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Most patients with diabetes mellitus are asymptomatic, which leads to delayed and more complex treatment. At the same time,
most individuals are routinely subjected to standard clinical laboratory examinations, which create large health datasets over a
lifetime. Computer processing has been used to search for health anomalies and predict diseases using clinical examinations.
This work studied machine learning models to support the screening of diabetes through routine laboratory tests using data
from laboratory tests of 62,496 patients. The classification and regression models used were the K-nearest neighbor, support
vector machines, Bayes naive, random forest models, and artificial neural networks. Glycated hemoglobin, a test used for
diabetes diagnosis, was used as the target. Regression models calculated glycated hemoglobin directly and were later classified.
The performance of classification computer models has been studied under various subdataset partitions and combinations
(e.g., healthy, prediabetic, and diabetes, as well as no healthy and no diabetes). The best single performance was achieved with
the artificial neural network model when detecting prediabetes or diabetes. The artificial neural network classification model
scored 78.1%, 78.7%, and 78.4% for sensitivity, precision, and F1 scores, respectively, when identifying no healthy group. Other
models also had good results, depending on what is desired. Machine learning-based models can predict glycated hemoglobin
values from routine laboratory tests and can be used as a screening tool to refer a patient for further testing.

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder
caused by a deficiency in insulin production or a lack of
capability of the cells to use it properly. Over time, DM
causes an increase in blood glucose levels, which is known
as hyperglycemia. DM also increases the risk of premature
death and possible diabetes-associated complications, such
as heart attack, stroke, kidney failure, and vision loss [1].
Most DM patients are asymptomatic and do not undergo a
DM test, leading to a delayed diagnosis. Late DM identifica-
tion leads to complex treatment and poor outcomes. It is
estimated that DM has an impact of $760 billion costs,
accounting for 11.3% of 20-79-year-old deaths worldwide.

Early diagnosis is imperative to mitigate diabetes complica-
tions and deaths and reduce treatment costs [2].

Currently, DM is diagnosed via analysis of laboratory
tests, such as those handling glucose (i.e., fast plasma glu-
cose) and glycated hemoglobin (HbAlc). HbAlc is consid-
ered the gold standard for screening and diagnosing
diabetes due to its international standardization, lower sus-
ceptibility to biological variability, not being affected by
acute stress, and no need for fasting [3, 4]. However, FPG
exams are still widely used, being often the main diagnostic
method. Even though it may present changes in glucose
values, leading to erroneous interpretations[3, 5]. For the
Hbalc test, the individual is considered healthy if the value
is equal to or less than 5.6%, considered prediabetic if the
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value is between 5.6% and 6.5%, and considered diabetic if
the value is equal to or greater than 6.5%. For the FPG test,
the individual is considered healthy if the value is equal to or
less than 99 mg/dl, considered prediabetic if the value is
between 99 mg/dl and 126 mg/dl, and considered diabetic if
the value is equal to or greater at 126 mg/dl [1].

Computer processing has been used to identify diseases
based on clinical data processing [6-10]. Extracting knowl-
edge from data to support experts in decision-making is a
trend in the new generation of smart health systems [11,
12]. Computer methods such as data mining and machine
learning can improve diagnosis alongside patient data. Sev-
eral studies have been using laboratory tests and machine
learning techniques to search for new results in recent years.
In the case of diabetes mellitus, the search for a diagnosis has
been the target of predictive medicine. Many studies have
used artificial intelligence to predict a diagnosis or a future
propensity to develop the disease. In general, in addition to
laboratory tests, these studies make use of clinical data,
patient history, imaging tests, and medical diagnoses
[13-21], none of which used only laboratory tests. Oleg
[14], for example, in addition to laboratory tests, also used
data on retinopathy or nephropathy.

