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Abstract: Appropriate crop type mapping to monitor and control land management is very important
in developing countries. It can be very useful where digital cadaster maps are not available or usage
of Remote Sensing (RS) data is not utilized in the process of monitoring and inventory. The main
goal of the present research is to compare and assess the importance of optical RS data in crop type
classification using medium and high spatial resolution RS imagery in 2018. With this goal, Landsat
8 (L8) and Sentinel-2 (S2) data were acquired over the Tashkent Province between the crop growth
period of May and October. In addition, this period is the only possible time for having cloud-free
satellite images. The following four indices “Normalized Difference Vegetation Index” (NDVI),
“Enhanced Vegetation Index” (EVI), and “Normalized Difference Water Index” (NDWI1 and NDWI2)
were calculated using blue, red, near-infrared, shortwave infrared 1, and shortwave infrared 2 bands.
Support-Vector-Machine (SVM) and Random Forest (RF) classification methods were used to generate
the main crop type maps. As a result, the Overall Accuracy (OA) of all indices was above 84% and
the highest OA of 92% was achieved together with EVI-NDVI and the RF method of L8 sensor data.
The highest Kappa Accuracy (KA) was found with the RF method of L8 data when EVI (KA of 88%)
and EVI-NDVI (KA of 87%) indices were used. A comparison of the classified crop type area with
Official State Statistics (OSS) data about sown crops area demonstrated that the smallest absolute
weighted average (WA) value difference (0.2 thousand ha) was obtained using EVI-NDVI with RF
method and NDVI with SVM method of L8 sensor data. For S2-sensor data, the smallest absolute
value difference result (0.1 thousand ha) was obtained using EVI with RF method and 0.4 thousand
ha using NDVI with SVM method. Therefore, it can be concluded that the results demonstrate new
opportunities in the joint use of Landsat and Sentinel data in the future to capture high temporal
resolution during the vegetation growth period for crop type mapping. We believe that the joint use
of S2 and L8 data enables the separation of crop types and increases the classification accuracy.

Keywords: crop types mapping; Sentinel; Landsat; SVM; RF; NDVI; EVI; NDWI; OSS data; irrigated
land; Uzbekistan

1. Introduction

Land use or land cover maps are the primary tools to manage information on the
Earth’s surface and the interaction between different land cover types. In this context,
the need to distinguish between land cover (i.e., the physical properties of land surface)
and land use (i.e., human activities making use of land) needs to be mentioned [1], with
this paper focusing on land use, although it is not possible to identify land use without
identifying land cover. Up to the 1990s, most information on land use in Uzbekistan was
derived from national mapping and surveying programs with standards of spatial as well
as thematic resolution widely varying between countries and global regions [2]. While
the capacity for land use mapping at a global scale had been steadily developing, starting
with the first Landsat satellite in 1972, it was the opportunity to make global RS imagery
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more widely available via what was initially the internet and later became the world wide
web that data, as well as processing capabilities and more affordable image processing
software, became available to a wider range of users globally [3]. In addition to their use
in land management, land use maps are also of relevance in the context of environmental
objectives such as the land use, land use change, and forestry sphere within the area of
climate change politics and research [4] or biodiversity research [5,6].

Before the advent of RS technology, traditional cadaster data formed the basis of
national land use statistics. Initially, national cadastral mapping had been introduced for
taxation reasons as a basis for land ownership records as well as land use distribution [7,8].
However, in some countries of the world including the study area, adequate information is
not yet available. This is due to a historical lack of cadaster systems as well as an outdated
land management system. These issues related to the distribution of power between
transnational (e.g., European Union), national and sub-national entities, with the latter a
particularly vexing factor in countries with federal rather than centralized administrative
and political systems [9].

RS data have been used widely in the field of crop phenology. Aside from crop
identification, this includes the identification of crop growth stages. Usually, very coarse
resolution (i.e., 100–250 m) products such as MODIS (Moderate Resolution Imaging Spec-
troradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) have been widely
used and proven helpful in landscape and regional level yield prediction. However, for
analysis at field scale, medium (i.e., 30 m) to high (i.e., 10 m or better) resolution products,
especially the Landsat series of sensors, are considered more beneficial. Unfortunately,
in many regions of the world, the lack of clear (cloud-free) imagery poses a considerable
challenge to widespread operational use [3]. The availability of RS imagery and relevant
processing capabilities have led to a wide range of uses of RS data in agriculture. Common
applications include crop growth and yield assessment, irrigation research, and information
on potential crop losses due to pests and diseases [10]. Similarly, agricultural land use
monitoring and crop yield forecasting are listed as the main application areas [11]. The
recent interest in precision farming as an approach to improve economic efficiency, reduce
negative environmental impacts through minimizing the use of herbicides and pesticides,
and avoid over-fertilization has led to the development of multi-data-source approaches
incorporating artificial intelligence (AI) technology. Frequently noted examples include the
use of higher spatial resolution data gathered from conventional aerial sensor technology
as well as sensors for the visible spectrum and passive hyperspectral sensors but also active
light detection and ranging (LIDAR) or radar sensors. Other approaches include training
AI with a combination of high or medium solution RS data (e.g., Landsat or Sentinel) to
allow for information of higher accuracy to be derived from low-resolution RS sensors (e.g.,
MODIS), which provides the benefit of more frequent return periods [11,12].

