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Finding cell states and their transcriptional relatedness is a main outcome from analysing

single-cell data. In developmental biology, determining whether cells are related in a

differentiation lineage remains a major challenge. A seamless analysis pipeline from

cell clustering to estimating the probability of transitions between cell clusters is

lacking. Here, we present Single Cell Global fate Potential of Subpopulations (scGPS)

to characterise transcriptional relationship between cell states. scGPS decomposes

mixed cell populations in one or more samples into clusters (SCORE algorithm) and

estimates pairwise transitioning potential (scGPS algorithm) of any pair of clusters.

SCORE allows for the assessment and selection of stable clustering results, a major

challenge in clustering analysis. scGPS implements a novel approach, with machine

learning classification, to flexibly construct trajectory connections between clusters.

scGPS also has a feature selection functionality by network and modelling approaches

to find biological processes and driver genes that connect cell populations. We applied

scGPS in diverse developmental contexts and show superior results compared to

a range of clustering and trajectory analysis methods. scGPS is able to identify the

dynamics of cellular plasticity in a user-friendly workflow, that is fast and memory efficient.

scGPS is implemented in R with optimised functions using C++ and is publicly available

in Bioconductor.

Keywords: single cell, machine learning, clustering, trajectory analysis, cell fate

1. INTRODUCTION

Single-cell RNA sequencing technologies (scRNAseq), enable researchers to profile the
transcriptomes of thousands of cells at an individual cell resolution. One of the most important
objectives of single-cell analysis is to disentangle the cellular complexity of a biological sample,
especially regarding the subpopulation composition and their relationship (Lahnemann et al.,
2020). Clustering analysis is commonly performed as an early analytical step to decompose cells
in a sample into groups of cells with similar transcriptional profiles, often each representing a
discrete cell type. Clustering, as a machine learning algorithm, can be generally categorised into
supervised and unsupervised learning. Supervised learning uses reference data with labelled cells as
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the guidance to cluster cells and assign cell identities (Ranjan
et al., 2021). In contrast, unsupervised learning partitions cells
based on the transcriptional similarity between the cells (Kiselev
et al., 2019). Unsupervised methods are advantageous because
they offer a data-driven and unbiased approach that can be
applied to any data and are useful for identifying novel cell
types (Kiselev et al., 2019). Unsupervised methods are used to
determine the subpopulations, while supervised methods are
applied to infer the cell identity (i.e., cluster annotation). So far,
there have been over 200 clustering tools developed for single-cell
transcriptomic analysis (Zappia et al., 2018), each of which comes
with different clustering algorithms. k-means and hierarchical
clustering are the conventional algorithms used for clustering
analysis (Petegrosso et al., 2020). Graph-based methods are
another popular approach, which have been applied to some
widely used software pipelines such as Seurat (Stuart et al., 2019)
and Scanpy (Wolf et al., 2018).

One of the challenges of unsupervised-clustering is to define
subpopulations that are robust to both technical noise and/or
biological stochasticity (Kanter et al., 2019; Lahnemann et al.,
2020) and parameter settings (Krzak et al., 2019). Slight gene
expression variation may change the assignment of cells to
different groups (Kanter et al., 2019). Most clustering tools
provide multiple parameter settings, and often the number
of clusters is determined by the user in an ad hoc manner
(Lahnemann et al., 2020). A recent review identified that the
performance of these tools is strongly dependent on the user-
specified parameter setting as well as the dimensionality and
composition of the datasets (Krzak et al., 2019). Therefore, a
clustering algorithm that statistically selects clustering results
most robust to parameter settings can simplify and reduce the
subjectivity involved in defining subpopulation composition.
Statistically justified clustering results will then need to
be validated by biological experiments. In this work, we
present SCORE as a user-friendly, statistically-tractable, and
unsupervised clustering algorithm to automatically assess and
select for a stable clustering result, via dynamic scanning of
different clustering resolutions, followed by bootstrapping and
bagging analysis.

