular responses, which can either promote or prevent

survival. Deciphering the signaling pathways that modulate these

signals is of important clinical relevance as a prognostic indicator

of tumor response to DNA damaging agents. It has been well

established that the protein expression of the small GTPase RhoB

is upregulated in response to cellular stress [9] and that RhoB is

required to induce apoptosis after exposure to several DNA

damaging agents in Ras-transformed cell lines [22]. In the present

study, we further demonstrate that RhoB activity is increased upon

exposure to DNA damaging agents, and this activity is necessary

for IR-induced cell death. However, it is yet unclear what the

upstream regulatory processes are that control RhoB activity after

DNA damage. Therefore, we sought to elucidate these upstream

modulators with specific focus on Rho GEFs. We show that the

nuclear GEFs Ect2 and Net1 specifically activate RhoB, which

causes the downstream phosphorylation of JNK and the induction

of the pro-apoptotic protein Bim, leading to cell death (Fig. 6).

Of the $70 identified GEFs, Ect2 and Net1 specifically localize

to the nucleus at steady state. Whereas Ect2 plays a physiologic

role in cytokinesis [25], the normal functions of Net1 are still being

defined. Here, we describe a new function for these GEFs in the

modulation of cell death after genotoxic stress. Ect2 and Net1, out

of the panel of GEFs tested, were the only two activated after DNA

damage. Studies by others have shown Net1-mediated RhoA

activation after exposure to supra-lethal doses (20 Gy) of IR [26].

However, under the lower doses of IR used in our studies, we did

not observe increases in RhoA activity (Fig. 1E and 1F). In

contrast to Ect2 and Net1, the cytoplasmic GEFs, p115 RhoGEF

and Vav2 were not activated after IR (Fig. 3A). These results were

not due to the inability of these GEFs to exchange upon RhoB, as

overexpression of each GEF was sufficient to cause an increase in

RhoB-GTP levels in cells (Fig. 3C). Moreover, despite the

transient nature of protein KD, it is apparent from our data that

KD of Ect2 and Net1 at the time of insult was sufficient to prevent

the later (,24 h) downstream activation of JNK (Fig. 5B, 5D–E)

and to promote cell survival after IR (Fig. 4C) by muting RhoB-

mediated death signals.

Our data demonstrate that IR activates both Ect2 and Net1,

however the mechanisms that regulate their activity remain

unknown. In many circumstances, GEF activation is linked to

subcellular localization. Ect2 and Net1 are unique in this aspect as

they both contain two nuclear localization signals within the N

terminus, confining them to the nucleus at steady state. In addition

to localization, GEF activation can be modulated by post-

translational modification. For example, the phosphorylation of

Ect2 during G2/M increases its activity for Rho in vitro [25] and

the oncogenic form of Net1 was also shown to be regulated by its

phosphorylation state [27]. It is therefore likely that specific

kinase(s) may be responsible for their regulation and/or possible

cellular relocation after DNA damage. The phosphoinositide 3-

kinase-related protein kinase (PIKK) family consists of large

Ect2 and Net1 Regulate RhoB after DNA Damage
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serine/threonine protein kinases involved in the response to

cellular stress, and are candidates for Ect2 and Net1 activation

after IR. Members of this family include Ataxia-telangiectasia

mutated (ATM), DNA dependent protein kinase catalytic subunit

(DNA-PKcs), and ATM and Rad3 related protein kinase (ATR).