The most cultivated agricultural crops are maize (corn) with global annual consump-
tion of 1107 Mt, wheat with global consumption of 740 Mt, and rice with an annual
consumption of 510 Mt [13]. Consequently, considerable work has been conducted in the
context of RS methods to improve information on these crops. The following research
works provide a short review related to our research work. For maize, research on land use
suitability for cultivation in Indonesia was carried out by [14], using NDVI as well as SAVI
based on L8 data to assess cultivation potential, although in this study the areas identified
had not yet been cultivated with maize. Zhang et al. demonstrate that with appropriate
methods it is possible to not just identify maize as a crop but to improve phenological
analysis to allow for the differentiation between common maize (i.e., for human or animal
consumption or industrial purposes) and seed maize [15]. The phenological analysis was
based on different vegetation indices (VI), including NDVI, EVI, triangle vegetation index
(TVI), ratio vegetation index (RVI), NDWI, difference vegetation index (DVI), and an RF
classification. Furthermore, they also assessed classification accuracy using the KA and
producer accuracy (PA). Satellite RS-based maize acreage estimation and prediction of
maize yields based on a combination of L8 NDVI and land surface temperature (LST), data
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as predictors were analyzed in work published by [16] using ground-truthing plots for
supervised classification. These results are also of particular interest due to more frequent
extreme weather situations, due to climate change, expected to lead to higher variations
in yield.

Climate change and phenological reactions of agriculture crops were also the main
focus of research carried out by [17], focusing on the spring phenology response of winter
wheat to pre-season weather data based on long-time climate records as well as NOAA-
AVHRR NDVI time-series data from 1981 to 2015. Results demonstrated the approach to be
more suited to assess more long-term climate change developments rather than short-term
seasonal reactions and also highlighted the potential of using long-term time series data
available from historical RS records. However, Wang et al. arrived at different results
using the spring frost damage index to identify spring frost damage using a combination of
historic weather data and MODIS RS data [18].

Given its importance as a staple crop in many of the most populated regions of
the world, considerable work has also been carried out using RS data in the context of
rice farming. For the identification of rice, different classification methods including
supervised and unsupervised classification as well as phenological indicators have been
used successfully with newer work focusing on AI approaches. For yield prediction,
sophisticated methods need to be used, given the required differentiation between irrigated,
rain-fed, or upland paddy fields. Given these complexities, additional data such as digital
elevation models (DEM) need to be used. For more precise crop yield prediction, complex
crop models using additional input, e.g., canopy height from LIDAR data (manned aircraft
or UAV) are required [19].

To summarize, the use of RS for identifying not just the most important crops but
also for analyzing phenological development details within farmed areas with these crops
has been widely used with recent approaches combining RS and machine learning (ML)
technology.

Classical unsupervised classification is based on a statistical analysis of natural group-
ings of data, typically using cluster-based approaches to analyze the degree of similarity of
data correlation between different bands within pixels. Classic supervised classification is
based on the same principle but uses training areas to provide ex ante information on areas
of different land-cover types. Training areas are classified either using ground-truth data or
through visual interpretation by a human operator. The main problem with unsupervised
classification is that spectral data will not always correspond to spectral classes and that
the final grouping of clusters needs to be decided by the human operator. Supervised
classification, on the other hand, provides more accurate classifications and also allows
for more control over the classification process. Especially for large areas and diverse
conditions (e.g., differing seasonality of phenology at different sea levels), extensive and
thus expensive training is required [20].

In this context, the main goal of this research is to test the capability of using S2
and L8 sensor data for mapping precise and accurate main irrigated crop types using
ML algorithms SVM and RF. To achieve this goal, the following specific objectives were
developed: (i) to map and compare the performance of ML algorithms such as SVM and
RF for main irrigated croplands by crop types with medium and high-resolution L8 and
S2 data; (ii) to test different index combinations such as NDVI, EVI, NDWI1, and NDWI2
as input data to derive crop type classification; (iii) to compare the area of all derived
agricultural land use maps with the OSS data from the State Committee for Statistics of
Uzbekistan. The other parts of this research work are structured as follows: Section 2
describes the study area, presents the data description, and theoretical background of
methodologies of ML classifiers for crop types mapping, Section 3 describes the results
and provides a discussion of the results. Lastly, Section 5 draws some conclusions and the
future direction.
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2. Materials and Methods
2.1. Study Area