Clustering analysis is used to find discrete cell types, often
followed by downstream analyses to investigate cellular processes
between cells within and among clusters. Trajectory inference
constructs predicted developmental pathways of cells by ordering
them along a transcriptional trajectory in cellular space (Trapnell,
2015; Cannoodt et al., 2016). Many of the currently available
trajectory inference tools apply a graph-based approach (Saelens
et al., 2019). Based on gene expression, cells can be arranged
into a connected structure as a graph. In a graph, nodes
represent cells and edges represent the pairwise expression
similarity (connectedness) between cells (Wagner and Klein,
2020). Cells can also be arranged in a low dimensional manifold,
where transcriptionally related cells are closely positioned in the
reduced space (Trapnell et al., 2014). Principal graph algorithms
can be used for such purposes (Qiu et al., 2017). Minimum
spanning tree is another commonly used algorithm applied to
determine the cell- and/or cluster-level trajectory (Shin et al.,
2015; Street et al., 2018). These graph-based methods depend

on the assumption that cells with similar transcriptional profiles
will be found in proximity within a trajectory (Baron and
van Oudenaarden, 2019). However, the global transcriptional
similarity between cells may be biased by a range of factors,
such as by highly expressed genes not specifically associated
with cell commitment or by biological processes that have
strong continuous expression pattern (e.g., cell cycle), which
may mask differentiation processes represented in the data
set (Tritschler et al., 2019). The performance of graph-based
methods is also dependent on the dataset. They perform best
when there is a strong continuous flux of transcriptional states
in the dataset, but become less compatible and are prone to
creating artefact connections when there are a small number of
cells representing a biological timepoint, or when the transitional
timepoints are missing from the datasets (Wagner and Klein,
2020). We developed scGPS, a novel algorithm that is not
dependent on a range of common assumptions applied by
existing trajectory methods, such as: the continuum transition
between cells, the tree-like structure or predefined topology of
the global lineages, and the use of all cells in a dataset to initialize
a graph prior to optimisation. This allows for the flexibility to
apply scGPS on one or multiple datasets, even with datasets
generated by different studies without the need to assume any
connections. This is different from existing trajectory inference
methods, which assume cell clusters follow an expected topology
(Saelens et al., 2019).

Although it is a common need to perform clustering and
trajectory inference for a single-cell dataset, very few tools
provide a streamlined pipeline to perform both analyses.
Combining these two analyses from separate tools can often be
problematic due to different data pre-processing pipelines that
are required for each analysis type. For examples, normalisation
and dimensionality reduction methods prior to clustering or
trajectory analysis are diverse and can significantly affect the
downstream analysis (Townes et al., 2019). Here we present
scGPS, a software package that streamlines two advanced
machine learning methods, SCORE clustering and scGPS
trajectory analysis. These two algorithms enable users to assess
and find stable clustering results and to predict relationships
between clusters. The flexibility of the two algorithms allows
for analyses of different biological contexts, especially in
differentiation and cellular plasticity. Fast computation also
enables the analysis of big datasets.

2. METHODS

The two key algorithms in the scGPS software workflow,
SCORE and scGPS, are described in Figure 1. The inputs are
flexible, containing either one or more scRNAseq datasets, with
or without clustering (subpopulation) information. scGPS can
perform an end-to-end analysis from raw data to clustering,
trajectory inference, gene marker selection, and visualisation.
scGPS accepts either raw count or normalised count data. Since
normalisation is diversely dependent on the complexity of the
datatypes and each experimental design, users would often
perform normalisation using their own methods of choice, for
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FIGURE 1 | scGPS workflow. Brown boxes represent inputs and green boxes

show the main scGPS analysis. The dotted boxes represent optional inputs.

The input for scGPS analysis can be either a single expression matrix or two

expression matrices of two different cell populations, the following (shown as

MixedPop 1 and MixedPop 2). scGPS provides the functionality to determine

stable clusters within a cell population by SCORE algorithm. Alternatively,

users can provide their predetermined subpopulation list (clusters). The scGPS

class object is based on the widely adoptable SingleCellExperiment class (Lun

and Risso, 2019). Based on the subpopulation input, scGPS performs gene

feature selection by training an Elastic net regularisation. Informative genes are

then used in a logistic regression classifier to predict cell transition probability

between subpopulations. When the input is one mixed sample (MixedPop1),

scGPS computes the transition scores between different subpopulations

within the same sample. When the inputs are two mixed samples (MixedPop1

and MixedPop2), scGPS computes the transition scores from the

subpopulations in population one to those in population two. scGPS also

predicts marker genes and their contribution to the transition between two

subpopulations (refer to Supplementary Figure 1).

example, cell-to-cell normalisation can be done by Scran or
scTranform (Seurat). For differential expression (DE) analysis
in scGPS, raw data or rounded normalised data are processed
by a wrapper function of DEseq2 (Love et al., 2014) through
fitting dispersion-mean relationship across samples/cells. DE
analysis is not the focus of scGPS, as it is used to obtain a
gene list to initialize the feature selection step through ElasticNet
regularisation procedure. The gene list can be provided by
users as an input for scGPS, in which case DE analysis is not
required for the scGPS workflow. The gene marker selection and
visualisation steps are shown in the Supplementary Figure 1.
Detailed descriptions of the two main algorithms in scGPS are
presented below.