Similarly, Hang [16], Wu [19], and Hische [22] also
made use of other clinical data in the search for a diagnosis
of diabetes. Some studies, such as Ravaut [17], Bernardini
[21], and Le [23], aim to determine whether a patient is
likely to develop the disease in the future, which is relevant
as part of a process in predictive medicine. Other authors
[24-28] have used data from noninvasive tests, such as
photoplethysmography (PPG) and electrocardiogram
(ECG), with the main motivation being the screening and
monitoring of blood glucose for patients already diagnosed.

The use of laboratory tests and machine learning to search
for new results has been extensively explored in recent years
[8, 14, 20, 29-33]. In particular, we draw attention to the work
of Park [34], who performed the prediction of several diseases
using laboratory tests, but not including DM.

This work has its focus on the use of routine laboratory
tests. Once the blood sample has already been collected
and the patient’s tests performed, the possibility of predict-
ing new information is of great relevance for the diagnostic
process of medical laboratories. We do not use any other
type of data, enabling the automation of analysis and medi-
cal laboratories” diagnostic processes. Discovering informa-
tion can generate alerts for things not observed, thus
proposing complementary exams for an early diagnosis of
still unknown pathologies.

For example, in the diagnosis of diabetes mellitus,
although the HbAlc test is recommended, the FPG test is
the most used. However, this test may present variations
and inconsistencies [3, 35], generating false-negative results.
It is not uncommon for discrepancies in the result of the
diagnosis of DM performed with the FPG test compared to
the HbAlc test. In this way, it is crucial to predict possible
DM diagnoses and recommend complementary exams to
prevent an asymptomatic patient from being left without
proper and timely treatment. In this case, the prediction of
HbAlc is a possibility to confirm the diagnosis given by

BioMed Research International

the FPG test, and in discrepant cases, it may propose per-
forming the HbA1c test with the blood sample already avail-
able. This approach would avoid false-negative results saving
time and costs with further exams and treatments.

The possibility of automatically using data from labora-
tory tests to search for new patient information is of great
relevance. This methodology can directly impact the analysis
processes of laboratory tests outcome, suggesting comple-
mentary and more complex tests in the screening for new
pathologies and counter-proof for false-negative cases. In
most cases, the blood sample already collected can be used,
saving time and costs. Thus, this methodology presents itself
as an innovation to performing tests and diagnoses in med-
ical laboratories.

We propose a machine learning-based approach that use
existing laboratory data to screen DM based on predicting
HbA1c and classifying subjects based on the most frequently
performed laboratory examinations: hemograms, creatinine,
and fasting plasma glucose. Using these data may enable ear-
lier prediction of HbAlc levels in DM while evaluating rou-
tine and straightforward laboratory testing. In this way, the
proposed approach can help detect DM by directing the
patient to complementary exams. Thus, this work sought
to explore and evaluate different machine learning models
and dataset configurations to identify the best ways to sup-
port the DM diagnosis based on routine laboratory testing.

2. Materials and Methods

We used a four-step framework to study HbAlc classifica-
tion models and predictions. The four steps are (1) data col-
lection, (2) data preprocessing, (3) model training, and (4)
performance evaluation. The results are shown in Figure 1.

2.1. Data Collection. We used a database of laboratory exam-
inations from a clinical analysis laboratory in Florianopolis,
Brazil. The dataset included 62,496 patients grouped accord-
ing to HbAlc values. The dataset included 19-99-year-old
adults, 47.60% healthy, 37.95% prediabetes, and 14.45% dia-
betes. The mean age was 56.7 years (SD = 16.2), and individ-
uals were 43.4% male, and 56.6% were female. The average
age was 56.2 years (SD =15.8) among men and 57.1 years
(SD =16.6) among women. The dataset was randomly split
into an 80:20 basis for training and testing. The Federal Uni-
versity of Santa Catarina Ethical Committee approved this
study under registration number CAE
02203918.0.0000.0121.

