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ABSTRACT

MicrobiomeDB (http://microbiomeDB.org) is a data
discovery and analysis platform that empowers re-
searchers to fully leverage experimental variables
to interrogate microbiome datasets. MicrobiomeDB
was developed in collaboration with the Eukaryotic
Pathogens Bioinformatics Resource Center (http://
EuPathDB.org) and leverages the infrastructure and
user interface of EuPathDB, which allows users to
construct in silico experiments using an intuitive
graphical ‘strategy’ approach. The current release of
the database integrates microbial census data with
sample details for nearly 14 000 samples originat-
ing from human, animal and environmental sources,
including over 9000 samples from healthy human
subjects in the Human Microbiome Project (http:
//portal.ihmpdcc.org/). Query results can be statis-
tically analyzed and graphically visualized via in-
teractive web applications launched directly in the
browser, providing insight into microbial community
diversity and allowing users to identify taxa associ-
ated with any experimental covariate.

INTRODUCTION

Advances in high-throughput sequencing technology, to-
gether with the development of multiplex protocols for

large-scale marker gene based studies (1,2), have revolu-
tionized microbiology, allowing scientists to complement
culture-based approaches with culture-independent profil-
ing of complex microbial communities (often referred to as
a ‘microbiome’). As a result, there has been a tremendous
increase in microbial census data generated from diverse
habitats, including soil, ocean, the built environment, hu-
mans and animals. The growth of available data underscores
a need for the development of web-based tools that allow
users to rapidly explore public datasets, produce customiz-
able visualizations, and generate hypotheses, without invest-
ing in compute resources or possessing extensive knowledge
in bioinformatics or statistics.

Microbiome experiments are often accompanied by study
designs that describe various attributes of the samples be-
ing studied. These ‘sample details’ can include informa-
tion about the source from which the sample was derived,
quantitative or qualitative biometrics from human or an-
imal clinical studies, technical comments about how sam-
ples were processed and sequencing assays were carried
out, respondent survey data, and much more. Despite the
considerable effort made over the past decade to develop
analytical pipelines for raw sequence data generated from
16S rRNA marker gene studies (3,4) and ‘shotgun’ metage-
nomic studies (5,6), resources that allow scientists to inter-
rogate the microbial community census data from the per-
spective of sample details are scarce. Web-based resources
for microbiome researchers have focused largely on the stor-
age and analysis of raw sequence data (7–9), or on visual-
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Figure 1. Schematic showing the automated data loading workflow for MicrobiomeDB. Greengenes identifiers are extracted from .biom files containing
microbial community census data and used to retrieve NCBI taxon identifiers, full 16S rRNA gene sequences, and taxon strings. User-provided sample
details are mapped to an OBO Foundry ontology to expand a EuPathDB local application ontology. Sample details are formatted as an Investigation,
Study, Assay (ISA) file and, along with microbiome census data, are structured in a GUS4 schema for loading into MicrobiomeDB. Manual curation is
used to produce a custom microbiome display terminology for searching sample details on the website.

ization tools (10–12), rather than on integrating data mining
and analysis tools that include both sequence and sample-
associated data. To address these unmet needs and em-
power users to identify experimental variables associated
with changes in microbial community structure, we devel-
oped MicrobiomeDB (http://microbiomeDB.org). We rea-
soned that the user interface, query tools and web toolkit
developed by the Eukaryotic Pathogens Bioinformatics Re-
source Center, EuPathDB (http://EuPathDB.org) (13), for
identifying genes of interest in eukaryotic pathogens based
on gene attributes (e.g. size in kilobases, expression level
from RNA sequencing data, polymorphisms from DNA se-
quencing data) could be adapted to identify samples of in-
terest from microbiome studies based on sample attributes
(e.g. age, sex, antibiotic exposure).