2.1. SCORE Clustering Algorithm
SCORE is an unsupervised clustering algorithm, an extension
on previous work CORE (Nguyen et al., 2018; Senabouth et al.,
2019), with additional stability analyses. The method is the first
step in the scGPS package. Similar to CORE as described in
Nguyen et al. (2018) and Senabouth et al. (2019), clustering in
SCORE starts by building a hierarchical distance tree between
cells. SCORE uses Wishart’s version of the Ward algorithm,
implementing the Lance-Williams update formula to find an
optimal grouping of branches to make stable clustering results
(Lance and Williams, 1967; Wishart, 1969). Expanding on the
CORE algorithm (Nguyen et al., 2018; Senabouth et al., 2019),
SCORE adds bagging strategies to search for a stable clustering
result. From the original Euclidean distance matrix calculated
when building the dendrogram of the whole dataset as applied
in CORE, here SCORE subsamples a proportion of the matrix.

This method quickly generates dendrogram trees of variable
sizes without the need to recalculate cell distances, which
typically is the most computationally expensive step of clustering.
We select the optimal cluster resolution by implementing
tree-height iterations and bagging strategies according to
Algorithm 1 below.

Algorithm 1: SCORE Algorithm

1 Create a dendrogram tree using CORE, keeping Euclidean
distance matrixM for bagging runs:

2 Create a vector bk (k = 1, 2, . . . ,m);
3 Populate bk with a subsample of cells, with replacement,
from the set of all cells C;

4 Create a new matrix, Nk, of Euclidean distances for the cells
in bk, using values fromM;

5 Generate a new dendrogram tree and clustering of cells;
6 Record result from optimal stability of subsampled tree;
7 Vote on most commonly occurring result;
8 Choose most stable result from the original dendrogram
tree

2.2. The scGPS Prediction Algorithm
We developed an unsupervised machine learning approach
to predict differentiation trajectories between any two sub-
populations (two clusters) within one dataset or between
two independent datasets. This approach does not rely on
assumptions that define many current methods, including: (1)
the trajectory needs to be continuous between the two sub-
populations, (2) the trajectory follows a defined topology, (3)
the trajectory is unidirectional, (4) data of all cells are needed to
initialise the algorithm (refer to Tritschler et al., 2019).

After obtaining the clustering information, by SCORE’s
algorithm as described above (or by an independent clustering
algorithm if the data input does not require clustering), we
can estimate the relatedness between any two clusters within or
between datasets. Based on gene expression data, we calculate
the class probability of a cell belonging to a sub-population
or not. For every subpopulation, we find the number of cells
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that can be in the same class with the target subpopulation,
meaning to be more transcriptionally related than compared to
other subpopulations (classes). scGPS calculates the proportion
of cells in one subpopulation with the binary conditional
class probability that the cell belongs to a targeted class
(targeted subpopulation). This proportion is defined as the
transitioning potential between the two subpopulations, with 0
being unlikely transition and 1 being the most likely. Notably,
the transitioning is directional, allowing for the estimation
of a transition probability from cluster 1 to cluster 2 and a
probability from cluster 2 to cluster 1. In scGPS workflow,
within each given dataset, a sub-population is distinguished
from the remaining cells in the dataset by a Least Absolute
Shrinkage and Selection Operators (LASSO) (Tibshirani, 1996)
and cross-validation procedure. The LASSO model training for
the dataset selects the most predictive genes that distinguish
the cells in the subpopulation from all the remaining cells in
that dataset (Supplementary Figure 1). LASSO-selected genes
are then considered as the gene features for the subpopulation,
and these genes will be used for scGPS prediction (Algorithm 2,
Equation 1). As a result of the model training, those genes not
informative for classifying the cells in the subpopulation have
coefficients reduced to 0. The remaining genes with coefficients
bigger than 0 are those that are predictive of the transition
between clusters, and thus can be considered as trajectory driver
genes. These genes can be visualised in scGPS as shown in
Supplementary Figure 1B. The cluster with the LASSO-defined
genes is considered a source cluster, in which the expression
of each cell will be fitted into the logistic classifier (Equation
2) to compute the probability that the cell belongs to the same
class of the target subpopulation to be compared to or not.
The probability suggests the transcriptional relateness to the
target subpopulation relative to other subpopulations in the
original dataset where the source subpopulation is defined. The
target subpopulation can be in the same or in different datasets.
This way, scGPS allows for the comparison of any pair of
subpopulations, as described in Algorithm 2.