ATM is an attractive candidate as it has a pivotal role in the

response to IR-induced DNA damage. The association of ATM

with other DNA damage related proteins or protein-complexes

facilitate its activation and function. A number of the ATM-

protein interactions occur with proteins which contain a BRCA-1

C-terminal (BRCT) domain; the most notable is Brca1 (breast

cancer gene 1). The BRCT domain is a highly conserved region

found in many DNA damage-responsive cell cycle checkpoint

proteins [28]. Interestingly, Ect2 contains tandem BRCT domains

in its N-terminus, which are required for proper cytokinesis [29]. It

is therefore possible that these BRCT regions within Ect2 may have

additional functions, some of which are more intimately involved in

the DNA damage response. Net1, on the other hand, contains a

nuclear export signal in addition to nuclear import signals, thus

implying that it can be triggered to leave the nucleus and activate

Rho in the cytoplasm [30]. To this effect, Schmidt and Hall have

shown that the PH domain of Net1 is required for its nuclear export

[30]. It is therefore of interest if DNA damage-mediated ATM

activation triggers Ect2 and/or Net1 activation and relocation to

the cytoplasm where it can activate RhoB. Preliminary data suggest

that there is an enrichment of Ect2 in the cytoplasmic fraction after

damage, and that loss of ATM kinase activity decreases Ect2 and

Net1 activation after IR (data not shown). The cross-talk between

Figure 5. Loss of RhoB activity inhibits cell death pathways. (A) MCF-7-shvector and MCF-7-shRhoB cells were mock-treated or irradiated with
10 Gy. Whole-cell extracts were analyzed by immunoblot for changes in JNK phosphorylation, with total JNK, and a-Tubulin as loading controls at the
indicated times post-irradiation. (B) MCF-7 cells were transfected with siNT or siEct2/Net1 and analyzed for JNK phosphorylation as in (A). (C) MCF-7-
shvector and MCF-7-shRhoB cells were mock-treated or irradiated with 10 Gy and analyzed for Bim protein expression at the indicated times. (D)
MCF-7 cells transfected with siNT or siEct2/Net1 were mock-treated or irradiated with 10 Gy 48 h after transfection and analyzed for Bim protein
expression at the indicated times. (E) Visualization of Bim induction by immunofluorescence in MCF-7-shvector, MCF-7-shRhoB cells or MCF-7 cells
transfected with siNT or siEct2/Net1 that were mock-treated or irradiated with 10 Gy and fixed 72 h later. Scale bar = 50 mm.
doi:10.1371/journal.pone.0017108.g005
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ATM and these nuclear GEFs may be a mechanism for amplifying

death signals in cells were irreversible damage occurs, and further

studies are underway to delineate the mechanisms whereby DNA

damage regulates Ect2 and Net1 function.

There are many circumstances where altered GEF activity can

lead to cellular transformation [31]. In the case of Ect2 and Net1,

truncation of the N-terminal portion of each protein has been

shown to transform cells due to the mislocalization of these GEFs to

the cytoplasm, which results in their constitutive activation [32,33].

It would therefore be of interest to determine if the mislocalization

of Ect2 and/or Net1 to the cytoplasm could be a potential resistance

factor in human cancers to IR or other DNA damaging agents.

Recently, Ect2 has been shown to be overexpressed and

mislocalized to the cytoplasm of primary non-small cell lung

carcinoma (NSCLC) tumor cells as well as NSCLC cell lines, but

not primary normal lung epithelia [34]. These cells also have low

levels of RhoB, and re-expression of RhoB decreases proliferation

and tumor growth in vivo [3]. It is not surprising then, that the

NSCLC cell line, A549 has been well studied for its radio-resistance

[35]. Similarly, Ect2 is also overexpressed and mislocalized in

glioblastoma multiforme (GBM) compared to normal brain tissue

[36] and although GBMs respond to full course radiation, they tend

to recur. It is therefore interesting to speculate that the mislocaliza-

tion of Ect2 to the cytoplasm may be in part responsible for the

relative radiation resistance and/or recurrence of these tumor cells.