This study focuses on the Tashkent province within the central Asian country Uzbek-
istan. Agricultural land makes up for about 62% of the total land area, the majority of
this being pasture, while only about 10% of the national land area of some 425 km2 is
available as arable land [21]. Tashkent Province was formed in 1938 as part of the Uzbek
Soviet Socialist Republic and is located in the northeast of Uzbekistan between 40.18 N and
42.29 N and 68.64 E and 71.27 E of the Greenwich meridian or between the western part
of the Tien Shan mountains and Syrdarya river. The Province borders Kazakhstan in the
north and north-west, with Kyrgyzstan in the north-east, Namangan Province in the east,
Tajikistan in the south, and with Syrdarya Province in the south-western part [22]. Since
arable land is located only in the lower areas of the province, the analysis only focused on
these regions (see Figure 1).
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“The climate is a typically continental climate with humid, relatively mild wet winters
and long, hot, and dry summers. The mean January temperature is −1 ◦C to −2 ◦C and
the mean July temperature is 26.8 ◦C. The average annual precipitation is 300 mm in the
plains region, 300–400 mm in the piedmont region, and 500–600 mm in the mountains.
Precipitation mostly occurs in the early spring and permanent snow cover is located in the
higher mountains. The main river Syrdarya and its tributaries Chirchik and Akhangaron
Rivers basins are fed by snow and glaciers and they are used for irrigation and hydroelectric
power [22]”. In Uzbekistan, wheat is cultivated on about 40% of irrigated lands, cotton is
around 36% and the remaining 24% is other crops (fruits, vegetables, livestock, and various
cereals). In the Tashkent province, cotton and wheat occupied over 61% percent of the total
cultivated area in 2018 [23].

2.2. Data

S2 and L8 tiles covering the relevant study region were downloaded from the USGS
Earth Explorer [24] site for multiple dates of vegetation growth period from May to October
2018. In addition, only cloud-free images are available during this time. An overview of
the satellite imagery dates for different months is provided in Table 1. In total, 4 tiles of S2
(T42TVL, T42TWK, T42TWL, T42TWM) and 3 tiles (153/031, 154/031, 153/032) of L8 were
downloaded and processed separately before merging. All tile id numbers of S2 start with
T (Toulouse) and the second two numbers 42 is the Universal Transverse Mercator (UTM)
zone, next T is the latitudinal chunk, and the last two letters denote the position of the tiles.
L8 tiles path and row numbers show the location of Tashkent province.

Table 1. S2 and L8 tiles were downloaded for the classification.

Month
S2 Multispectral Imaging (MSI)

Date
L8 Operation Land Imager (OLI)

Date
T42TVL T42TWK T42TWL T42TWM 153/031 154/031 154/032

May 25 7 7 7 28 3 3
June 24 6 6 6 13 20 20
July 9 1 1 1 15 22 22

August 3 5 5 5 16 7 7
September 2 4 4 4 1 8 8

October 2 4 4 4 3 26 26

The specification of spectral bands for the two sensor systems used in the analysis can
be observed in Table 2.

Table 2. Specifications of spectral bands for S2 MSI [25] and L8 OLI [26].

Band
Number

S2 MSI L8 OLI

Description Wave-Lengths
(nm)

Spatial
Resolution

(m)
Description Wave-Lengths

(nm)
Spatial

Resolution (m)

1 Coastal aerosol 433–453 60 Coastal aerosol 433–453 30
2 Blue 458–523 10 Blue 450–515 30
3 Green 543–578 10 Green 525–600 30
4 Red 650–680 10 Red 630–680 30
5 Vegetation Red Edge 1 698–713 20 NIR 845–885 30
6 Vegetation Red Edge 2 733–748 20 SWIR 1 1570–1650 30
7 Vegetation Red Edge 3 773–793 20 SWIR 2 2100–2300 30
8 Near-Infrared (NIR) 785–900 10 Panchromatic 500–680 15

8a Narrow NIR 855–875 20
9 Water vapor 935–955 60 Cirrus 1360–1390 30

10 SWIR-Cirrus 1360–1390 60 Thermal Infrared
(TIRS) 1 10,600–11,200 100

11 SWIR 1 1565–1655 20 Thermal Infrared
(TIRS) 2 11,500–12,500 100

12 SWIR 2 2100–2280 20
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One of the significant problems in crop type mapping in this research is the lack of
quality training data. Because of ideal ground reference data limitation, historical Google
Earth images in 2018 (February, April, June, July, August, and October) available in Google
Earth Pro desktop application (Google LLC, version 7.3.2.5776, Göttingen, Germany) was
used as an alternative for validation pixel samples collection. It is based on prior knowledge
of crop phenology and cropping calendar [27]. The spatial distribution of training and
validation samples is displayed in Figure 2, and the numerical information is given in
Table 3.
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The OSS data [23] about the sown area by crop types across provinces of the country
in 2018 issued by the State Committee of Statistics of Uzbekistan is used for comparative
analysis with derived remote sensing-based crop types area.

2.3. Methodology
2.3.1. Data Preprocessing

After downloading S2 imagery, the SWIR 1 and SWIR 2 bands were resampled to
10 m resolution. Both L8 and S2 data were then atmospherically corrected from Top of
Atmosphere Reflectance (TOA) to Surface Reflectance (SR). This was conducted using the
Dark Object Subtraction (DOS1) tool of the Semi-Automatic Classification Plugin (SCP) of
the QGIS GIS package [28]. Then, all tiles of S2 and L8 merged for every month separately,
and subset to study area. Reflectance values were then used to calculate NDVI [29], EVI [30],
NDWI1 [31] from SWIR 1, and NDWI2 from SWIR 2. In the end, we have obtained monthly
temporal profiles of NDVI, EVI, NDWI1, and NDWI2 as input data for ML classifiers.

Before classification built-up areas were manually digitized as polygons and the
shapefile was used to mask these areas.