DATA LOADING

A key feature of MicrobiomeDB is the development of an
automated workflow for loading data from microbiome ex-
periments (Figure 1). Microbial community census data
from six publicly available datasets derived from four pub-
lished studies (14–17), each as a Biological Observation
Matrix (.biom) (18), was used as input for the workflow.
Datasets available on MicrobiomeDB can accessed through
the ‘Data sets’ tab of the main menu bar or sidebar menu of
the site. The .biom files and their associated study designs
were downloaded from the QIITA portal (https://qiita.ucsd.
edu/) (7,8), which at the time of download used a stan-
dardized method for pre-processing sequences and closed-
reference picking of operational taxonomic units. The selec-
tion of datasets for loading into MicrobiomeDB was based

on qualities that could drive tool development, including:
(i) samples originating from a variety of sources (human,
animal, and environment); (ii) datasets that varied in size
by an order of magnitude or more, allowing us to test site
function when operating on different scales and (iii) sam-
ples for which data was generated from different variable
regions of the 16S rRNA gene. The MicrobiomeDB data
loading workflow takes taxonomy assignments from the
.biom file, maps these to the Greengenes database (19,20),
and retrieves full 16S rRNA gene sequences, NCBI taxon
identifiers, and taxonomy strings.

In addition to consuming taxonomy data, the Mi-
crobiomeDB workflow also loads details about samples
recorded by the experimenter. Sample details from the six
datasets included those compliant with the MixS (Mini-
mal Information about any (x) Sequence) standard (21);
however, most of the provided terms were not covered by
the standard. Harmonization of sample details was per-
formed to facilitate data integration and guide organization
of sample descriptions for searches. Terms were mapped to
the Open Biomedical Ontologies (OBO) Foundry ontolo-
gies (22) including the Environmental Ontology (23) and
the Ontology for Biomedical Investigations (OBI) (24). The
mapped ontology terms were added to the local application
ontology used across all EuPathDB sites (25), which is avail-
able through BioPortal (26) (http://bioportal.bioontology.
org/ontologies/EUPATH). Unmapped terms were manu-
ally curated to generate new ontology terms that were then
added to the same EuPathDB ontology. Sample details were
then formatted as an Investigation, Study, Assay file (ISA)
(27) and, along with the census data, were structured using
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Figure 2. Screenshot of the filter page for searching by sample details. (A) The filter list shows all sample details describing all the samples in the database.
This list is searchable via a reactive text box (red arrow) (B) Selecting any term from the filter list shows all the values associated with that term and the
number of samples from the database that match each value. (B) Users filter the samples in the database by selecting values of interest. (C) Any filter applied
by the user remains accessible through filter history at the top of the page.

a Genomics Unified Schema, version 4 (GUS4; http://www.
gusdb.org/SchemaBrowserBeta/categoryList.htm) (28) for
loading into the database. A web interface terminology was
generated using a subset of the EuPath ontology containing
only those terms needed for MicrobiomeDB, which is used
to guide searches based on sample details.

HOW TO USE MICROBIOMEDB

The homepage

The homepage for MicrobiomeDB is divided into three
main sections. The menu bar at the top of the page allows
users to initiate a new search, access data sets, log in to view
their saved searches, or contact our development team to
report problems with the site or request new features or
data to be added. The left-hand side bar displays social me-
dia content related to MicrobiomeDB, and provides users
with access to the about page, as well as release notes and
data sets. Finally, the main page summarizes the content
of database, and provides access to tutorials and example
searches.

Performing a search in MicrobiomeDB

Searching the database is initiated by clicking on ‘New
Search’ in the menu bar. Users have the option of search-
ing MicrobiomeDB by either sample details or taxon abun-
dance. Initiating a search by sample details takes users to
a filter page (Figure 2) where all terms that describe all the
samples in the database are available as a list (Figure 2A),
searchable using a reactive text box (Figure 2, arrow). Se-
lecting a term from this list displays its values and the num-
ber of samples that map to each value to the right (Figure
2B). When the user selects one or more values, the database

is immediately filtered to return only samples annotated
with the selected value(s). The user continues this process
of filtering based on sample details, and can apply as many
filters as they choose. Each filtering step produces a filter cri-
teria that records and summarizes the user’s filter history,
providing convenient, single-click access to return to and
modify any prior filter step (Figure 2C).

