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Purpose: To build and validate artificial intelligence (AI)-based models for AMD screen-
ing and for predicting late dry and wet AMD progression within 1 and 2 years.

Methods: The dataset of the Age-related Eye Disease Study (AREDS) was used to train
and validate our predictionmodel. External validationwas performed on theNutritional
AMD Treatment-2 (NAT-2) study.

First Step: An ensemble of deep learning screeningmethods was trained and validated
on 116,875 color fundus photos from 4139 participants in the AREDS study to classify
them as no, early, intermediate, or advanced AMD and further stratified them along the
AREDS 12 level severity scale. Second step: the resulting AMD scores were combined
with sociodemographic clinical data and other automatically extracted imaging data by
a logistic model tree machine learning technique to predict risk for progression to late
AMD within 1 or 2 years, with training and validation performed on 923 AREDS partici-
pants who progressed within 2 years, 901 who progressed within 1 year, and 2840 who
did not progress within 2 years. For those found at risk of progression to late AMD, we
further predicted the type (dry or wet) of the progression of late AMD.

Results: For identification of early/none vs. intermediate/late (i.e., referral level) AMD,
we achieved 99.2% accuracy. The prediction model for a 2-year incident late AMD (any)
achieved 86.36% accuracy, with 66.88% for late dry and 67.15% for late wet AMD. For
the NAT-2 dataset, the 2-year late AMD prediction accuracy was 84%.

Conclusions: Validated color fundus photo-based models for AMD screening and risk
prediction for late AMD are now ready for clinical testing and potential telemedical
deployment.

Translational Relevance: Noninvasive, highly accurate, and fast AI methods to screen
for referral level AMD and to predict late AMD progression offer significant potential
improvements in our care of this prevalent blinding disease.

Introduction

Age-related macular degeneration (AMD) is the
leading cause of vision loss in those older than age 50
years in the developed world.1–5 The number of people

with AMD is expected to increase 1.5-fold over 10
years because of our aging population, hypertension,
and other causes.6,7 At present, there is no treatment
for late dry AMD (geographic atrophy).8,9 Although
treatment with antivascular endothelial growth factor
is often effective in maintaining or improving vision

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:rts1md@gmail.com
https://doi.org/10.1167/tvst.9.2.25
http://creativecommons.org/licenses/by-nc-nd/4.0/


Late AMD Prediction TVST | April 2020 | Vol. 9 | No. 2 | Article 25 | 2

in the neovascular form of advanced AMD (i.e., wet
AMD), it does not provide a cure. It is also often
too late to mediate the issue by the time a person
visits an ophthalmologist as the treatment cannot
regenerate the vision.10,11 Further, such treatments are
costly (typically costs about $9000–$65,000 for one
eye, depending on which drug is used, for a 2-year
course of treatment 12) and may be associated with
significant cardiovascular risks 13 or even development
of GA.14 Although the total (direct and indirect) cost
of AMD is $225 billion per year15 and is expected to
increase (AMD cases will be increased2), the indirect
cost is even greater due to injury, depression, and social
dependency resulting from blindness.16

The Age-Related Eye Disease Study (AREDS),
the largest AMD study, showed that specific antiox-
idants and vitamin supplementation (called AREDS
supplements) reduce the risk of progression from
intermediate-stage AMD to late AMD that can allow
for preventive strategies.17 Approximately 7.6% of
the United States population over the age of 60 is
estimated to have advanced or intermediate AMD.18
Recent publications looking at the 10-year experiences
of appropriately selected patients taking the AREDS
formulation demonstrates that it is effective at slowing
disease and improving visual acuity in approximately
25% of patients.19 For this reason, identification of
people at risk for late AMD is very important because
it could enable timely treatment such as photobiomod-
ulation20 and laser intervention21) andAREDS supple-
ments. Recent studies21 showed that sub-threshold
laser (or sub-threshold nanosecond laser) reduces the
progression of intermediate AMD except in the case
of reticular pseudo-drusen (RPD), in which case it
worsens.

Motivated by this need, we reviewed the early
screening of AMD and the prediction of AMD
progression, which are a necessity to prevent lateAMD.
We found that:

• Systems have been built from existing datasets for
automatic AMD screening/prediction, but none
are ready for clinical deployment
• No method includes RPD.22 RPD double the risk
of progression to advanced wet AMD over soft
drusen alone.22,23
• No method has been proposed for telemedicine-
based automated AMD screening in
remote/underserved areas.