Let subpopulation labels be a categorical response variable y
and assign y into one of two classes, belonging or not belonging
to cluster Ci. Let p equal the number of gene predictors. For
each subpopulation, we fit a generalised linear model (binomial
distribution) with the response variable as a vector containing
two classes (∈ Ci and /∈ Ci), and the predictor as the matrix n
cells by p genes of the expression levels for the classes cells. Effect
sizes βj of the genes xj are estimated by a penalised maximum
likelihood procedure. The resulting model with the optimal set of
non-zero coefficient genes is a Bayes optimal classifier. Themodel
removed insignificant genes that do not contribute to the model
fit by shrinking their coefficients to 0 following:

argmin(1/N

n∑

i=1

l(yi, β0 +

p∑

j=1

βjxij)+ λ

p∑

j=1

|βj|) (1)

where xi = (xi1, xi2, . . . , xip) is a vector of expression values of
p genes in cell ci; yi is the cell subpopulation label of the cell ci;
l(yi, β0 +

∑p
j=1 βjxij) is the negative log-likelihood for Ci; and

λ is a tuning parameter that controls the shrinkage penalty of

Algorithm 2: scGPS trajectory analysis

1 Find clusters by SCORE, Ci (i = 1,. . . , k where k is the
number of clusters);

2 Training phase - Optimise a predictive model for each
cluster

3 for Cluster Ci in a Source dataset, (i = 1, . . . , k) do

4 Randomly split the cells in cluster Ci and in the
remaining clusters by a proportion r for train and 1− r
for validation (we recommend 0.8 > = r > = 0.5);

5 Select gene features by differential expression analysis
between cluster Ci and remaining clusters, obtaining p
genes

6 Train an ElasticNet model on 1− r and r split dataset,
for classifying cells c to cluster Ci or not by Pr(y = k|xi)
as in Equation (1);

7 Also train an LDA model for comparisons
8 Perform 10 fold cross-validation, select the best model

9 end

10 Predicting phase - Predict cells in another population;
11 for Cluster Cj in a Target dataset do
12 Classify every cell by fitting the trained model as in

Equation (2)
13 Calculate transitioning scores as percent of cells in each

class, based on class probability
14 end

15 Bootstrap phase (Optional)
16 for iter in 1..n_boot do
17 Repeat train and predict with random sampling
18 Store results, move to the next bootstrap

19 end

20 Summarize the n_boot bootstrap results
21 Repeat above steps for every pair of clusters Ci, Cj in one

dataset or two datasets
22 Visualisation of all clusters and transitioning scores and

directions

the coefficients. For each training cell subpopulation, an optimal
λ and a set of gene predictors can be determined by a 10-
fold cross-validation procedure to select the λ that produced
the minimum classification errors. The LASSO procedure
optimizes the combination set of coefficients for all predictors
in a way that the residual sum of squares is smallest for a
given λ value.

The conditional class probabilities of cell c belonging to Ci is
the linear combination of selected genes can be used to classify
every cell:

ln(Pr(y = 1|X = x)) = β0+β1x1+β2x2+ . . . +βpxp = β0+xβ
(2)

where βj is a coefficient for gene j (βj = 0 if the gene
j is not a predictor in the class). The coefficient vector
β = (β0,β1,β2, . . . ,βp) is calculated by maximum likelihood
estimation. The predicted probability of a cell c being in
a subpopulation Ci or Ci is estimated by replacing β and
gene expression values to the regression equation. scGPS
transition score can be related to transition probability in
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FIGURE 2 | Selection of stable clustering results. (A) SCORE cluster dendrogram. Coloured branches and bars (underneath the dendrogram) represent clusters. A

coloured row displays the result from one clustering resolution (40 resolutions are shown). (B) Bagging cluster estimations. Each dot is one bootstrap result. The

X-axis shows the order of the bootstraps from 1 to 100. The y-axis shows the number of clusters. Blue dots are the cumulative running average between consecutive

clusters (i.e., continuous bootstraps). (C) UMAP plot representing the final chosen clustering result. Each colour represents one cluster.