2.2. Data Preprocessing. Preprocessing is one of the most
important steps in using machine learning techniques. We
used a factor analysis technique to select the most relevant
examinations for HbAlc levels. Missing data (i.e., any single
missing exam) were excluded. No data were inputted.
Table 1 shows the selected features and the target variable
HbAlc. The selected features were normalized to a mean
of zero and a standard deviation of 1. The classification of
HbAlc provides DM diagnoses. There are three HbAlc cat-
egories: healthy if HbAlc is <5.7% (39 mmol/mol),
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FIGURE 1: A proposed pipeline for studying the HbAlc classification. There are four main steps: data collection, data preprocessing, model
training, and performance evaluation. Three datasets were created: HPD (H = healthy; P = prediabetes; D = diabetes), HN (H = healthy;
N=no healthy [N=P+D]), and ND (N=no diabetes [N=H +P]; D =diabetes). Datasets with the suffix r refer to the regression

models with later classification.

prediabetes if HbAlc is between 5.7% and 6.4% (46 mmol/
mol), and diabetes if this value is >6.5% (48 mmol/mol) [36].
The dataset was arranged into three distinct subdatasets,
“HPD,” “HN,” and “ND,” using the classification models
(see Figure 2(a)). The first subdataset, “HPD,” describes
individuals based on HbAlc; thus, there are three categories:
healthy (“H”), prediabetes (“P”), and diabetes (“D”). The
second subdataset, “HN,” describes individuals as healthy
(“H”) and no healthy (“N”), where “N” is the prediabetes
and diabetes (N=P+ D). The third subdataset “ND”
describes individuals as no diabetes (“N”) and diabetes
(“D”), where “N” is the healthy and prediabetes (N=H + P
). The dataset was also arranged into three subdatasets using
the regression models’ classification (see Figure 2(b)) that
subdatasets acronym follows the pattern of the subdatasets
generated for using with the classification models with the
addition of “r” sufhix, i.e., “HPDr,” “HNr,” and “NDr.”

2.3. Model Training. We trained five classification models
and five regression models. The target of the classification
model was an ordinary variable HbAlc, and the target for
the regression models was a continuous variable HbAlc.
The regression model HbAlc output was classified based
on DM classification. We used several models with different
approaches and complexities, ranging from simple K-nearest
neighbors to complex ANNs. The Python package Scikit-
learn [37] was used to implement the models. For validation,
30% of the training part of the dataset was used. The training
and validation approaches were used for hyperparameter
tuning. The adjustment of hyperparameters for the models
was performed using Bayesian optimization (BO) with a
Gaussian process (GP) [38].

The classification was performed using K-nearest neigh-
bors (KNN), support vector machine (SVM), naive Bayes
(NB), random forest (RF), and artificial neural networks
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TaBLE 1: Description of the preprocessed dataset.

Attribute Description Min. Max. Mean SD
HbAIc Glycated hemoglobin (%, percent) 3.20 18.30 5.92 1.01
Age Age of the patient (year) 20 99 56.75 16.25
CR Creatinine (mg/dl, milligram/decaliter) 0.29 18.23 0.92 0.37
FPG Fast plasma glucose (mg/dl, milligram/decaliter) 38.00 626.00 102.05 29.99
Baso% Percent bashophils (%, percent) 0.10 3.70 0.75 0.32
MCHC Mean corpuscular hemoglobin concentration (g/dl, gram/decaliter) 24.90 38.90 33.44 0.91
MCH Mean corpuscular hemoglobin (pg, picogram) 14.90 42.30 29.70 1.47
HT Erythrocytes (%, percent) 16.30 60.30 41.20 3.87
LC Leukocytes (unit per mm?2) 720.00 27710 6504.8 1819.6
Linfo% Percent lymphocytes (unit per mm?2) 4.10 85.30 34.14 8.21
Mono% Percent monocytes (unit per mm?2) 0.70 34.30 6.13 1.53
MPV Mean platelet volume (%, percent) 5.60 19.20 8.62 1.07
PLT Absolute platelet count (unit per mm?2) 4.00 796.0 251.9 67.46
RDW Red cell distribution width (%, percent) 10.80 26.80 13.60 0.95
SEG% Percent segmented neutrophils (unit per mm2) 6.70 93.90 55.73 8.72
MVC Mean corpuscular volume (ft, femtoliter) 52.20 127.2 88.81 4.89
Healthy group