Our review found prediction models24,25 based on
manual evaluations of drusen and pigment abnormal-
ities that achieved 75.6% accuracy for 10-year-time (in
contrast, our fully automated prediction model herein
achieved 86.36% accuracy). AREDS report 826 showed

on a population basis that for subjects aged 55 to
80 years followed 6.3 years, treatment with antioxi-
dants plus zinc yielded a significant odds reduction for
the development of advanced AMD compared with
placebo. Genetic, ocular variables (manual analysis
of fundus image), and sociodemographic parameter-
based prediction of late AMD is reported in,27,28
and recently improved with additional genetic model-
ing. A number of AMD screening methods have
been reported elsewhere,29–32 which can only deter-
mine the disease status, not predict late AMD. For
example, Grassmann et al.31 reported an ensemble
deep learning-based classifier of 12 different AREDS
categories based on pathology, but not a predictor. We
have first proposed a fully automated lateAMDpredic-
tion model, which was presented at ARVO 2018.33
Recently, Burlina et al. proposed a deep learning (DL)-
based model34 for 5-year late AMD progression but
did not demonstrate the late dry and late wet AMD
prediction. However, in Burlina et al., one DL model
essentially performs image classification by theAREDS
nine-step severity scale, as in Grassman et al., and
then relies on the published AREDS probabilities for
progression at 5 years, rather than AI, to calculate
progression risks. An alternate DL model, with regres-
sion directly from the image to risk prediction, as we
propose here, had poorer overall performance than
those that rely on the AREDS statistics. Our model
is more complex and finely tuned than any of those,
exploiting both DL for classification and machine
learning for prediction as well as other retinal and
demographic factors. In addition, we include in our
training data abrupt transitions (early to late AMD in
1–2 years), and also predict late dry and wet AMD,
which is unique.

Here, we propose the first color fundus photo-based
noninvasive screening and prediction model for late
AMD for the 1- or 2-year incident with dry and wet
form categorization. It is novel in many respects: differ-
ent input sizes for neural network architectures for
learning scale variant and invariant image features;
a logistic model tree35 for building a final classifier
after assembling different deep learning models, which
is a new approach in retinal image classification also
proposed by Grassmann et al; a single value risk of
conversion produced from the 12-point AMD severity
scale36 utilizing deep convolution neural networks.

The proposed noninvasive technology will identify
higher volumes of at-risk patients and determine
whether an individual, including early AMD subjects,
will develop late AMD in 1 to 2 years and should
be referred to an ophthalmologist (Schematic for
the overall screening and prediction of late AMD,
Figure 1). AREDS Report 1737 mentioned, and we
confirmed, that in AREDS, 36 subjects converted from
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Figure1. High-level flowchart for theoverall screeningandpredic-
tion of late AMD.

early to late AMD within a year, and 50 within 2
years. Using the prediction score, the ophthalmolo-
gist can perform further testing and/or have higher
confidence about immediate treatment (e.g., photo-
biomodulation20 or laser intervention 21) or advise
more frequent follow-up visits.

Methods

The model works in two steps. The first step is the
screening or early diagnostic step (screening module).
The second step is for predicting the individual’s
progression from intermediate to late AMD (predic-
tion module).

The Datasets

AREDS is a major clinical trial sponsored by the
National Eye Institute. AREDS participants were 55
to 80 years old at enrollment, and they had to be free
of any illness or condition that would make a long-
term follow-up or compliance with study medications
unlikely. Based on fundus photographs graded by a
central reading center, the best-corrected visual acuity,
and ophthalmologic evaluations, 4753 participants
were enrolled in one of severalAMDcategories, includ-
ing persons with no AMD. Subjects were randomly
assigned to the vitamins and mineral supplements and
placebo groups. A complete description of the AREDS
dataset can be found in.1 Table 1 and Supplemen-
tary Table S14 show the number of subjects in each
category and demographic group and the distribution
of baseline characteristics.

AREDS participants were assigned to four
categories38 based on the size and extent of drusen and
other AMD lesions: normal, early, intermediate, and
advanced or late AMD. These assignments were made
for the left and right eyes individually.

Deidentified AREDS data was used in this study
and was approved by the National Eye Institute Data
Access Committee, National Institute of Health.