RhoB plays a role in number of pathways which regulate tumor

cell survival and proliferation. For example, it was demonstrated

that RhoB controls endocytic trafficking and slows the internaliza-

tion of the EGF receptor to the lysosome through PRK1 activation

[37] as well as the regulation of nuclear Akt trafficking [38]. As

important as RhoB is in modulating survival pathways little has

been done to explore its role downstream of DNA damage. Some

studies have shown that in response to farnesyl transferase inhibitor

treatment, RhoB suppresses cyclin B1 leading to cell death [39] and

it may associate with caspase-2 in mouse cardiomyocyte apoptosis

[40]. In addition, RhoB represses NFkB activation after cell

treatment with alkylating agents [41]. Therefore, we explored the

pathways activated downstream of RhoB. We observed that the IR

resistance of RhoB KD cells was not due to general alterations in the

cell death machinery, as these cells were still capable of undergoing

apoptosis after treatment with other cytotoxic agents such as

staurosporine (unpublished results). Furthermore, RhoB deficient

MEFs have an intact p53 response and undergo cell cycle arrest

after IR [12]. These data suggest that RhoB may act downstream of

the DNA damage response, functioning as a signal amplifier after

cells have already been committed to die. Thus, we first examined

the activation of JNK since it is commonly triggered after exposure

to IR [24] and particularly in MCF-7 cells where it is needed to

initiate apoptosis after IR as its inhibition prevents the release of

cytochrome c [42]. Furthermore, overexpression of Rho family

members A, B, and C can induce its activation [43]. We found JNK

to be downstream of RhoB activation and that suppression of RhoB

activity, either by reducing RhoB protein levels directly or reducing

the amount of stimulating GEFs, Ect2 and Net1, was sufficient to

inhibit JNK phosphorylation (Fig. 5A and 5B). Recently, JNK

activation after IR was shown to be upstream of RhoB protein

induction in Jurkat cells, however JNK activation downstream of

RhoB was not examined [44]. Based on our own findings, there

may exist a positive feedback loop whereby RhoB activity stimulates

sustained JNK phosphorylation, which potentiates cell death

through the upregulation of RhoB.

Of the many pro-apoptotic cellular targets of JNK, Bim can be

activated transcriptionally via activation of the transcription factors

such as c-Jun [45] and FOXO3a [46] or after translation in

response to cytotoxic stimuli [47,48]. We found that exposure to IR

increases BimEL protein expression as early as 48 h, and that Bim

protein levels are reduced by RhoB shRNA (Fig. 5C). Alternatively,

if RhoB activity is inhibited through suppression of Ect2 and Net1,

BimEL levels are also reduced (Fig. 5D), suggesting that it is

increased RhoB activity, specifically, that is necessary for this event.

Since JNK-dependent dephosphorylation and nuclear accumula-

tion of FOXO3a were found in response to paclitaxel treatment

[49], based on our own data, it is likely that RhoB-mediated Bim

induction is primarily through a JNK-dependent mechanism.

Collectively, our experiments delineate a novel pathway

whereby the nuclear GEFs Ect2 and Net1 are activated after

genotoxic stress. These GEFs activate RhoB, which is required for

cell death after exposure to c-IR in non-Ras transformed human

breast cancer cells. Furthermore, we demonstrate that RhoB

activation triggers the downstream activation of the SAPK/JNK

pathway leading to an increase in Bim protein levels and cell

death. From a therapeutic standpoint, understanding the mech-

anisms of IR-induced cell death is of particular clinical relevance.

Therefore, exploring the regulation of these nuclear GEFs after

DNA damage may initiate novel strategies for rendering tumors

which are refractory to radio- and/or chemotherapy more

sensitive to first line anticancer treatments.

Materials and Methods

Cells, Culture Conditions, and Reagents
MCF-7 and HeLa cells were purchased from the American

Type Culture Collection (Manassas,VA). A puromycin-selectable

Figure 6. Model of RhoB-induced cell death after IR. IR-induced
DNA damage activates members of the DNA damage-sensing
machinery, which may directly or indirectly activate the nuclear GEFs
Ect2 and Net1 to stimulate guanine nucleotide exchange upon RhoB.
Activated RhoB leads to the downstream phosphorylation of JNK that
triggers the induction of the pro-apoptotic protein Bim leading to cell
death. Inhibition of either RhoB or Ect2 and Net1 activation through
RNAi mutes this signaling pathway and results in cellular resistance to
IR.
doi:10.1371/journal.pone.0017108.g006
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pLKO1 plasmid containing a short hairpin small interfering RNA

against RhoB (shRhoB) or vector alone (shvector) control were

used to infect MCF-7 cells (Open Biosystems, Huntsville, AL).