Prediabetes group Regression values

O Diabetes group

© Healthy, Prediabetes and Diabetes dataset
@ Healthy and No healthy dataset
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FIGURE 2: Datasets used with the models. (a) The three subdatasets used with the classification models: healthy, prediabetes, and diabetes
(HPD); healthy and no healthy (HN); and no diabetes and diabetes (ND). (b) The three subdatasets used with the regression models
(i.e., classification after regression): healthy, prediabetes, and diabetes (HPDr); healthy and no healthy (HNr), being no healthy formed
by prediabetes and diabetes; and no diabetes and diabetes (NDr), being no diabetes formed by healthy and prediabetes.

(ANN). The regression was studied using these methods as (ii) SVM model hyperparameters was set “0,8 C,” “RBF
regressors, i.e., K-nearest neighbor regressor (KNNr), sup- kernel,” “3 degree,” “true shrinking,” “true probabil-
port vector machine regressor (SVMr), naive Bayes regressor ity,” “decision function shape over,” and “1000
(NBr), random forest regressor (RFr), and artificial neural cache”

twork ANNTr). The followi figurati
?vis‘/vlcl)srej' regressor ( 2 ¢ loflowliig coffigtration (iii) SVMr model hyperparameters were set to “1 C,”

» o«

“epsilon insensitive loss,” “0.1 epsilon” and toler-
ance of le5. “decision function shape over,” and

(i) KNN and KNNr model hyperparameters were set to by N
1000 cache

“8 neighbors,” “uniform weights,” and “ball tree
algorithm” (iv) NB and NBr were set to default
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(v) RF and RFr was set to “gini criterion,” “5 max
depth,” and “50 estimators”

(vi) ANN and ANNTr were set to “2 layers with 50 neu-
rons,” “adam solver,” “adaptative learning rate,”

and “relu activation”

» o«

2.4. Performance Metrics. The test part of the dataset is used
to evaluate the results. We used the mean squared error
(MSE) to assess regression performance using equation (1),
where the n represents the number of samples, y; represents
the original value of all i samples, and ¥, represents the pre-
dicted values of all i samples [39].

MSE = %Z(yi—?i)z. (1)

HN and ND were compared to HNr and NDr to evaluate
whether the machine learning models. Prediabetes is the mid-
stage between healthy (no diabetes) and diabetes and has a
narrow HbAlc value range; this relationship might negatively
influence model performance. Five metrics were used to study
the models: sensitivity (SN), specificity (SP), precision (PR),
negative precision (NPR), and F1 score (F1), as in equations
((2)-(6)). The true positives (TP) and true negatives (TN)
are the number of positive samples in the positive set and
the number of identified negative samples in the negative set.
The false-positive (FP) and false-negative (FN) values are the
numbers of positive samples in the negative set and the num-
ber of negative samples identified in the positive set. Sensitivity
is the true positive rate, and specificity is the true negative rate.
The F1 score is the harmonic mean of precision and sensitiv-
ity. The F1 score is the harmonic mean of precision and sensi-
tivity, recommended for use with unbalanced databases, such
as the database used in this work. The confusion matrix was
used to visualize the performance of the algorithms; the rows
represent the predicted class, the columns represent the actual
class, and a good model must have a true diagonal near 1 [39].

T
SN = ﬁ 2)
TN
SP= NP’ (3)
T
R= oo o (4)
NPR = TNT% (5)
2TP

Fl= ———— .
2TP + FN + FP
3. Results

Table 2 lists the performance of the classification model for
classifying the HPD dataset. The models had different score
characteristics. The ANN model has greater sensitivity in iden-
tifying people with diabetes, although the precision is not high
(84.9%). On the other hand, the KNN model has a lower sensi-
tivity in identifying DM but greater precision within the identi-

TaBLE 2: Performance of the studied classification models using
healthy, prediabetes, and diabetes (HPD) dataset.