Training data was used to train SVM and RF classifiers. Both classifiers were then
used to classify the main irrigated crop type maps. This was performed for 5 combination
variants using different indices such as (1) NDVI, (2) EVI, (3) EVI-NDVI used together,
(4) NDWI1, and (5) NDWI2 data.

The resulting land use maps were then assessed for accuracy using OA, PA, UA, and
KA using validation data for reference.

2.3.2. Indexes

Four spectral vegetation indices, NDVI [29], EVI [30], NDWI1 [31] from SWIR 1, and
NDWI2 from SWIR 2 were calculated using the surface reflectance values. These indices
were formulated by using the following equations:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

EVI = 2.5 × ρNIR − ρRed
ρNIR + 6 × ρRed − 7 × ρBlue + 1

(2)

NDWI1 =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(3)

NDWI2 =
ρNIR − ρSWIR2

ρNIR + ρSWIR2
(4)

where ρBlue, ρRed, ρNIR, ρSWIR1, and ρSWIR2 are the surface reflectance values of Band 2
(blue, 0.45–0.51 µm), Band 4 (red, 0.64–0.67 µm), Band 5 (near-infrared, 0.85–0.88 µm), Band
6 (SWIR1, 1.57–1.65 µm), and Band 7 (SWIR2, 2.11–2.29 µm) in the Landsat-8 LOI and
Sentinel-2 images, respectively (Table 2).

The approach is displayed in Figure 3.
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2.3.3. ML Algorithms

SVM is a statistical learning method, which was first published by [32]. The SVM
training algorithm is designed to identify a hyperplane separating a dataset into predefined
discrete classes based on training examples. The decision boundary minimizing misclassi-
fications is considered the optimal separation hyperplane. This is identified through an
iterative learning process separating first training patterns and then simulation data with
the same configurations [33].

In RS, individual pixels are represented as pattern vectors consisting of numerical
measurements for each frequency band. In addition, other discriminative measurements
based on spatial pixel relationships (e.g., texture) may also be elements of the feature vector.
The hyperplane of maximum margin is defined by the subset of points lying on the margin
of the classes. In Figure 4, the concept is illustrated as a linear SVM based on the simple
example of a two-class classification problem. In RS practice, more complex SVMs are
applied using multi-class classifiers as kernel functions. A major advantage of SVMs is
that they also work well with small training datasets while achieving higher classification
accuracy than conventional approaches [35]. Another advantage is the fact that SVM allows
generalizing accuracy acquired from finite training patterns to unseen data.
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The main challenge for the use of SVM in RS is constituted by the choice of kernel
functions. In this context, the radial-bias function and polynomial functions have been
demonstrated to produce different results [33]. In this research, we used a linear kernel
function in which the algorithm creates a hyperplane to separate the classes.

The RF method was first introduced by [35]. It is based on a combination of tree
predictors in which each tree depends on the values of an independently sampled random
vector, where all trees in the forest have the same distribution. For the set-up of an RF
model, the base of the method, constituted by the two parameters, the number of trees n
and the number of features in each split mtry, are required. According to [35], a random
forests consists of tree-structured classifiers {h(x, Θk), k = 1, . . . }. In this {Θk} independent,
there are identically distributed random vectors. Accurate classification is determined by
each tree casting a unit vote. In RF classifiers, the number of features used at each node and
the number of trees grown are user-defined parameters. Thus, at each node only selected
features are assessed. In the classification of a dataset, each case is assessed in each tree.
Accurate classification is determined by the majority vote from all trees [36].

The concept is illustrated in Figure 5. A are input samples. B and C are decision trees
within an RF D, assigning the sample to one of two branches based on the rule at each
decision point. In both B and C, the sample is assigned to the red class. Consequently,
the combined output result E of the RF is also the red class. The RF has strong predictive
performance. In addition, results inform each feature’s level in contributing to class
prediction [37].

Comparing SVM and RF, ref. [37] concludes that they achieve comparable accuracy.
The fact that RF only requires two parameters to be set, whereas SVM requires several
user-defined parameters constitutes an advantage of RF over SVM [38]. RF classifier tool in
ArcMap creates models and generates predictions based on Leo Breiman’s RF algorithm [35].
Another advantage of RF is the ability to handle data with missing values and unbalanced
data, as well as categorical data, which SVM lacks. In addition, RF allows for the detection
of outliers through proximity analysis. The main difference though is that RF can also be
used for unsupervised classification. These advantages of RF not-withstanding, ref. [39],
consider SVM with the polynomial kernel as well as radial-basis function to be superior to
RF, with RF performing inferior to SVM, if only single satellite coverage is used.
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Figure 5. RF concept adapted from [37].

2.3.4. Accuracy of RS Classification

To assess the performance of each classifier with different satellite sensors and indices
combination, the confusion matrices were calculated in ArcMap. Confusion matrices can
be used to describe the classification algorithm’s performance.