The NAT-2 study4 was a randomized, placebo-
controlled, double-blind, parallel, comparative study
of 263 patients with early lesions of age-related
maculopathy and visual acuity better than 0.4
LogMAR units in the study eye and neovascular
AMD in the fellow eye. Patients were randomly
assigned to receive either 840 mg/day DHA and 270
mg/day eicosapentaenoic acid from fish oil capsules or
the placebo (olive oil capsules) for 3 years. Study evalu-
ations included periodic color fundus photos and other
retinal imaging. The NAT-2 dataset was used with the
permission of the sponsor (Bausch and Lomb) and the
principal investigator (Dr. Souied). These data were
used for external evaluation only after the AI models
were built and validated on the AREDS data.

For screening, 116,875 color fundus images belong-
ing to 4139 subjects classified as gradable in AREDS
were selected. Each patient was assigned either to the
training set (80% of the patients), validation set (12%
of the patients), or testing set (8% of the patients), and
all fundus images from each patient were included in
the respective dataset. Thus, the training, validation,
and testing data sets consisted of 93,380, 14,020, and
9475 fundus images, respectively. Because the train-
ing, validation, and testing groups were first separated
by patient, this ensured that there was no mixing of
photographs from the same patient between the photo-
graphic datasets.

For prediction, we formed the dataset with images
and demographic data from 901 subjects with incident
late AMD in 1 year from baseline; 923 subjects with
incident late AMD in 2 years from baseline and 2840
subjects without incident late AMD over the entire
study.

Training and validation data for the 2-year model
consisted of 2634 subjects, 1988 nonconverted and
646 converted at 2 years; test data consisted of the
other 852 nonconverted, and the other 277 converted
at 2 years, a total of 1129 subjects. This gave a ratio
of approximately 70:30 for training/validation to test
data. We chose this ratio, higher than the usual 80:20,
to provide an adequate size test set from the smaller
number of converters. The fundus photos for each
dataset consisted of all baseline photos for the subjects
in each group.

Training and validation data for the 1-year model
consisted of 2619 subjects, 1988 nonconverted and 631
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Table 1. AREDS Data Distribution Within the Significant Parameters

N %

Age-related macular degeneration (AMD) category 1 (no-AMD) 1116 23.5
2 (early AMD) 1060 22.3
3 (intermediate AMD) 1620 34.1
4 (late AMD) 957 20.1

Age <65 1000 21
65–69 1577 33.2
≥70 2176 45.8

Sex Female 2655 55.9
Male 2098 44.1

Education High school or less 1705 35.9
Some college 1409 29.7
College graduate 1636 34.4

Race Non-white 207 4.4
White 4546 95.6

Smoking status Never 2105 44.3
Former 2273 47.8
Current 375 7.9

Body mass index <24.9 1550 32.6
25-29.9 1984 41.8
≥30 1216 25.6

Hypertension Normal 2869 60.4
Controlled 1177 24.8
Uncontrolled and treated 346 7.3
Uncontrolled and untreated 361 7.6

Diabetes No 4357 91.7
Yes 396 8.3

converted at 1 year. Test data consisted of the other
852 nonconverted and the other 270 converted at 1
year, a total of 1122 subjects, likewise also an approxi-
mate ratio of 70:30 for training/validation to test data.
(Table 2).

Our proposed late AMD prediction model works in
two coremodules: (A) the screeningmodule and (2) the
prediction module, which are summarized here.

The Screening Module and AMD
12-Category Classification

Initially, the color channel transformation from
RGB to CIE L*a*b is applied to generate perceptu-
ally uniform color space. The first module, preceded
by a deep learning-based binary classifier that verifies
image gradeability, is an ensemble, or combination,

Table 2. AREDS Dataset Organization for Late AMD Prediction in Module 2

Prediction Type of Late No. of Subjects No. of Subjects Total
Model AMD Incident for Training for Testing Subjects

1-Year Any 631 270 901
Wet 328 140 468
Dry 248 107 355

Nonconverted 1988 852 2840
2-Year Any 646 277 923

Wet 329 140 469
Dry 249 107 356

Nonconverted 1988 852 2840
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of deep learning AMD classifiers to define the exact
stage of AMD present (no AMD, early AMD, inter-
mediate AMD, and late AMD), which we developed
earlier.30,32 This model is an ensemble of five networks
of different input sizes of “Inception-V3” proposed by
Szegedy et al.,39 “Inception-Resnet-V2” proposed by
Szegedy et al.,40 and “Xception”proposed byChollet 41
as described in our paper. We use this categorical infor-
mation as an input to the prediction model.