Class KNN SVM NB RF ANN
Sensitivity (SN %)

Diabetes 47.0 624 63.1 624 66.2
Prediabetes 534  63.7 563 637 679
Healthy 78.7 792 794 792 76.6
Specificity (SP %)

Diabetes 99.0 984 959 984 98.0
Prediabetes 742 76,5 778 765 75.0
Healthy 64.6 750 72,6 759 79.1
Precision (PR %)

Diabetes 89.1 869 723 869 849
Prediabetes 557 622 50,6 622 622
Healthy 66.9 742 725 742 769
Negative precision (NPR %)

Diabetes 91.6 93.8 938 938 944
Prediabetes 725 777 746 777 794
Healthy 76.9 798 79.5 79.8 78.8
FI score (F1 %)

Diabetes 61.8 726 674 726 744
Prediabetes 545 62.6 583 629 649
Healthy 72.3 76,6 758 76.6 76.7

fied DM. Figure 3 shows the confusion matrix of the
classification models using the HPD dataset. We found that
KNN, SVM, and NB behaved approximately equally, while
the ANN performed better than the others. All the models have
approximately a 30% prediction error for prediabetes, which
indicates that this category is primarily fuzzy. In addition, there
is a tendency to misclassify prediabetic individuals as healthy
than diabetics, which may be due to the dataset characteristics.

The performance of the classification models for the HN
and ND datasets is presented in Table 3. The sensitivity, pre-
cision, and F1 score are shown as bar plots in Figure 4. The
HN models are more regular regarding scores; however, they
have approximately 70%-80% precision; thus, some false
positives are expected. We observe that the KNN has a sen-
sitivity of only 42.7% using ND; however, it leads to high
precision, useful in screening false negatives.

Figure 5 shows the regression model errors (MSE
results). The regression line is shown. Data points are clus-
tered in the regression line, which is indicative of the
excellent performance of the models. The average MSE
of the five models is 0.32, with the best performance
achieved by the ANN model (0.29) and the worst, 0.38,
by KNN. Table 4 shows the performance of the predicted
values of the regression, arranged as HPDr. Figure 6 shows
the relative confusion matrix. The regression models make
it possible to observe the misclassification tendency of pre-
diabetics as healthy compared to individuals with diabetes.
This tendency was also observed when using the classifica-
tion models (see Figure 3). Thus, this tendency may be a
characteristic of the data and not an imbalance in the
database.
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FiGure 3: Confusion matrices for the classification models using the HPD dataset: (a) KNN, (b) SVM, (c) NB, (d) RF, and (e) ANN.
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TaBLE 3: Performance of the classification models using healthy and no healthy (HN) and no diabetes and diabetes (ND) datasets.
Percentual (%) values of sensitivity (SN), specificity (SP), precision (PR), negative precision (NPR), and F1 score (F1).

Healthy and no healthy (%) No diabetes and diabetes (%)
KNN SVM NB RF ANN KNN SVM NB RF ANN
SN 55.9 77.3 57.6 78.2 78.1 42.7 59.9 69.6 66.3 67.9
SP 77.5 77.5 88.1 75.3 76.6 99.5 98.7 95.1 98.1 97.9
PR 76.6 79.0 84.2 77.7 78.7 93.7 89.0 71.0 85.7 84.8
NPV 68.1 75.6 65.4 75.8 76.1 91.0 93.4 94.8 94.4 94.7
F1 71.4 78.2 68.4 77.9 78.4 58.7 71.3 70.3 74.7 75.4

No diabetes and diabetes dataset
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90% 89.0 85.7 84.8
o 74.7 75.4
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FIGURE 4: Sensitivity, precision, and F1 score of the classification models for the HN (healthy versus no healthy) and ND (no diabetes versus
diabetes) datasets.
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FIGURE 5: Regression models MSE: (a) KNN, (b) SVM, (c) NB, (d) RF, and (e) ANN.