Markov chain in that two clusters are connected by conditional
probability. The main differences are that scGPS works with
any two clusters without an assumption on the time sequence
or order of these clusters in the trajectory and scGPS
estimates class probability for every cell, independently of
other cells.

Importantly, for stable results, scGPS has an option to run
n bootstraps to allow averaging of the percent of transitional
cells from one sub-population to another. In addition, as a
control for LASSO, we also include an LDA classifier (Linear
Discrimination Analysis), allowing for comparisons between a
full and a shrunken model.

3. RESULTS

3.1. Stable Clustering
Figure 2 shows an example of the selection of clusters
using the SCORE algorithm. We used the Smart-
seq human cerebral organoids by Camp et al. (2015),
with processed data from the Hemberg collection
(https://hemberg-lab.github.io/scRNA.seq.datasets) that
had been reduced to 553 cells with reference cluster labels.
Figure 2A illustrates the original cluster dendrogram, with 40
windows underneath the dendrogram, and their corresponding

clustering results for the original data. In this example, the
process of dendrogram generation is repeated 100 times with
different subsampled populations. Figure 2B shows the optimal
number of clusters found for each new tree formed. This
panel also tracks the moving average of the bagging runs
to gauge the stability of the method. From the information
supplied, the clustering result containing four clusters is
chosen. The chosen clustering result is illustrated in the
dendrogram in Figure 2A, with matching results seen in the
windows below. We can also discover additional information
about the population in Figure 2B, where we examine the
individual results from the bagging runs. Bootstrap results
are distributed on mainly four clusters and also regularly
five clusters, indicating the stability at those resolutions.
Notably, there were several times a sixth cluster, not present
in the original groupings, was found as the results from the
random bootstrapping procedure. This is a further step to
examine the possibility of smaller clusters that otherwise would
have been masked by larger subpopulations if it was not for
subsampling. Visual representation of clustering changes across
40 windows using different biological datasets is shown in
Supplementary Figure 2. The clusters in these datasets range
from simple (3) to more complex (7) and from hundreds to
thousands of cells.
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FIGURE 3 | scGPS trajectory analysis. scGPS trajectory analysis can perform transitioning prediction between two populations (this Figure 3) or within a

heterogenous population (Figure 4). In (A) edges show pairwise connections between two clusters, where each node (a vertical bar) represents a cluster, and the

edge width is proportional to the transitioning score from one cluster to another. MP represents a mixed population (i.e., the total dataset for one mixed sample,

containing multiple clusters). Each coloured bar represents one subpopulation (a cluster). (A) Transitioning between three subpopulations in the mixed population 1

(MP1) to four subpopulations in the mixed population 2 (MP2). (B) The number of cells in each cluster shown in (A). (C) Bootstrapping results displaying the summary

scores from one hundred bootstraps used for the same data shown in (A).

3.2. Trajectory Analysis
Figure 3 shows between population analysis (Figures 3A,C).
Here we analysed selected data from a time-course dataset
capturing differentiation of induced pluripotent stem cells
(iPSCs) into cardiomyocytes (Friedman et al., 2018). These data
represent cell transitions that follow classical developmental
lineage decisions through mesendoderm cell types into
differentiated cell types. Time-course datasets like this that

involve major cell state changes between cell captures are
particularly challenging to analyse by trajectory prediction
because significant transcriptional changes make cell transitions
difficult to predict. We used scGPS to investigate the transition of
cell types from three clusters in day 2 (representing gastrulation-
stage mesendoderm cell types) to four clusters in day 5
(representing progenitor cells including definitive endoderm,
endothelium, and cardiomyocyte precursor cells). The biological
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FIGURE 4 | scGPS trajectory comparisons with methods Slingshot and Monocole on the full-length total RNA sequencing dataset from Petropoulos et al. (2016),

processed by Saelens et al. (2019). (A) PCA dimensionality reduction of the dataset. The data is labelled with timing information for the cells which were collected at 5

time points. (B) scGPS trajectory analysis. Arrows show direction and numbers show transitioning scores. For example, number 50 on the arrow from cluster 2–4

indicates a score of 50% total cells transitioning from 2 to 4. (C) Monocole trajectory graph. (D) Slingshot trajectory graph. The black, smoothed curve shows

predicted linage, connecting clusters represented by coloured dots.

annotation for each cluster and the transitioning between
cell types were described in their original paper (Friedman
et al., 2018). Using the same input data with the data in the
original paper, scGPS predicts the transitioning probabilities
between every pair of clusters and offers three visualisation
options for analysing output predictions (Figures 3, 4B, and

Supplementary Figure 3). Consistent with the result reported
(Friedman et al., 2018), scGPS found cells in cluster 2 (mesoderm)
were predicted to transition into four cell types (cardiovascular
precursor/progenitor and definitive endoderm) in the day 5
dataset (Figures 3A,C) (Friedman et al., 2018). On the other
hand, cluster 3 (mesendoderm) and cluster 1 (endoderm) were
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TABLE 1 | Benchmarking of clustering results and running time.