There is also an AREDS 12-class severity scale-
based classifier, of which the first 9 classes are early to
intermediate AMD, and the last three are late AMD.
The first nine classes 36 confer a validated risk of
AMD progression, ranging from about 2% for level 1
to about 50% for level 9 in 5 years, but in practice, it
is too cumbersome for routine manual grading. Thus,
our ensemble deep learning classifier now additionally
assigns probabilities that an image falls within each of
these 12 classes,36 and specifically for images without
advanced AMD, the probabilities of where the image
falls within the first nine classes36 are used in the predic-
tion model. This system consists of an ensemble of
six neural networks, each differing from the other with
respect to the combination of input image size and the
network architecture. The six networks are: Xception
network with input size 499 × 499, Inception-Resnet-
V2 network with size 399 × 399, Xception network
with size 299 × 299, Inception-V3 network with input
size 599× 599, Inception-V3 with input size 399× 399,
and NasNet network (proposed by Zoph et al.42) with
input size 399× 399. Each network is trained to classify
fundus images into 12 classes, giving an array of 12
probabilities, one for each class. These 12 classes are
an amalgamation of 9-point AREDS-defined AMD
severity levels and the three late AMD classes, dry, wet,
and combined dry and wet AMD. This results in 72
probability values from six networks (6 × 12) that are
used as the input to the predictionmodule. Supplemen-
tary Table S1 (online supplement) shows the number
of color fundus photos with AREDS 12-class sever-
ity cases employed to train and validate this ensem-
ble deep convolution neural network and logistic model
tree with the approach described in.32

The PredictionModule: A Logistic Model Tree

The second module is a machine learning algorithm
that predicts if an individual with early or interme-
diate AMD will progress to late AMD within 1 or 2
years, based on the output of the first module and
other imaging and demographic factors, In AREDS,
36 subjects with “early AMD” converted to late AMD
within a year, and 50more within 2 years. Therefore, we
also used these early-stage AMD to build the predic-

tion model. We built this model on images of individ-
uals who did (923 for 2 years, 901 for 1 year), or did
not (2840), convert (severity class 10, 11, and 12) in the
next 1 or 2 years. Figure 3 shows fundus images of three
subjects affected by intermediate AMD at baseline
and who later converted to late AMD at an incident
visit. Figure 3 also shows heatmaps of the retina of
both visits generated by our classifier for the proba-
bility of AMD. The most active part of the image for
the deep learning decision is mapped, and a schematic
diagram is produced. The procedure of heatmap gener-
ation can be obtained elsewhere.43

On developing the prediction model, we tested the
Bayesian model,44 Support Vector Machines, decision
tree, Random Forest,45 and Logistic Model Tree
(LMT) for prediction accuracy, and found that the
LMT 35 performed best. A logisticmodel tree is a classi-
fication model with an associated supervised train-
ing algorithm that combines logistic regression and
decision tree learning.35 Logistic model trees are based
on the earlier idea of a model tree: a decision tree that
has linear regression models at its leaves to provide a
piecewise linear regression model. The LMT was then
augmented with other inputs.

Drusen Quantification and RPD Inputs

We also separately and automatically quantified
total drusen area and number larger than 125 μ as
inputs to build the prediction model. The method,
described elsewhere,46 showed 73% sensitivity and
99% specificity compared with three expert clinician
manual segmentations. We applied the same ensemble
model for categorizing RPD as none, questionable, or
present, in and out of the 6000-μ circle, as defined by
the International Classification and Grading System
for AMD.47 Compared with image gradings by the
AREDS study group, we achieved 96% accuracy in
these RPD categorizations. We used this information
along with the nine-class probability score generated
based on the AREDS dataset to the final prediction
model.

AMD Category and Demographic Input

In addition to AREDS scale from the ensemble
method32 and drusen information, we also included
AMD category: none, early, intermediate, or late from
our early DL classifier, and demographic factors such
as age, race, sex, diabetes, body mass index, visual
acuity, and sunlight exposure. A Cox proportional
hazards model48 was used to obtain the importance
of the sociodemographic parameters on the whole
training set, and beta coefficients were taken for each
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Figure 2. Flow chart for the late AMD prediction system. Input:
The input parameters; module I: screening module (center) through
several deep learning steps for none, early, and intermediate AMD;
Module II: predict theprogression to lateAMDaswell as latedryAMD
or late wet AMD or no progression (in 1 or 2 years).

parameter to select the nine significant ones: gender,
age, smoking status, diabetes, body mass index, blood
pressure, sunlight exposure, visual acuity, and AMD in
the other eye.