The performance of the regression models using HNr
and NDr is presented in Table 4. The sensitivity, precision,
and F1 score are also shown as bar plots in Figure 7. The
results presented by the classification and regression models
were similar when analyzing the same “type” of machine
learning model. This characteristic can be observed in the
three tested datasets (HPD, HN, and ND). Some of the

tested machine learning models showed a slight improve-
ment in performance with classification after regression.
4. Discussion

We studied a machine learning approach to detect DM using
data from the most frequently performed clinical laboratory
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TaBLE 4: Performance of the studied regression models using
healthy, prediabetes, and diabetes (HPDr) dataset.

Class KNNr SVMr NBr RFr ANNr
Sensitivity (SN %)

Diabetes 51.3 67.0 63.1 680 66.3
Prediabetes 60.7 599 563 47.1 517
Healthy 75.2 80.2 794 858 853
Specificity (SP %)

Diabetes 98.7 98.0 959 979 98.0
Prediabetes 71.2 782 77.8 829 817
Healthy 71.9 73.1 72,6 63.5 675
Precision (PR %)

Diabetes 87.0 85.0 723 84.6 848
Prediabetes 56.0 624 60.6 625 63.1
Healthy 70.9 73.1 725 68.2 70.5
Negative precision (NPR %)

Diabetes 92.2 945 938 945 944
Prediabetes 749 763 746 721 736
Healthy 76.1 80.3 79.5 83.1 834
FI score (F1 %)

Diabetes 64.5 749 674 748 734
Prediabetes 58.3 61.1 583 537 56.8
Healthy 73.0 76.5 75.8 73.0 77.2

examinations. Glycated hemoglobin was used as a model
target. Clinical laboratory data are often available because
they are typically generated from routine blood tests. We
demonstrated that machine learning could assist in the
detection of DM. This system can be implemented at a min-
imal cost, as data are already available on computer data-
bases from routine examinations. The proposed approach
alone is not recommended for diagnostic purposes. We rec-
ommend using the system to generate an alert and recom-
mend a specific DM examination. Thus, the models would
improve DM investigation processes, as patients diagnosed
with prediabetes or diabetes could be referred for further
analysis, which is compatible with intelligent health systems
[40]. If a patient laboratory log shows diabetes probability,
ie, a “diabetes-like” pattern, the system can recommend
further diabetes examination. The patients with “diabetes
patterns” should be guided to traditional examinations and
procedures.

HbAlc strongly correlates with the average glucose
[41], being more stable and recommended for diabetes
diagnoses [42]. Thus, during the FPG analysis process,
the system will be able to predict HbAlc values over dif-
ferent arrangements of datasets, looking for some kind of
discrepancy in relation to the exam performed. If there
is a difference between the results, a new FPG test or a
supplementary HbAlc test may be recommended in order
to obtain a counter-proof of the result. As it is a
computational method, there is no interruption in tradi-
tional procedures. The system can collaborate synergisti-
cally with the current procedure and may collaborate to
detect DM earlier.

Currently, some studies have used laboratory tests to
predict new results and support the diagnosis of diseases that
are not the target of the test, as in Park’s study [34], where
several diseases are predicted. The most recent reports were
[43-46], which studied the prediction of the RT-PCR test.
However, several studies have used other types of data and
machine learning techniques to assist DM prediction. In a
study by Zheng et al. [47], the authors obtained 100% sensi-
tivity and precision above 90% in several models while using
a dataset of 300 samples and used several categories of fea-
tures, including self-reporting notes and medication. Oli-
veira et al. [48] obtained 68% sensitivity and 68%
specificity after using a smaller dataset and categorical fea-
tures obtained through interviews. Lai et al. [16] obtained
71.6% sensitivity and 73.4% specificity with a dataset of
13,309 samples using laboratory and clinical features. The
results obtained in this study cannot be directly compared
to those of the studies mentioned above because the method-
ologies and features (i.e., input parameters and hyperpara-
meters) differ. This study used only quantitative data from
routine laboratory tests to train different classification and
regression models, as well as different dataset arrangements,
having an exploratory character.