Data set Methods ARI Running time Number of clusters

Stable res SCORE High res SCORE SC3 SCORE SC3 Stable res SCORE High res SCORE SC3

Baron 0.613 0.613 0.265 23.934 min 137.735 min 9 9 54

Klein 0.800 0.800 0.636 3.342 min 15.891 min 6 6 16

Camp 0.559 0.597 0.556 0.544 min 2.693 min 4 5 10

Koh 0.565 0.661 0.824 0.696 min 3.239 min 7 8 18

Kumar 0.574 1.000 0.994 0.281 min 0.496 min 2 3 4

Yan 0.588 0.588 0.650 0.108 min 0.247 min 3 3 6

Individual tests can be found through the links at: https://imb-computational-genomics-lab.github.io/scGPS/index.html. Processed data in the repository by Soneson and Robinson

(2018) for the datasets generated by: Koh et al. (2016) (C1 Fludigm sequencing, 651 Human mesoderm cells, 10 Clusters) and Kumar et al. (2014) (Smart-seq, 268 mouse Embryonic

stem cells, 3 Clusters). Processed data in repository from the Hemberg collection (https://hemberg-lab.github.io/scRNA.seq.datasets/) for the datasets generated by: Baron et al. (2016)

(inDrop sequencing, 8569 pancreatic cells in human, 14 clusters), Klein et al. (2015) (inDrop sequencing, 2717 mouse ES cells, 4 Clusters), Camp et al. (2015) (Smart-seq, 553 human

cerebral cortex organoids, 5 Clusters) and Yan et al. (2013) (Smart-seq, 90 human embryonic stem cells, 7 Clusters). Stable Res SCORE indicates the optimal resolution, most robust

to parameter changes. High Res SCORE corresponds to the original number of clusters before the window-scanning procedure to search for stable clusters. The High Res SCORE

corresponds to the clustering result in the first row underneath the dendrogram tree as in Figure 2A.

not predicted to progress into day 5, which is consistent with
reported results and also follows with expected mesendoderm
cell differentiation lineage relationships (Figures 3A,C).
Figure 3B shows cell numbers in each of the clusters, with
the cluster colours matching the colours of corresponding
clusters shown in A and C. scGPS analysis also assesses the
consistency of the prediction through a bootstrap run, where
only a subset of randomly sampled cells are used. Figure 3C
shows the results from 100 runs, suggesting a high level of
confidence for the prediction from cluster 2 (mesoderm) on
day 2–5 but not cluster 1 (definitive endoderm) and cluster 3
(mesendoderm). We also assessed scGPS trajectory analysis in
four additional datasets, with an increased level of complexity to
connect samples containing from 3 to 6 clusters (Figure 4 and
Supplementary Figure 3).

3.3. Benchmarking of SCORE
To verify the processes of the SCORE clustering algorithm, the
method’s clustering results were benchmarked against another
clustering package, SC3 (Kiselev et al., 2017). SC3 was chosen
as it is a state of the art clustering package that also includes
methods for unsupervised cluster count estimation (Kiselev et al.,
2017). Table 1 outlines the benchmarking of SCORE against
SC3. Six data sets were used of various size, data types and
complexity to examine how each method performed in terms
of both accuracy and speed. We used the Adjusted Rand Index
(ARI) (Rand, 1971; Hubert, 1985), a widely used and adjusted
for random assignments method, for quantifying the accuracy
of the two methods in comparison to the clustering results
reported in the original studies, across six datasets. Of note, since
there was no ground-truth for the cluster label of each cell, the
use of the original clustering results as the reference points for
SC3 and scGPS should be considered as the suitable references
that are relatively accurate compared to the ground truth and
those clustering results have been validated by the respective
studies. Using real biological data for benchmarking rather than
simulated and/or cell lines was a relevant strategy to assess

the performance of the models on the real complex biological
context. From our testing, both of the methods performed
similarly with neither consistently outperforming each other
between the datasets (Table 1). Regarding the computation time,
SCORE outperformed the benchmark method, SC3, for all
datasets (Table 1). For the small datasets running time difference
was small but for the larger datasets SCORE well outperformed
showing superior scaling. Notably, SCORE resulted in smaller
numbers of clusters, while SC3 found, in some cases (e.g., Baron
et al., 2016), over 50 clusters compared to the 14 clusters reported
in the original study.