The increased use of digital RS data and various semi-automated or fully-automated
classification methods has led to an increased interest in classification accuracy. OA is the
simplest statistic, describing the number of all correctly classified pixels by the total number
of pixels used for accuracy assessment within the error matrix. In addition, producer’s
accuracy (PA) describes the probability that a reference pixel has been correctly classified
(and thus not omitted); the user’s accuracy (UA) describes the probability of pixels within a
specific class, which have been correctly classified and divided by the total number of pixels
assigned to that class. Another common measure of accuracy is KA, which is calculated by
the kappa index of agreement KHAT equation [40]:

ˆ
K =

N ∑r
i=1 xii − ∑r

i=1(xi+x+i)

N2 − ∑r
i=1(xi+x+i)

(5)

where:
r: number of rows in the matrix;
xii: number of observations in row i and column i;
xi+, x+i: marginal totals of row i and column i;
N: total number of observations.
KA value can be divided into three categories; a value greater than 0.80 represents

strong agreement; a value between 0.40–0.80 represents moderate agreement; and a value
below 0.40 represents poor agreement [40].

3. Results and Discussion
3.1. Results from Land Use Classification

Results from the land use classification for different combinations of sensor, classifier,
and index are presented in Figure 6 (S2-data and SVM classifier), Figure 7 (S2-data and RF
classifier), Figure 8 (L8-data and SVM classifier), and Figure 9 (L8-data and RF classifier).
For comparison in each figure the OSS data are also presented.
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Figure 6. Comparison of classified crop types area with OSS data for RF classifier with S2 sensor.
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Figure 7. Comparison of classified crop types area with OSS data for SVM classifier with S2 sensor.
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Figure 8. Comparison of classified crop types area with OSS data for SVM classifier with L8 sensor.
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Figure 9. Comparison of classified crop types area with OSS data for RF classifier with L8 sensor.

With winter wheat being the most abundant crop in the study region, classification
results for this crop might have a higher influence on the overall result. Figure 6 shows
that wheat results based on S2-SVM indices are very close to OSS and each other. Figure 7,
however, shows that except for EVI-NDVI this is also true for S2-RF. From Figure 8, it
can be observed that there are higher differences between the different indices as well as
between individual indices and OSS. However, what is also evident from Figures 8 and 9
is that the SVM and RF classifiers tend to classify rice paddies area with a probability of
difference between 190% to almost 500% compared to the area given by OSS. This can be
the result of wetlands being classified as rice fields and needs to be investigated further
in detail. Besides, the rice is also planted after harvesting winter wheat as a second crop
which is not included and recorded by OSS. This is because the study area is located where
the upstream water resources are formed and it has more access to the water resources than
other areas of the country.

As can be observed from Figure 9, there are differences between OSS data and classifi-
cation results for each of the sensor-classifier-index combinations. These differences appear
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to be particularly high for land use classes for which OSS shows comparatively low values.
To analyze this in more detail, differences between individual classification results and OSS
were calculated and presented in Table 4.

Table 4. Differences between classification results and OSS (1000 ha).

S2-SVM
NDVI EVI EVI-NDVI NDWI1 NDWI2

Cotton 0 −9.3 −4.9 18.1 19.1
Wheat −2.1 −10.5 −1.8 0 −0.8

Rice −3.8 −2.1 −2.9 −5.8 −4.9
Other crops −3 −10.9 1.7 23.8 21.7

AM −2.2 −8.2 −2.0 9.0 8.8
WA (OSS): −0.4 −2.5 −0.5 2.7 2.6

S2-RF
NDVI EVI EVI-NDVI NDWI1 NDWI2

Cotton 7.9 5.4 −3.6 11.5 13.2
Wheat 5 4 −10.6 6.6 −1.9

Rice −3.7 −2.3 −5.7 −4.7 −4.4
Other crops −46.3 −15.6 −4.4 26.1 23.3

AM −9.3 −2.1 −6.1 9.9 7.6
WA (OSS): −1.6 −0.1 −1.7 31 2.1

L8-SVM
NDVI EVI EVI-NDVI NDWI1 NDWI2

Cotton 12 12 −10.8 6.9 3.5
Wheat −15.7 −15.7 3.1 −12 24.3

Rice −22 −4.1 −19.4 −18.8 −18.8
Other crops 20.6 27.6 22 23.3 15

AM −1.3 4.9 −1.3 −0.2 6.0
WA (OSS): 0.2 0.7 0.7 0.5 3.8

L8-RF
NDVI EVI EVI-NDVI NDWI1 NDWI2

Cotton 7.2 7.2 −25.2 −22.4 1.4
Wheat −4.9 −4.9 15.2 −6.3 19

Rice −18.8 −8.1 −7.5 −10.1 −13.2
Other crops −1.4 3.8 −4.3 −2.6 7.5

AM −1.35 3.75 −4.3 −2.6 7.45
WA (OSS): 0.6 1.2 −0.2 −0.7 3.5

For each classification method, the arithmetic means (AM), as well as a WA using OSS
area as weights, were calculated. Since using the AM value for the differences, the results in
a disproportionate influence of differences for land use classes with a low share of overall
land use (i.e., particularly rice); therefore, it was decided to focus on the WA results, as
shown in Table 4.

Based on the results, the smallest absolute value difference WA 0.1 thousand ha was
demonstrated for the S2-sensor data using the RF classifier and EVI index, whereas for the
SVM classifier with S2 data, the smallest absolute value difference WA result, 0.4 thousand
ha, is obtained using the NDVI.

For L8-sensor data, the smallest absolute value difference result of 0.2 thousand ha
was obtained by using the EVI-NDVI with RF method or NDVI with SVM method.