In summary, an ensemble of six deep convolu-
tion neural network models were each applied to
generate 12-step AMD severity level probabilities (72
parameters). To these were added the drusen inputs,
AMD category (four stages) and the nine significant
demographic factors just reviewed. A three-class LMT
model was built from these data to predict the conver-
sion to late AMD in 1 or 2 years, or no conver-
sion. Figure 2 shows the flow chart for late AMD
prediction.

The subjects’ treatment categories were also used to
build the predictionmodels. In theAREDS study, there
are four treatment categories: placebo, zinc, antioxi-
dants, and zinc + antioxidants.38 We considered this
information to categorize the subjects for the develop-
ment and validation of the models.

Ten-fold cross-validation method49 was applied for
training the model, which is a standard method
for the machine learning technique. Including RPD
presence/absence did not yield any improvement in the
prediction score, perhaps because there were only 27
subjects with RPD in our AREDS dataset, 20 subjects
who progressed vs. seven who did not.

Once we determine that someone is at risk of
progressing to late AMD, the next step is to specify
the probability of progression to late dry or wet AMD
(Figure 4).

Figure 3. Fundus images of three subjects at baseline and late
AMD incident visits, with heatmaps of AMD signs. Blue color, strong
signs of AMD detected by our classifier. Green color, weaker signs of
AMD. No signs of AMD were detected in the non-mapped portion
of the images. Row A, baseline visit fundus photos. Row B, baseline
heatmaps showing signs of early AMD. Row C, incident visit fundus
photos showing late AMD. RowD, incident heatmaps showingmuch
larger areas and signs of late AMD.

Figure 4. Extension of module II in Figure 2: the AMD prediction
problem tackled as a two-stage problem, first establishing the risk
of general late AMD and second the type of AMD progression.

Dry andWet AMD Prediction

Prediction of progression to dry or wet AMD at
1 or 2 years required two additional models, one for
each time period. Thus, once AMD progression (any
type) was predicted by the first LMT at 1 or 2 years,
an additional two-class logistic model tree was built
for each time period, to predict dry or wet AMD, To
build these models, we restricted the data to the known
converters, both dry and wet, at 1 and 2 years. Convert-
ers who demonstrated both dry and wet advanced
AMD at the point of conversion were omitted. For the
1-year model, we had 328 incident late wet AMD and
248 incident late dry AMD subjects for training and
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140 incident late wet AMD and 107 incident late dry
AMD for testing the model. For the 2-year model, we
had 329 incident late wet AMD and 249 incident late
dry AMD subjects for training and 140 incident late
wet AMD and 107 incident late dry AMD for testing
the model. Table 2 shows the details. The models for 1-
year and 2-year converters were trained on exactly the
same imaging and demographic input data as the main
LMT, but now to identify risk for the two specificAMD
types. This method of tackling the prediction problem
in two stages is shown in Figure 4, wherein, the risks of
converting to either form (dry or wet) of late AMD are
separated in the second stage.

We also modeled 5- and 10-year late AMD progres-
sion with 871 and 916 late AMD converters, respec-
tively, and tested the models on 185 incident and 189
incident late AMD converters, respectively. We did not
separate dry and wet cases. The datasets for each of the
late AMD prediction models are organized as Table 2.

For the prediction of late wet and dryAMD,we also
experimented with deep learning models’ performance
alone if we did not provide specific retinal features such
as drusen area from the other modules to combine with
DL output as input to the machine learning prediction.
We used the same subjects with incident late AMD of
both types in the training and testing as we used for the
full prediction models.

The 2-year progression model was then validated
without further training on theNAT-2 external dataset.
We used only patients in the placebo category to
remove the effect of supplements in developing late-
stage AMD.26 A total of 88 study eyes were taken for
validation, of which 30 advanced to late AMD within
3 years (mean, 2.5 years) and 58 did not.