3.4. scGPS Validation and Benchmarking
Figure 4 shows a trajectory comparison between scGPS and two
widely adopted methods for trajectory analysis, Slingshot (Street
et al., 2018) and Monocole3 (Cao et al., 2019), found as top-
performing among 45 methods (Saelens et al., 2019). These two
methods are similar to scGPS in that no predefined topology
assumption (e.g., linear or bifurcation) was assumed. We used
a time series dataset with processes data in the repository by
Saelens et al. (2019) for the dataset generated by Petropoulos
et al. (2016). The data captured a transcriptional map of mouse
embryo development from E3 to E7. The three methods were
compared using the same cluster assignment (5 clusters, 0–4,
representing the time points E3, E4, E5, E6, and E7, respectively).
To allow for comparisons of trajectory analysis, we used a
common UMAP dimension reduction to determine the lineages
with Monocle3 and Slingshot. Figure 4A also displays a PCA
reduction to visualise cells more distantly separated in the PC1
and PC2.

scGPS on the other hand works directly with the original gene
expression space. scGPS trajectory inference result agrees with
that of Monocole3 and Slingshot with its strongest transition
scores through the path from clusters 0→ 1→ 2→ 3→ 4,
consistent to the time-course of the cell development from E3
to E7. scGPS not only predicted the transition but also estimated
the transition scores (probability of cells transitioning between
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clusters), which could be correlated to the transition strength. In
the tested dataset, we found scGPS transitioning scores from 0 to
1, 1 to 2, 2 to 3 and 3 to 4 as: 25.3, 28.2, 77, and 99.8%. When the
data is viewed from the perspective of each individual vertex of
the network, the leaving edges, representing transitions to other
clusters, maintained that the largest transitional probability was
along the trajectory consistent with the timing information and
the trajectories found using Monocle3 and Slingshot. Transitions
between other clusters were consistently lower, especially for
more separated clusters along the trajectory. The transition
scores give higher values between the later time points where
the cells appear to be more heterogeneous, as also seen in
the dimensionality reductions presented in Figures 4A,C,D.
Notably, cluster 3 is indicated by PCA and UMAP plots
(Figures 4A,C,D) as the most plastic cluster that is linked
(mixed) with other clusters, consistent to scGPS prediction
results. The unique feature in scGPS is the prediction of all
possible pairs, including reverse transition, making it possible to
suggest main transition and bidirectional transition, which can
be particularly useful in several biological contexts.

4. DISCUSSION

In this work, we introduced two main algorithms, scGPS and
SCORE, to address two main single-cell analysis categories.
Trajectory analysis using scGPS classification algorithm is novel
in that the method does not use any assumption about a
trajectory, for example, an assumed topology connecting cells
and/or a continuous differentiation from one state to another.
Different to most other trajectory inference analyses, scGPS
does not find cell locations on a continuous, low-dimensional
manifold or in a node of a graph-based trajectory, but implements
a machine learning classification framework. Conditional class
probability is used as the abstracted transitioning potential for
a cell in one cluster to have the transcriptional potential to
turn into another cluster. Most other methods, such as RNA
velocity as implemented in scVelo (Bergen et al., 2020), are
suitable for processes that happen within a narrow transitioning
windows, for example differentiation within one time point.
RNA velocity, however, is less suitable for cases where there
are transitioning gaps between two distant samples such as
two timepoints during in vitro differentiation of cardiomyocytes
(Friedman et al., 2018).