A confusion matrix was chosen for the evaluation of the
overall model. The confusion matrix is particularly useful
when working with unbalanced data. The values of the main
diagonal of the confusion matrix make up the accuracy,
which is not a good evaluation metric in classification
models with unbalanced datasets. In these cases, the F1 score
is the most recommended evaluation metric. This F1 score
represents a consonant mean between sensitivity and preci-
sion and is a simple way to evaluate models with unbalanced
databases. However, the most appropriate metric to evaluate
a classification model in searching for a target is the joint
analysis of sensitivity and precision. For instance, high-
sensitivity models are better for target identification (e.g.,
RF model for HN dataset, Table 3). Therefore, prioritizing
models with high precision (e.g., KNN model for ND data-
set, Table 3) will provide greater certainty in the results.

When using the classification models (see Table 2), we
found that the ANN model had the highest sensitivity in
identifying DM (66.2%), with a precision of 84.9%. The
same occurred in identifying patients with prediabetes,
where the ANN model had the best sensitivity (67.9%).
The KNN model, on the other hand, obtained the highest
precision in the identification of DM (89.1%), despite the
low sensitivity (47.0%). For the identification of healthy indi-
viduals, the NB model had the highest sensitivity (79.4%),
followed by the SVM and RF models (79.2% for both). The
highest precision was for the ANN model (76.9%), followed
by the SVM and RF models (74.2% for both). Regarding the
F1 score, we found that the ANN model had the highest
results for all classes (i.e., 74.4% for diabetes, 64.9% for pre-
diabetes, and 76.7% for healthy).

When using the regression models, we verified the
capacity of the models in predicting HbAlc, as shown in
the scatter plot in Figure 5. ANNr yielded the best result,
with an MSE of 0.29. However, the graph shows that all
models were able to predict HbAlc. Subsequently, the
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F1cure 6: Confusion matrices for the regression models using healthy, prediabetes, and diabetes (HPDr) dataset: (a) KNNr, (b) SVMr, (c)
NBr, (d) RFr, and (e¢) ANNr.
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FIGURE 7: Sensitivity, precision, and F1 score of the regression models for the HN (healthy versus no healthy) and ND (no diabetes versus

diabetes) datasets.

predicted value of HbAlc was classified as DM status
according to [36], which may lead to some classification
errors when HbAlc values are close to the transition limits
between the different classes. This fuzzy range in the classi-
fication of regression values is proportional to the mean
absolute error (MAS) of approximately 0.33 for all tested
models.

Comparing the values in Tables 4 and 5, we observe a
certain similarity of the classification results after regression
with the results of the classification models. This similarity
was also observed by examining the confusion matrix
(Figures 3 and 6). Among the different models and datasets,
a slight variation in the results was observed; in some cases,
the classification of regression values was better than that of
the classification models. Figures 3 and 6 show that all
models misclassified (by more than 30%) prediabetes cases
as healthy cases. Thus, according to the classification of the
models, patients with prediabetes are more “similar” to
healthy individuals than patients with DM. We can further

analyze the prediabetic classification characteristics using
the HN and ND datasets.

In Table 3, we observe that the ANN model performed
better using the HN dataset (where prediabetes and DM
are in the same class), with a sensitivity of 78.1% and preci-
sion of 78.7%. This arrangement is interesting in the search
for unhealthy individuals and can be used in general to
screen patients who already have or are on the way to devel-
oping the disease. However, regarding the sensitivity and
precision using the ND dataset (where healthy and predia-
betic individuals are in the same class), we observed varia-
tions in the performance of the models. All models have
lower sensitivity but higher precision values than the HN
dataset. According to the F1 score, the regression model that
classified better patients with diabetes and prediabetes was
SVMr, reaching 74.9% and 61.1%, respectively. The model
with the best performance in classifying healthy patients
was ANNTr (77.2%). The greater precision of the models in
the ND dataset reinforces the idea that prediabetes patients
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TaBLE 5: Performance of the regression models using healthy and no healthy (HN) and no diabetes and diabetes (ND) datasets. Percentual
(%) values of sensitivity (SN), specificity (SP), precision (PR), negative precision (NPR), and F1 score (F1).