To compare classification results for different sensor-classifier-index combinations,
subsets of land use maps in the middle of the study area located in Figure 10 for the
SVM classifier and Figure 11 for the RF classifier. The location of subsets is shown in
Figures 12 and 13. The subset area was chosen due to its location along the main river
Chirchik and the availability of all main cultivated crops inside. Visual analysis of these
comparisons indicates that results appear similar for both sensors’ data with differences
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depending on the classifier and index method. The results from the NDWI2 demonstrate a
very high amount of areas classified as water compared to other index methods.
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Figure 13. Classification result of L8-RF-EVI (highest OA 90% for RF).

Since OSS data are based on planning data compiled by the Ministry of Agriculture
and Resources of Uzbekistan, Tashkent, Uzbekistan, rather than on an assessment of the
actual cultivation situation, a high level of similarity for classification results with these
data is not necessarily an indicator of the quality of the classification result. Therefore,
results for classification accuracy are presented and analyzed in the next section.

3.2. Classification Accuracy Results

Classification accuracy (CA) was assessed using ground-truthing samples derived
from historical Google Earth data. Results for OA, UA, PA, and KA are presented in Table 5
for the SVM classifier and in Table 6 for the RF classifier.
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Table 5. Accuracy assessment (in %) results of SVM classifier.

Classes
NDVI EVI EVI-NDVI NDWI1 NDWI2

UA PA UA PA UA PA UA PA UA PA
S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8

Cotton 84 75 94 73 74 85 96 92 87 78 97 81 93 86 92 82 90 90 90 85
Wheat 87 85 92 81 86 78 92 89 88 82 91 83 92 93 93 90 95 89 91 89

Rice 93 75 78 68 97 94 70 94 95 83 80 74 90 83 92 85 92 84 88 87
Other crops 76 79 80 86 84 86 80 60 78 78 80 76 87 80 86 72 84 78 89 72
Fruits/trees 87 81 88 89 81 69 87 88 86 81 89 88 71 76 78 80 73 83 74 81

Others 89 84 83 85 92 65 75 86 89 91 83 82 92 87 82 90 94 85 86 83
Water 97 88 95 92 98 99 98 31 98 85 96 93 76 72 75 80 76 74 87 83
AM 88 81 87 82 87 82 85 77 89 83 88 82 86 82 85 83 86 83 86 83

OA-S2 87 86 88 86 87
OA-L8 82 79 82 83 84
KA-S2 85 84 86 84 84
KA-L8 78 75 79 80 81

Table 6. Accuracy assessment (in %) results of RF classifier.

Classes
NDVI EVI EVI-NDVI NDWI1 NDWI2

UA PA UA PA UA PA UA PA UA PA
S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8

Cotton 81 77 91 84 77 88 92 95 77 89 94 95 94 90 95 90 93 90 94 90
Wheat 91 90 87 84 86 94 89 92 91 92 93 87 92 94 92 92 94 89 93 90

Rice 94 83 76 76 96 94 68 97 92 94 76 97 90 90 94 88 94 90 93 90
Other crops 72 83 85 84 70 87 78 85 84 76 78 79 88 86 78 77 90 85 84 71
Fruits/trees 82 81 86 89 81 78 85 81 81 85 81 87 70 76 76 83 76 79 81 84

Others 89 86 84 82 85 92 73 91 85 96 86 82 95 95 80 86 93 92 82 75
Water 97 91 97 98 97 93 97 90 99 89 97 99 65 75 74 86 75 68 86 85
AM 87 84 87 85 85 89 83 77 87 89 86 89 85 87 84 86 88 85 88 84

OA-S2 86 84 87 85 88
OA-L8 85 90 89 87 84
KA-S2 84 81 85 82 86
KA-L8 82 88 87 84 81

As can be observed from Table 5, UA and PA vary considerably between land use
classes for the SVM classifier. The AM across all land use classes is in the range of 84%
to 89% for all sensor-ML algorithm-index combinations. The highest mean UA value for
the SVM classifier is 89% for S2-EVI-NDVI. The highest mean UA value for L8 is 83% for
NDWI1 and NDWI2, followed by 82% for NDVI and EVI-NDVI.

Looking at Table 6 and using OA and KA as measures, these two classification accuracy
indicators are higher for the S2 than the L8 sensor data using the SVM classifier. In
comparison to this, when looking at Table 6 at OA for results from the RF classifier and S2
and L8, this relationship is less pronounced, with OA showing higher values for S2 than
L8 for NDVI, and NDWI2, whereas OA for L8 has taken on higher values than S2 for EVI,
EVI-NDVI, and NDWI1. KA shows the same relationships between sensor data for both
SVM and RF.

Results presented in Tables 5 and 6 indicate that RF with L8 data results in higher OA
values than SVM with L8 data. However, for S2 data, results from SVM show higher OA
values than with RF.

The highest OA of 88% resulted for S2 was achieved when EVI-NDVI was used, as
well as the highest KA. A map displaying the classification result is shown in Figure 12. In
addition, the highest OA of 90% for L8 data was achieved with EVI. A map displaying the
classification result is shown in Figure 13.