A second way to search the database is by taxon abun-
dance (Supplementary Figure S1), which also takes users
to a filter page, but rather than using sample details to filter
the database, users are presented with a list of the full taxon-
omy for all taxa represented in the database (Supplementary
Figure S1A). Searching for and selecting a single taxon from
this list displays a distribution of the relative abundance for
that specific taxon across all samples in the database (Sup-
plementary Figure S1B). The user can select a single relative
abundance value or a range of values by clicking and drag-
ging any interval on the distribution (Supplementary Fig-
ure S1B, arrow), which then returns from the database only
samples that contain the selected taxon at the specified rel-
ative abundance(s). Like the sample details filter page, the
taxon abundance filter page records filter history (Supple-
mentary Figure S1C).

Building a search strategy in MicrobiomeDB

Once filtering by sample details or taxon abundance is com-
plete, selecting ‘Get Answer’ on the filter page takes the user
to a results page (Figure 3), which is divided into two main
panels. At the top of the page is the strategy panel (Fig-
ure 3A), where users can design in silico experiments by ex-
panding on a single query to combine multiple queries of
the database using Boolean operators. User-defined names
and descriptions can be entered for each strategy, and strate-
gies can be saved, kept private, made public, or shared with

http://www.gusdb.org/SchemaBrowserBeta/categoryList.htm
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Figure 3. Screenshot of the query results page. (A) The strategy panel provides users with an interface to name, share and expand on their initial query,
thereby constructing in silico experiments. Query results are shown as ‘Step 1’, and additional queries can be added as additional steps. (B) The sample
results panel shows all samples matching the search strategy, which can be downloaded (black arrow). Users can visualize and statistically analyze their
query results by accessing a suite of interactive web apps (magenta arrow). (C and D) Details and data for individual samples can be viewed by clicking on
the sample identifier.

colleagues via a URL, making complex data mining strate-
gies transparent and reproducible. Below the strategy panel
is the sample table, which displays all the samples returned
by the query (Figure 3B). These results can be downloaded
(Figure 3B, black arrow), and sample-level details can be
viewed by clicking on individual sample identifiers in this
table, which takes the user to a sample record page where the
dataset and any publications associated with the sample are
listed, along with all sample details and taxon abundances
recorded for the sample (Figure 3C and D, respectively).
Taxon-specific details (e.g. available genome sequences) can
also be accessed directly from the abundance table (Figure
3D) by clicking on the taxon identifier to navigate to either
the National Center for Biotechnology Information (NCBI)
Taxonomy Browser (29) or the Pathosystems Resource In-
tegration Center (PATRIC) (30).

DATA VISUALIZATION AND ANALYSIS

Clicking on the ‘Analyze Results’ tab of the results page
(Figure 3B, magenta arrow) reveals a suite of interactive
web apps to visualize and statistically analyze the samples
returned from any query, directly in the browser window
(Figure 4A). All apps were built using the Shiny framework

(31,32) for development of web-based applications using the
R programming environment (33). Our Shiny apps follow
four common guiding principles: first, all data and sample
details returned by a query strategy are passed to the app
so that users can explore their data in the context of the ex-
perimental covariates. For example, graphs can be faceted
and colored to reveal how factors such as diet, specimen
type, or disease status are associated with shifts in micro-
bial community diversity or composition. Second, all apps
adhere to the ‘grammar of graphics’ and were generated us-
ing ggplot2 (34). Third, when appropriate, non-parametric
statistical analyses (Wilcoxon or Kruskal–Wallis rank sum
test) are automatically computed after faceting and test re-
sults are displayed on the graphic. Fourth, any graphic pro-
duced and the underlying data can be downloaded directly
from within the app. Currently, five apps are available on
MicrobiomeDB and the underlying R code is available on
GitHub (https://github.com/dpbisme/microbiomeDB), al-
lowing users to contribute to app development, or down-
load and run apps locally on their own datasets. These apps
are described in more detail below.

https://github.com/dpbisme/microbiomeDB


D688 Nucleic Acids Research, 2018, Vol. 46, Database issue

Figure 4. Screenshot of the relative abundance app. (A) The analysis tab of the results page provides access to a suite of interactive web apps for visualization
and analysis of microbial community diversity and composition. (B) Selecting the relative abundance app displays a horizontal stacked bar chart of the
top ten most abundant taxa. Users can customize this graphic by selecting taxonomic level and sample details to partition the samples into groups. (C)
Navigating to the ‘top taxa comparison’ tab of the app displays this data as a box-and-whisker plot that allows the same customization as the stacked bar
chart. (D) Double clicking on any single taxon in panel B, or navigating to the ‘single taxon’ tab of the app and entering a taxon of interest, displays a
graph of that taxon with statistical analysis comparing the relative abundance between the user-defined group(s).