Puromycin-resistant pooled populations were screened for RhoB

protein expression and used to create stable cell lines. All cells were

grown in high glucose-containing DMEM containing 5% fetal

bovine serum (FBS), 0.5 mg/mL puromycin (for MCF-7 shvector,

and MCF-7 shRhoB cells), 2 mM L-glutamine, penicillin

(100 units/mL), and streptomycin (100 mg/mL) at 37uC in a

10% CO2, 90% air humidified atmosphere. All tissue culture

components were purchased from Invitrogen (Carlsbad, CA). Cells

were free of mycoplasma contamination. T-butyl peroxide

(hydrogen peroxide, H2O2) (Sigma-Aldrich, St. Louis, MO) and

human recombinant EGF (R&D Systems, Minneapolis, MN) were

diluted in growth medium prior to treatment.

Clonogenic Survival Assays and Irradiation
Survival was assessed by colony-forming ability using standard

techniques [50]. Cells were irradiated using a Mark I 137Cs

irradiator (JL Shepherd) as described [14] with the indicated doses

and colonies assessed approximately 14–20 days after treatment.

For siRNA experiments, cells were irradiated 72 h after

transfection. Colonies were defined as .50 normal appearing

cells originating from a single plated cell. Statistical significance

was determined by a paired Student’s t-test from a minimum of

two separate experiments performed in triplicate and error bars

represent the S.E.M.

RBD and Nucleotide Free Pulldowns
RBD pulldowns to detect active Rho proteins were performed

as described previously [18]. Affinity precipitation of active GEFs

with the nucleotide-free Rho mutants (G17A) have been described

in detail by our laboratory and performed as described with minor

modifications [18,19]. After lysis, samples were sonicated twice on

ice for ,30 sec bursts. Clarified lysates that were equalized for

total volume and protein concentration were incubated with 20 mg

of purified RhoB(17A) bound to glutathione-sepharose beads for

60 minutes at 4uC with rotation. Samples were washed in lysis

buffer and processed for SDS-PAGE.

Immunoblotting
SDS-PAGE gels were prepared as previously described [14].

Antibodies to pan-Rho (BD Biosciences, San Jose, CA), RhoB,

Vav2 (Cell Signaling, Danvers, MA), RhoA (sc-418), Ect2 (sc-

1005), p115 (sc-8492) (Santa Cruz Biotechnology, Santa Cruz,

CA), and Net1 (Abcam, Cambridge, MA) were used for

immunoblot analyses of RBD and nucleotide free pulldowns. To

examine apoptotic proteolyses, cytoplasmic and nuclear extracts

were prepared after IR. Briefly, cells were lysed in Buffer A

[50 mM Hepes (pH 7.4), 10 mM KCl, 1 mM EDTA, 1 mM

EGTA, 1 mM DTT, and 0.1% NP-40] plus 200 mM sodium

orthovanadate and protease inhibitors. Samples were incubated

on ice for 10 min with periodic vortexing and spun at 4000 rpm

for 5 min. The cytosolic supernatant was equalized for total

volume and protein concentration then processed for SDS-PAGE.

Immunoblot analysis was performed using antibodies to phos-

phorylated JNK, total JNK (Cell Signaling), and Bim (Strategene,

La Jolla, CA). For immunoblot quantification, intensity values of

bands were measured from three different replicates for each

experiment using Image J (NIH). The data were expressed as the

fold increase over untreated samples. Statistical significance was

determined by a paired Student’s t-test and error bars represent

the S.E.M.

siRNA Oligonucleotides
Control siRNA oligonucleotides and those specific for human

Net1 (targeted sequence: 59-GAGUCUCCCUUCAGUCGAA-

39), Ect2 (targeted sequence: 59-GCACUCACCUUGUA-

GUUGA-39), and siGENOME SMARTpool human RhoA and

RhoB were purchased from Dharmacon (Lafayette, CO).

Oligonucleotides were transfected using TransIT-siQUEST re-

agent, according to the manufacturer’s instructions (Mirus

Corporation, Madison, WI). Knock-down efficiency was deter-

mined for each experiment by immunoblot.