Results

The initial results on DL screening were reported
elsewhere.32 We have improved the accuracy signif-
icantly with the ensemble deep learning method,
presented here. For binary screening of AMD stage,
our algorithm achieved 99.2% (95% confidence inter-
val [CI], 99.02–99.39) accuracy in distinguishing
normal/early from intermediate/late AMD (sensitiv-
ity of 98.9% [95% CI, 98.64–99.66] and specificity
of 99.5% [95% CI, 98.85–99.80]). To our knowl-
edge, this is the best screening accuracy among such
existing models (confusion matrices, Supplementary
Tables S2 and S3, online supplement). The area under
the curve for the model screening for intermediate
and advanced AMD is 0.99 (95% CI, 0.989–0.991).
AREDS published an inter-observer agreement on the

human gradings of the severity of none, early, interme-
diate, and late, with a kappa value of 0.77.50 We have
taken as ground truth the final AREDS gradings for
these AMD stages, and our method showed agreement
with these gradings at the kappa value 0.95 (Supple-
mentary Table S3).

The kappa score for the screening model is 0.983. A
comparison with other published methods in accuracy,
sensitivity, specificity, and kappa metrics is found
in Table 3.

For the incidence of late AMD in 2 years, we
achieved 86.36% (95% CI, 84.22–88.31) accuracy,
92.42% (88.64–95.25) sensitivity, and 84.39% (81.78–
86.76) specificity. For 1-year incidence of late AMD,
we achieved 86.19% (84.03–88.15) prediction accuracy
with 90.74% (86.64–93.92) sensitivity and 84.74%
(82.15–87.09) specificity (confusion matrix in Supple-
mentary Table S4, Supplementary Table S5, online
supplement).

For the prediction of late dry and wet AMD, we
separated the test subjects based on the incident type.
We achieved 66.88% (95% CI, 64.01–69.66) accuracy
with 69.16% (59.50–77.73) sensitivity and 66.63%
(63.60–69.56) specificity for the 2-year incidence of
late dry AMD. We achieved 67.15% (64.29–69.93)
accuracy with 71.43% (63.19–78.74) sensitivity, and
66.53% (63.44–69.51) specificity for 2-year incidence of
late wet AMD (Supplementary Table S6 and Supple-
mentary Table S7, online supplement).

Table 4 shows the performance outcomes for all
models.

We achieved 66.79% (95% CI, 63.92–69.57)
accuracy with 70.09% (60.48–78.5%) sensitivity,
and 66.43% (63.40–69.37) specificity for the 1-year
incidence of late dry AMD and 68.15% (65.31–
70.90) accuracy with 73.57% (65.46–80.66) sensitivity,
and 67.36% (64.29–70.32) specificity for the 1-year
incidence of late wet AMD (confusion matrices,
Supplementary Tables S8 and S9).

We tested the results without the sociodemographic
parameters. The proposed AMD prediction system
with retinal and sociodemographic data outperformed
all models based on retinal parameters only. The 2-year
model, with only retinal parameters, performed worse
in terms of sensitivity achieving 88.79% compared with
92.42% achieved by the proposed model (Supplemen-
tary Table S10).

Deep learning models alone, without specific retinal
imaging parameters, also resulted in poorer predic-
tive performance compared with the elaborate multi-
parametric approach this paper presents as inputs to
the machine learning models. For late dry AMD, the
sensitivity was 63% for 1 year and 65% for 2 years; the
specificity was 69% for 1 year and 69% for 2 years. For
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Table 3. Comparison of Accuracy, Sensitivity, Specificity, Kappa, andAUCof Existing vs. our AMDScreeningModel
Based on Referable/Nonreferable AMD Classification (2-class) and 4-class Accuracy of AMD Stage Classification
(Normal, Early, Intermediate, and Advanced)

Metric Our Result Agurto et. al. 3 Phan et al. 5 Burlina et al. 29

Accuracy 99.2% (99.02–99.39) Not provided 75.6% (279 images) 91.6%
Sensitivity 98.9% (98.24–99.66) 94% NA 88.40%
Specificity 99.5% (98.55–99.80) 50% NA 94.10%
Kappa 98.3% (98.1–98.9) 84% NA 82.90%
AUC 99% (98.6–99.3) NA 89% 96%
4-class accuracy 96.1% (95.4–96.62) NA 62% Not reported

Table 4. The Accuracy, Sensitivity, Specificity, and Precision of Dry andWet AMDPredictionModels for the Predic-
tion 1- and 2-Year Risk of Developing AMD

Accuracy Sensitivity/Recall Specificity Precision
Metrics (95% CI) (95% CI) (95% CI) (95% CI)