Relative abundance app

Relative abundance of taxa is pre-calculated for each sam-
ple during the data loading workflow (Figure 1). When the
relative abundance app is launched, a horizontal stacked
bar chart is created from the top 10 most abundant taxa
present (by median relative abundance) across all the sam-
ples returned by the query, and the relative abundance for
all remaining taxa is binned together and displayed as an
11th group termed ‘other’ (Figure 4B). A drop down menu

is available to change the taxonomic rank, or to partition
the graph based on any available covariates for the displayed
samples, producing an updated graphic with each new user
input. Selecting the ‘Top Taxa Comparison’ tab of this app
opens a new graphic that displays the top 10 taxa as box-
and-whisker plots, with one box per covariate (Figure 4C).
Finally, a third tab of this app, ‘Single Taxon’, provides users
with a searchable list of all taxa present in the samples. Se-
lecting a taxon from this list produces a box-and-whisker
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plot for only that taxon, and calculates significance (Figure
4D).

Diversity apps

Unlike relative abundance data, diversity metrics are not
pre-calculated at the time of data loading. Instead, when
users launch the alpha diversity app, the PhyloSeq pack-
age (35) is used to de novo calculate Shannon, Simpson,
Chao1, ACE and Fisher diversity metrics, which are then
displayed as either a dot- or box-plot (Supplementary Fig-
ure S2). Clicking on the ‘Explore Sample Details’ tab of
the app (Supplementary Figure S2B, arrow) allows users to
facet the plot based on one or more experimental variables.
Similarly, when users launch the beta diversity app, Bray-
Curtis, Jensen–Shannon divergence, Jaccard, Kulczynski,
Canberra, Horn and Mountford metrics are used to cal-
culate dissimilarity between samples, which is then used to
ordinate the samples as points on a two-dimensional plot,
where point color and shape can be mapped to sample de-
tails (Supplementary Figure S2C).

Differential abundance and correlation apps

Launching the differential abundance app (Figure 5) uses
DESeq2, v1.16.1, to apply a negative binomial generalized
linear model and Wald test (36) to identify differentially
abundant taxa between any pairwise comparison of sam-
ple details. The user selects the experimental variable of in-
terest from a drop down menu (e.g. baby’s delivery mode)
and is presented with two additional drop down menus that
show all values associated with the selected term. Choosing
the pairwise comparison of values (e.g. cesarean versus vagi-
nal) initiates the differential abundance analysis. Results are
displayed as a ‘lollipop’ chart where each lollipop repre-
sents a differentially abundant taxon, its direction indicates
the phenotype association, length indicates fold change, the
color indicates phylum, and the size signifies statistical sig-
nificance (Figure 5B). Moving the cursor over any taxon
displays a tooltip box-and-whisker graph with statistics for
that taxon (Figure 5C). Rather than specifically testing for
differentially abundant taxa, users may want to explore as-
sociations between taxa and sample details more broadly.
To address this need, the correlation app (data not shown)
displays the Spearman’s rank correlation between continu-
ous sample details and taxa, and also allows users to also
view correlations between different continuous sample de-
tails. The result is shown as a dot plot where the colors in-
dicate the Spearman’s rho (blue for positive correlation and
red for negative correlation) and the size signifies statistical
significance. A searchable table is also displayed under the
chart where the user can see all the correlations in a struc-
tured way.