Plasmid Transfections
Constructs to pEGFP-N1-onco-Vav2 [51], pCMV-Myc-p-115

RhoGEF (Invitrogen), pCMV-myc-Net1 [52], pCGN-hygro-DN-

Ect2-DH/PH/C fused to an HA tag (kind gift from Channing

Der, UNC), and pCMV-myc-RhoB [18] were transfected into

cells using Lipofectamine Reagent (Invitrogen). 24 h after

transfection, cells were lysed and RBD pulldown experiments

performed. All constructs were confirmed by DNA sequencing.

Immunofluorescence
MCF-7 cells were irradiated with 10 Gy and fixed 72 h

thereafter as previously described [53]. Fixed cells were then

incubated with a primary Bim antibody (Cell Signaling) and an

AlexaFluor 594 secondary antibody (Molecular Probes, Eugene,

OR). Nuclei were visualized by Hoechst 33258 staining. Images

were collected using a x63 numerical aperture 1.4 oil immersion

objective at 594 nm using a Zeiss axiovert 200 M microscope

equipped with a Hamamatsu ORCA-ERAG digital camera and

acquired using Metamorph Workstation (Universal Imaging

Corp.). Images shown are representative of experiments done at

least thrice.

Supporting Information

Figure S1 Genotoxic stress increases RhoB activity.
Knock-down efficiency of RhoA and RhoB siRNA. (A) HeLa

cells were transfected with siRNA oligos to a non-targeting

sequence or a sequence targeting RhoA or RhoB, respectively.

72 h after transfection, cells were harvested and relative levels of

RhoA and RhoB protein expression were determined by

immunoblot analysis. a-Tubulin served as a loading control.

H2O2 treatment causes an increase in RhoB-GTP. HeLa cells

were treated with increasing doses of H2O2 for 20 min, then

processed for active GTP-bound Rho using a GST-RBD

pulldown. (B) blotted for pan-Rho; (C) blotted for RhoB; (D)

blotted for RhoA. Lysates served as loading controls and were

blotted for Rho or a-Tubulin as indicated.

(TIF)

Figure S2 5-FU causes an increase in RhoB activity that
is partially required for cell death. (A) MCF-7 cells were

treated with the indicated doses of 5-FU for 72 h and pulldowns

performed using GST-RBD to detect activated RhoB. (B) MCF-7

cells were treated with the indicated doses of 5-FU and survival

determined by PI exclusion 72 h after drug exposure. The average

from three experiments are shown. Values marked with asterisks

are significant from control (*, p#0.05).

(TIF)

Figure S3 RhoB is not directly activated by ROS. (A)

HeLa cells expressing wild-type (wt) or C16/C20A myc-RhoB

were serum-starved and treated with the indicated doses of H2O2

for 20 min and pulldowns performed with GST-RBD and blotted
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with an antibody to myc. (B) HeLa cells were treated with 500 mM

H2O2 for the indicated times and GEF activation determined

using a modified pulldown to detect binding to the RhoB(17A)

mutant. Samples were blotted with antibodies against the

indicated GEFs. (C) Relative increases in GEF activation were

determined by densitometry of three independent experiments

wherein controls were set to 1.0. The nuclear GEFs Ect2 and Net1

are activated after treatment with the DNA damaging agent 5-FU.

(D and E), MCF-7 cells were treated with 400 mM 5-FU and

pulldowns performed for activated GEFs using the RhoB(17A)

mutant 72 h after drug treatment. Immunoblots from pulldowns

and lysates were probed with antibodies to (D) Ect2 and (E) Net1.

(TIF)

Figure S4 Knock-down of Ect2 or Net1 alone is insuffi-
cient to abrogate JNK phosphorylation or Bim induction
after IR. MCF-7 cells were transfected with a non-targeting

siRNA (siNT), an siRNA targeted to Ect2 (siEct2), or an siRNA

targeted to Net1 (siNet1) and either mock-treated or irradiated

with 10 Gy 48 h later. Whole-cell extracts were analyzed by

immunoblot for changes in (A) JNK phosphorylation at the

indicated times post-irradiation, where total JNK and a-Tubulin

levels served as loading controls or (B) Bim protein levels at the

indicated times post-irradiation.

(TIF)

Materials and Methods S1 Supplementary materials and
methods.

(DOC)
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