For the RF classifier in Table 6, results for UA and PA also differ considerably between
land use classes and sensors. AM values across all land use classes for each satellite datasets-
ML algorithms calculation are in the range of 82% to 88%. The highest mean value of 89%
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resulted for EVI-L8, EVI-NDVI-PA-L8, and EVI-NDVI-UA-L8. The highest mean UA value
for S2-data is 88% for NDWI2 followed by 87% for EVI-NDVI. The highest PA value is 83%
for L8-NDWI2 at 83% and L8-EVI-NDVI. As can be observed from Tables 5 and 6, OA is
the highest, at 90%, for the combination L8-RF-EVI, followed by L8-RF-EVI-NDVI, at 89%,
and S2-SVM-EVI-NDVI and L8-RF-NDWI2, both 88%. The values for KA, on the other
hand, are highest for L8-RF-EVI at 88%, followed by L8-RF-EVI-NDVI at 87. Generally, the
values for KA show a wider range from 75 to 88 than those for OA, which range from 84 to
90. The mapping result for the combination L8-RF-EVI is displayed in Figure 13.

4. Discussion

In this study, high-resolution S2 data, as well as medium-resolution L8 data were
analyzed using different vegetation and water indices to derive main irrigated crop types
mapping. Two widely used ML classifiers of SVM and RF methods were used to recom-
mend appropriate classification methods to map high-resolution spatial crop types in the
semi-arid area of Tashkent province, Uzbekistan, because SVM and RF classifiers perform
better results for cropland classification when compared with other classification methods
such as Maximum Likelihood Classification, Classification and Regression Trees, Naive
Bayes, etc. [28,41].

4.1. Performance of ML Classifiers

Comparison of accuracy assessment analysis indicates that the highest OA 90%, as
well as KA 88%, was achieved using L8 sensor data with RF classifier and EVI used as
input data. For the SVM classifier, the highest OA 88% as well as KA 86% resulted from
using S2 data and EVI-NDVI used as input data. Thus, regarding the accuracy assessment
analysis, results from this paper do not provide a definitive answer on whether S2 or L8 is
a better dataset for crop types classification, as the OA and KA result rather depends on the
classifiers (SVM or RF) than the type of sensor (medium-resolution L8 or high-resolution
S2) used. However, we can conclude that in terms of accuracy assessment, the RF classifier
performs slighter better than SVM. This result also agrees with other studies [42–45].

Thus, the conclusion made by Nitze et al. [39] that SVM performs superior to RF if
used with single satellite coverage is not supported by the results presented in this paper.
In conclusion, the results demonstrate that both classifiers perform well, with comparable
results in terms of classification accuracy, which are made in [35], to be supported.

4.2. Using Different Indices and Their Performance

Using the spectral indices alone improves the classification accuracy. When spectral
indices are used together with reflectance values for crop type classification, it negatively
impacts classification accuracy due to large sets of correlated variables. The reflectance
including bands Blue, Red, NIR, SWIR1, and SWIR2 spectral indices are very useful for
the identification of crop types and can achieve high classification accuracy [46]. Based on
that recommendation, four indices of NDVI, EVI, NDWI1, and NDWI2 performance were
studied using different satellite datasets and ML algorithms.

The highest values of OA and KA resulted when EVI and EVI-NDVI were used in crop
type classifications, as shown in Figures 14 and 15. Using the L8 dataset’s EVI, EVI-NDVI,
and NDWI1 with RF classifier yielded higher OA values of 90%, 89%, and 87%, respectively.
It also applies to KA values as well. The lowest OA and KA values resulted in an SVM
classifier of L8 datasets for all indices.
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Figure 14. OA of SVM and RF classifiers on different indices and satellites.
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Figure 15. KA of SVM and RF classifiers on different indices and satellites.

For NDWI1 and NDWI2, a visual assessment of classified images in Figures 10 and 11
indicates that these indices tended to overclassify water areas, which could explain the
overall bigger areas classified to these classes because NDWI is very sensitive to changes in
the water content of vegetation canopies and soil water content [31]. Due to irrigation of
crops in the early crop growing period, the soil water content influences the classification
accuracy, which resulted in many misclassified pixels as water. NDVI and EVI resulted
in overall slightly better accuracy values than NDWI1 and NDWI2. Vegetation indices,
which include NIR, have a great contribution to identifying crop types [42,47,48]. The other
research studies compared the performance of EVI and NDVI for image classifications; it
was found that their performance is equally good, with a slight overperformance of each
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other’s [49,50]. The most important factor is crop phenology knowledge and crop growth
period consideration during training and validation samples [51]. At the very beginning of
the crop growing season (March–April), the classification achieves relatively low accuracies,
and it significantly increases when satellite images are obtained between May and June
until the OA reaches its highest value in July [52,53]. However, when the combination of
multiple sensor datasets is used for crop type classification, it improves the classification
accuracy due to its high temporal resolution, which captures more datasets throughout the
vegetation growth period [51,54,55].

4.3. Comparing Derived Main Crop Types Area with OSS Data

Cropland areas derived from this study were compared with OSS data at the provincial
level. The other studies also compared calculated croplands area with OSS data at national
and regional levels [27,56–58]. In Figure 16, a comparison of the total area classified for
the land use categories of cotton, wheat, rice, and other crops is displayed by the sensor,
classifier, and index and compared to the equivalent figures from OSS.
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Figure 16. Difference between the total area of OSS data and classified area by sensors, classifiers,
and indices.