scGPS is free from the need to preorder cells in local and/or
global structure, either as connected manifold (like Monocle
Cao et al., 2019) or disconnected manifold (abstracted graph
approaches, as in PAGA Wolf et al., 2019). The abstracted
graph approaches do not assume tree-like structure, but still
require all data to first establish relationships between all
nodes in the graph, for example to initialize a starting nearest-
neighbour graph before graph optimisation (Tritschler et al.,
2019). On the other hand, scGPS is unique in that it is free
of any assumptions mentioned above. scGPS compares every
pair of clusters, including those that are at different stages in
the trajectory and based on the pairwise transitioning score,
the trajectory can then be determined. Also, differentiation is

not always unidirectional, but loops can happen, for example
in the cases of converging/diverging behaviours (Tritschler
et al., 2019). scGPS allows us to find such loops.Trajectory
inference generates hypothetical lineages that often require
biological knowledge and experiments to confirm. Therefore,
we aim for the scGPS trajectories to be tractable. In the scGPS
trajectory analysis, the inferred trajectory and directionality
are fully explainable. The explainability is based on gene
markers used as features in the classification model, how these
features are selected, the defined weights of these features
in the linear classifier, and the cells in the target clusters
classified as in the same class as the source cluster or not.
These defined parameters help with evaluating the resulting
trajectory. Through benchmarking analysis, we found that scGPS
inferred trajectories are consistent with the biology and results in
various datasets.

The SCORE clustering algorithm automatically finds the
number of clusters most robust to parameter changing, an
important feature that most clusteringmethods overlook. To find
consensus cluster is challenging. Our SCORE method focuses
on finding stable clusters, robust to changing parameters by
iterative bagging and bootstrapping as described above. Notably,
SCORE does not rely on dimensionality reduction, as opposed
to most other clustering methods, which perform clustering
based on the reduced dimensions. Dimensionality reduction
methods are variable and diverse, ranging from commonly used
as PCA, tSNE, UMAP to improved variants such as CIDR
or GML-PCA and to deep learning like DCA (reviewed by
Sun et al., 2019). Therefore, existing clustering methods would
produce variable results depending on the reduced dimension.
Working on the original gene expression space is made possible
in SCORE by implementing fast matrix computation methods,
allowing the processing of large datasets with thousands
of cells.

Among the over 802 tools that are available for single cell
analysis, clustering (202 tools) and trajectory inference (103
tools) are the most popular analysis categories (Zappia et al.,
2018). However, these two types of analyses are often not
streamlined in one package. Even in widely used pipelines like
Seurat (Stuart et al., 2019), Scater (McCarthy et al., 2017), and
ascend (Senabouth et al., 2019), clustering is implemented, but
not trajectory inference. On the other hand, popular trajectory
analysis tools like scVelo (Bergen et al., 2020) and Slingshot
(Street et al., 2018) do not have a clustering option. Several
trajectory methods such as Monocle3 (Cao et al., 2019) and
PAGA (Wolf et al., 2019) focus on trajectory analyses and
include a standard clustering step. Ideally a software tool that
equally focuses on both clustering and trajectory analysis will
be useful for broad users, especially for biologists with limited
programming experience.

We expect that scGPS can be broadly applied in multiple
contexts. Both clustering and trajectory analyses are important
in deciphering the complexity of one or more sample(s).
scGPS solves this challenging task by a streamlined analysis
involving both finding clusters and comparing those clusters,
either in discrete manners between cell types or in probabilistic
and continuous transitions in transcriptional states (e.g.,
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trajectory analysis). Besides implementing the two key
analysis types, scGPS also has convenient functions to
annotate clusters, find markers, and visualise clusters and
their transitioning potential.

In summary, scGPS is a user friendly and computationally
efficient software package that streamlines single cell analysis
in a framework that addresses two key tasks; decomposing a
mixed population into clusters and analysing the relationship
between clusters (Supplementary Figure 4). The scGPS package
offers ease of use to the user while still allowing for customisation
as they require. scGPS holds its unique flexibility, stability and
performance against the top of the line with the additional
benefit of fast computational time by design, assisted by
the use of C++ implementation for demanding calculations.
Such features would allow users to apply scGPS for diverse
usage scenarios. For example, scGPS can be applied for
many granular clusters (blocks) as defined by a fine-grain
partitioning algorithm like MetaCell (Baron et al., 2019). In
this case, transition scores can be calculated between any pairs
of metacells.

5. SOFTWARE AVAILABILITY

• Project name: scGPS
• Project github: https://github.com/IMB-Computational-Geno

mics-Lab/scGPS
• Project home page: https://imb-computational-genomics-lab.

github.io/scGPS/index.html
• Bioconductor Project doi: 10.18129/B9.bioc.scGPS
• Operating system(s): platform independent
• Programming language: R and C++
• Other requirements: R(>3.6), make
• License: GPL 3.0.
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