Healthy and no healthy (%)

No diabetes and diabetes (%)

KNN SVM NB RF ANN KNN SVM NB RF ANN
SN 71.9 73.1 76.7 63.5 67.5 51.3 67.0 76.7 67.0 66.3
SP 86.6 80.9 77.1 85.0 75.2 99.2 98.0 77.1 98.0 97.5
PR 76.1 80.3 78.2 83.1 83.4 87.0 85.0 78.2 84.6 84.8
NPV 79.7 72.3 74.3 68.4 75.4 94.3 94.0 74.3 93.9 94.6
F1 74.0 76.5 77.4 72.0 74.6 64.5 74.9 77.4 74.8 74.4

are more similar to healthy individuals than they are to
patients with diabetes.

Depending on the objective, a dataset arrangement of
HN or ND can be used. For instance, precision is more
important than sensitivity when screening for false nega-
tives, which would lead us to use the ND arrangement. Only
the results with a negative diagnosis would be analyzed in
this case. Even if the system is not very sensitive, it must
have high precision. Thus, even if a few cases of false nega-
tives are identified, we will be more confident that these
cases are real false negatives. In this sense, we draw attention
to the KNN classification model. Using this model in the
search for false negatives, even if it only identifies half of
the occurrences, we will be 94% sure that these tests are false
negatives.

In the search for the correct classification of diabetes or
no healthy patients, we understand that the idea is to have
high sensitivity and precise models, which means fewer false
positives. We demonstrate that machine learning can detect
DM using data from laboratory examinations performed
most frequently. The model achieved better results as the
sensitivity increased; however, sensitivity was less important
than precision.

The artificial neural network classification model scored
78.1%, 78.7%, and 78.4% for sensitivity, precision, and F1
scores, respectively, when identifying no healthy individuals
(i.e., individuals with prediabetes or diabetes). Thus, we
believe that this approach exhibits the best overall perfor-
mance. We observed that all tested models had difficulty
classifying the prediabetes group; thus, the dataset configu-
ration improved detection. This model may use existing lab-
oratory examinations of patients to recommend further and
specific DM follow-up. Thus, these results could support the
screening of DM using machine learning algorithms and
available clinical information.

5. Conclusions

Patients with DM may be asymptomatic and go unnoticed
in diagnoses based only on FPG exams. These exams can
vary and be susceptible to nonstandard methodologies,
patient adherence and preparation prior to the exam, and
medications in use.

The possibility for a computer system to automatically
find hidden information in laboratory test data is highly
advantageous to the diagnostic process in medical laborato-
ries. These systems could perform patient screening to dis-

cover early diseases, generate alerts, and recommend
complementary exams to counter-proof possible problems
with false negatives. These tests could be performed with
the patient’s blood sample, usually already available.

This work demonstrates that machine learning models
can aid in DM screening using data from routinely per-
formed laboratory tests, including blood counts, providing
evidence to refer a patient for further testing (e.g., HbAlc).
The proposed system can operate in conjunction with tradi-
tional methods and not interrupt the normal flow process of
exams.

Different dataset arrangements and prediction models
can be used depending on the purpose or application of this
approach. For example, to perform a screening in the search
for individuals with DM, one option would be to use the
ANN model with the HN dataset, and this is because it pre-
sents greater sensitivity and maintains good precision.

If the objective is to find false negatives in an FPG exam,
we could use the KNN classification model with the ND
dataset. Despite having low sensitivity, this arrangement
presented the highest precision, thus reinforcing the cer-
tainty in the results found.

The next step in this study is the improvement of
methods that help discover false negatives with the FPG
exam. Because it is the most performed test in the search
for a diagnosis of DM and presents possible variations, this
process may inhibit the early treatment of asymptomatic
patients.

Early detection of DM is advantageous for the health sys-
tem and patients as it reuses existing laboratory information.
Detecting DM earlier can improve the quality of life and
reduce treatment complexity, costs, and late complications.
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