Any AMD (2-year) 86.36% (84.22–88.31) 92.42% (88.64–95.25) 84.39% (81.78–86.76) 65.81% (62.13–69.31)
Dry AMD (2-year) 66.88% (64.01–69.66%) 69.16% (59.50–77.73) 66.63% (63.60–69.56) 18.27% (16.08–20.69)
Wet AMD (2-year) 67.15% (64.29–69.93%) 71.43% (63.19–78.74) 66.53% (63.44–69.51) 23.75% (21.35–26.33)
Any AMD (1-year) 86.19% (84.03–88.15%) 90.74% (86.64–93.92) 84.74% (82.15–87.09) 65.33% (61.56–68.92)
Dry AMD (1-year) 66.79% (63.92–69.57%) 70.09% (60.48–78.56) 66.43% (63.40–69.37) 18.38% (16.22–20.77)
Wet AMD (1-year) 68.15% (65.31–70.90%) 73.57% (65.46–80.66) 67.36% (64.29–70.32) 24.76% (22.34–27.35)

late wet AMD, sensitivity was 59% for 1 year and 60%
for 2 years; the specificity was 68% for 1 year and 70%
for 2 years. (Supplementary Table S15, online supple-
ment).

We have measured the area under the curve for all
six complete models for 1- and 2-year risk prediction
of late AMD (any, dry, or wet) stratified by age, gender,
and smoking status. All models performed better on
females and nonsmokers. When stratified by age, the 1-
year models all performed worse on subjects less than
60 compared with groups 60 to 70 and over 70, whereas
the performance of the 2-year models on all three age
groups was similar. Refer to Supplementary Figures
S1-S6 for the receiver operating characteristic curves
and explicit performance.

The 5-year late AMD prediction, the model
achieved 64.6% accuracy with 65.1% sensitivity and
64.1% specificity. The 10-year model achieved 62.03%
accuracy with 62.9% sensitivity, and 60.8% specificity.
The AREDS supplements and placebo categories had
no effect on the accuracy of our prediction models
of 1-, 2-, and 5-year incidence. We observed a slight
improvement of approximately 1.33% in the accuracy
(62.03% vs. 60.7%) in the 10-year prediction model by
separating the treatment categories.

Table5. Sensitivity, Specificity, Accuracy, andPrecision
of the Prediction 2-Year Risk of Developing Late AMD
(Dry or Wet) Validated on NAT-2 Dataset

Metric Values (95% CI)

Sensitivity 90% (73–98)
Specificity 81% (69–90)
Accuracy 84% (75–91)
Precision 71% (59–81)

Our 2-year late AMDmodel when further validated
onNAT-2 data, produced an accuracy of 84% (95%CI,
74.75–91.02) with a sensitivity of 90% (95% CI, 73.47–
97.89) and a specificity of 81% (95% CI, 68.59–90.13),
the details of which are shown in Table 5 and Supple-
mentary Table S11. The information in the NAT2
dataset is based on the incidence of late AMD 3 years
between the first and the last visit.

We also considered the NAT-2 dataset for late dry
and late AMDprediction in 2 years. For late dry AMD,
the number of subjects was six and for late wet AMD,
26, including two in common (details in Supplemen-
tary Table S12). For the prediction of incident late wet
AMD in 2 years, we achieved 70.4% (95% CI, 52.21–
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88.43) sensitivity and 61.3% (95% CI, 48.07–73.40)
specificity. The confusion matrix is shown in Supple-
mentary Table S13. We did not have enough dry AMD
subjects for validation in this NAT-2 dataset.

Discussion and Conclusions

We have combined deep learning and machine
learning, as well as AMD-specific image parameter
generating algorithms, in a complex pipeline to create
a portfolio of six automated color fundus photograph-
based AMD prediction models. For each time period
of 1 or 2 years, there are three models for prediction of
late AMD: any, dry, or wet, respectively. To our knowl-
edge, these are the first such models to predict conver-
sion to late AMD successfully at either one or two
years, with late dry and wet form categorization (the
initial results 33 on late AMDprediction were presented
at ARVO 2018). In addition to the general power of
AI, we believe this success is also attributable to the
careful selection of image preprocessing techniques
and neural networks to ensure robustness to retina
image and dataset variations, and the capability of
learning features on such wide scales as tiny drusen or
large areas of geographic atrophy. The first part of the
pipeline is a DL image classifier, previously published
and improved in this paper, which can discriminate
none/early-stage from intermediate/late-stage AMD
with an accuracy of 98%, to our knowledge the highest
accuracy among reported methods. This is a critical
component of the prediction model, but it clearly has
independent value in identifying AMD in the general
population for appropriate referral. This DL classifier
has been refined here further with six algorithms, each
providing probabilities of an image falling into any one
of the 12 more detailed AREDS scales The outputs
of these DL classifiers are then passed to the machine
learning predictionmodel, togetherwithAMD-specific
image parameters and demographic factors, for finding
individuals at risk of progression from intermediate to
late AMD, who may require closer surveillance, better
attention to modifiable risk factors, and who perhaps
may wish to be considered for advanced therapies.