The comparison of the total area classified for the land use categories of cotton, wheat,
rice, and other crops with OSS data in Figure 16 shows that with exception of the S2-RF
sensor-classifier combination, classifications based on NDVI are closest to OSS and also
comparatively close to each other regarding the total classified area. NDWI1 and NDWI2
also demonstrate similar total classified area results for all sensor-classifier combinations,
but at roughly 250 thousand ha both show smaller total areas than OSS data. The total
area of classifiers NDVI-S2-RF, EVI-S2-SVM, EVI-NDVI-L8-RF, and EVI-NDVI-S2-RF are
recorded in OSS.

The mapped areas of the crop classes in this study area, overall, do well with OSS data
at the provincial level, with on average 1% deviation in coverage resulting with L8 sensor
datasets using RF-EVI and SVM-EVI-NDVI methods, as shown in Table 7. A similar result
was also found in the work of Asam et al., 2022 [58]. The deviation between 1% to 13%
resulted from the EVI and NDVI used by all ML classifiers and sensor datasets. The close
values are also found in the research of Oliphant et al., 2019 [57]. The lowest deviation
values of 8% to 14% (less than OSS data) were found using NDWI1 and NDWI2 by all ML
classifiers and sensor datasets.
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Table 7. Deviation (in %) between the total mapped crop areas and OSS data (280.4 thousand ha).

Classifier-
Sensor

Indices Combination

NDVI EVI EVI-NDVI NDWI1 NDWI2

SVM-S2 3 12 3 −13 −13
SVM-L8 2 −6 1 −12 −8

RF-S2 13 3 9 −14 −11
RF-L8 2 −1 13 −14 −8

4.4. Theoretical and Practical Implications of the Research

Land information systems access for local or regional land administration highly
influences the way a state operates and the policies they develop. Recognizing land uses
by land administration is a major funding source such as tax, stamp duty on property
transfers, etc. [43]. Derived irrigated crop types maps can be utilized by regional land
administration offices to monitor the spatial extent of crops location and its monitoring as
well as modeling and predicting crop yields and production by different models.

4.5. Limitations and Recommendations

Training and validation sampling points were taken based on the best knowledge
of crop development phenology, cropping calendar, monthly NDVI profiles during the
crop growth period, and historical google earth images. However, it is lacking the field
observation data. In this research, we focused on creating a map of major crops such as
cotton, wheat, rice, other crops, and fruits/trees, which are recorded by state statistics. The
“Other crops” class consists of multiple minor crops, and we are motivated to continue
our research to classify these classes by crop types in the future. Besides, we recommend
creating detailed second crop maps, which is vital for public land management authority
and local government to make decisions on a crop location that is suitable for soil quality
and food security stability.

5. Conclusions

In this study, S2 and L8-based time series data in 2018 served as the input for mapping
irrigated crop types using different vegetation indices such as NDVI, EVI, NDWI1, and
NDWI2 by SVM and RF ML algorithms.

Regarding the comparability of medium (30 m) to high (10 m) resolution RS data,
the results have demonstrated that both sensor products provide comparable outcomes
concerning total area classified as well as accuracy assessment results. This is confirmed by
the fact that the classification results demonstrating the highest OA results for SVM and RF,
respectively, have been produced with different sensors. A closer analysis of OA, KA, UA,
and PA, too, has demonstrated that RS imagery from both sensors is of comparable quality.
Differences in accuracy results vary higher based on the vegetation indices used than on
sensor data. KA values vary between 75% to 88% in all indices. The lowest KA values were
achieved in all indices with the SVM classifier of L8 sensor data. The highest KA values
of 88% and 87% were achieved with the RF classifier of L8 data when EVI and EVI-NDVI
were used, respectively.

We can also have a similar conclusion regarding the difference between RS-based-
derived crop types area and OSS area. The lowest absolute WA using OSS area as weight,
between areas classified per respective OSS category is 0.1 thousand ha for S2-RF-EVI
classification and 0.2 thousand ha for L8-SVM-NDVI classification. Thus, classified maps
can be used by global cropland mapping projects or any other ecological models that require
specific crop types mapping. The recent successful launch of Landsat-9 will successfully
continue the Landsat data suite and enable new opportunities in the joint use of Landsat
and Sentinel data to capture high temporal resolution during the vegetation growth period.

The comparison of classified map areas for the main crops of cotton, wheat, and other
crops demonstrated very reliable results when NDVI and EVI-NDVI were used with S2
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sensor data. Therefore, S2 high resolution and temporal data can be utilized in the future
to create LU maps to calculate crop water and irrigation requirements by using a variety of
climate-hydrology models. Besides, created crop types map of agricultural areas can be
used to inform decision-makers of local administration offices to develop policies to assure
food security, valuable ecological resources, and services where digital data do not exist
or missing.

The performance of both ML classifiers with S2 and L8 sensor data resulted in not
being satisfactory for the rice crop due to the mixture of this class with second crops
after winter wheat, which was due to a similar sowing time and growth period. Another
limitation of this research relates to other crops classes, where other crop classes include
a variety of crops; some of these crops might have similar growth periods and spectral
properties to each other. This can influence on the OA of the classifiers, and we recommend
further studying the separating of other crop types in the future.
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