ADDITIONAL FEATURES

Favorites and basket

Through the favorites tool, users can bookmark samples
of interest for convenient access later. Adding or remov-
ing a sample to the favorites can be done by clicking on
the favorites icon (star) present at the top of each sample

record page (Figure 3C and D). Samples in the favorites
page can be assigned to user-defined projects and free text
can be added to describe each sample. Additional flexibil-
ity for dealing with custom sample lists is provided by the
basket tool, which allows a user to compile and save a set of
samples that can be added to a search strategy and thereby
incorporated with any other samples from MicrobiomeDB.
Samples are added to the basket by clicking on the basket
icon next to the sample ID on the search results page (Fig-
ure 3B) or at the top of a sample record page (Figure 3C
and D). Favorites and the basket are accessed via links in
the menu bar at the top of the homepage.

FUTURE DIRECTIONS

MicrobiomeDB currently accepts microbial community
census data in the form of a .biom file. One consequence of
loading .biom files is that preprocessing of raw sequences,
alignments to a reference database, and taxonomic assign-
ment are all carried out by the data providers, rather than by
MicrobiomeDB itself. This significantly limits the ability to
integrate datasets, since different data providers likely pro-
duce .biom files using different methods. A priority mov-
ing forward is to extend the current data loading work-
flow to accommodate raw 16S rRNA gene sequence data,
instead of .biom files, thereby taking a major step toward
making standardized data processing a central part of load-
ing data into MicrobiomeDB. Beyond 16S rRNA gene se-
quences, future development of the site will include tools for
loading and analysis of ‘shotgun’ metagenomic sequences,
with the initial focus on HMP data where both 16S rRNA
and metagenomic data are available, providing valuable in-
sight into differences in community composition gleaned
by these approaches (37). In addition, a large collection
of highly curated metagenomic data from human sam-
ples is also publicly available (https://waldronlab.github.
io/curatedMetagenomicData/), and will be prioritized for
loading. Although MicrobiomeDB was constructed around
a limited number of datasets, this was sufficient for tool de-
velopment, and the size of the database can now be dra-
matically increased without the need to significantly mod-
ify site infrastructure or apps. We expect to eventually load
all datasets available through the QIITA portal (7,8), with
an initial focus on datasets from gastrointestinal diseases
in humans and animals, including inflammatory bowel dis-
ease, infection and malnutrition.

Data visualization and analysis apps will continue to be
refined and new apps added to the analysis suite, includ-
ing new methods to find taxa associated with both discrete
and continuous variables, such as age and weight. Shiny
app development will be driven, in part, by user comments
and requests submitted through the ‘contact us’ link on
the website. Setting up a free account on MicrobiomeDB
currently allows users to save search strategies, and one
goal moving forward is to also enable saving and sharing
of entire analyses carried out through the Shiny apps. Fi-
nally, it is common for microbiome experiments to include
other assays, such as metabolomics or transcriptional pro-
filing, and the extensibility of our data loading workflow
and the EuPathDB web toolkit provide an opportunity to
incorporate diverse data types. For example, EuPathDB in-

https://waldronlab.github.io/curatedMetagenomicData/
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Figure 5. Screenshot of the differential abundance app. (A) The analysis tab of the results page provides access to a suite of interactive web apps for
visualization and analysis of microbial community diversity and composition. (B) Selecting the differential abundance app presents users with several drop
down menus to customize their analysis. After choosing the taxonomic level, the design factor, and the pairwise comparison of interest, DESeq2 is run
to identify differentially abundant taxa. Results are displayed as a ‘lollipop’ chart where color indicates phylum, length of the lollipop indicates log2 fold
change (X-axis), and size of the lollipop reflects statistical significance. (C) Moving the cursor over any lollipop displays a plot of relative abundance with
statistics for that taxon.

frastructure is already used to mine and view single nu-
cleotide polymorphisms (SNPs) from pathogen genomes,
and this functionality will be leveraged for viewing SNPs
in metagenomic data in the future. In addition, metage-
nomics studies will also open the doors to utilizing eukary-
otic pathogens genomes and community datasets already
richly represented across EuPathDB sites. Taken together,
these results constitute a first step toward a full-featured,
open-source web platform for a systems biology view of mi-
crobial communities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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