The 2-year model has also been validated on the
external dataset NAT-2 with results consistent with
those from the AREDS training data. This suggests
the potential for future portability to other imaging
environments. We also experimented with the DL
models’ performance alone if we did not provide
specific retinal features such as drusen area from the
other modules to combine with DL output as input to
themachine learning prediction. Although thismethod

proved to be inferior, it was useful to show the paramet-
ric importance of the specific severity and categories of
AMD information in the image. This finding may be
instructive in general with regard to methods that rely
on DL exclusively.

Stratification of subjects by gender, smoking status,
and age yielded Interesting results. All six models
performed better on females and nonsmokers. When
stratified by age, the three one-year models all
performed worse on subjects less than 60 compared
with groups 60-70 and older than 70, whereas the
performance of the three two-year models on all three
age groups was similar. It would be of interest to AMD
research to determine why certain groups’ outcomes
were more predictable than others (e.g., why females
were more predictable than males).

The study has several limitations. With respect to
deploying themodels in the community or primary care
clinics, other pathologies such as diabetic retinopathy
besides AMD will be coexisting and confounding to
algorithms tuned only to AMD, requiring further large
investments in AI development before deployment. To
our knowledge, all detection algorithms published so
far are disease-specific, that is, trained on and there-
fore effective only on, data from a specific disease
(e.g., diabetics to search for DR). Furthermore, instead
of images from studies acquired by expert photogra-
phers on expensive fundus cameras, image acquisition
platforms in the community will need to be inexpen-
sive, almost completely automatic, and capable of
adequate image quality for evaluation by AI. Although
such systems are now becoming available, the proof
of principle remains to be tested prospectively in
large studies, with human validation, and with cost
and reimbursement issues to be solved in a business
model. These challenges, although beyond the scope
of the present paper, must be acknowledged, and
although difficult, will no doubt be surmountable by
the ophthalmic and AI communities.

Even high-quality photographs in eye specialists’
offices will be acquired on a range of devices, so that
the transfer of our AMD prediction model built on
AREDS photos is not a given. The same may be said
for myriad other studies such as OCT studies of AMD
and glaucoma performed on specific devices; there is
likewise no guarantee that those findings transfer to
other devices without extensive validation. Along this
line, however, encouraging confirmation was obtained
when our prediction algorithms performed well on the
external, independent dataset from the NAT-2 study,
with images acquired on other cameras. If similar
success can be found in appropriate community-based
trials, with the identification of subjects with AMD,
then widespread adoption should soon follow.



Late AMD Prediction TVST | April 2020 | Vol. 9 | No. 2 | Article 25 | 10

Finally, the prediction accuracy was significantly
lower when we stratified the predictions to choroidal
neovascularization (CNV) and geographic atrophy
(GA). This may reflect a large number of nonincident
cases compared to a very small number of pure dry
and wet AMD cases for building the machine learning
models. It will be of interest in future research to deter-
mine if these accuracies can be improved by access to
larger datasets or other approaches.

Strengths of the study include the immediate appli-
cability of these techniques as an adjunct to AMD
studies that employ color photography, where they
could obviate major burdens of human effort for
image classification. With the expected solution of the
challenges to wider deployment just noted, a longer
term and much broader benefit would be in the public
health arena, where automated screening for AMD via
telemedicine could bring needed care to millions before
they were otherwise identified. Here AMD prediction
would bring added value to patient management.

In conclusion, both the screening and prediction
models may prove to be public health assets through
telemedicine. The prediction model could also be
used in ophthalmology clinics to identify patients
who require closer surveillance and better attention
to modifiable risk factors, and who perhaps may
wish to be considered for advanced therapies. Further
validation in prospective trials will help determine the
optimal utilization of these models for the prevention
of blindness from AMD.

The Software Tool ‘iPredict-AMD’: An online
version of the prediction system is available at
https://www.ihealthscreen.org/ipredict-amd/ (the
user name is “ipredict-amd” and the password is
“ipredict#test2019”).
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