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Abstract: A high long-term stability is crucial for room-temperature gas-sensitive metal oxide semi-
conductors (MOSs) to find practical applications. A series of Pd-SnO2 mixtures with 2, 5, and 10 wt%
Pd separately were prepared from SnO2 and Pd powders. Through pressing and sintering, Pd-SnO2

composite nanoceramics have been successfully prepared from the mixtures, which show responses
of 50, 100, and 60 to 0.04% CO-20% O2-N2 at room temperature for samples of 2, 5, and 10 wt%
Pd, respectively. The room-temperature CO-sensing characteristics were degraded obviously after
dozens of days’ aging for all samples. For samples of 5 wt% Pd, the response to CO was decreased by
a factor of 4 after 20 days of aging. Fortunately, some rather mild heat treatments will quite effectively
reactivate those aged samples. Heat treatment at 150 ◦C for 15 min in air tripled the response to
CO for a 20 days-aged sample of 5 wt% Pd. It is proposed that the deposition of impurity gases
in air on Pd in Pd-SnO2 composite nanoceramics has resulted in the observed aging, while their
desorption from Pd through mild heat treatments leads to the reactivation. More studies on aging and
reactivation of room-temperature gas sensitive MOSs should be conducted to achieve high long-term
stability for room-temperature MOS gas sensors.

Keywords: CO; sensors; SnO2; aging; heat treatment; recover

1. Introduction

CO is a highly dangerous gas and can be formed unintentionally in our ambient
environments. Every year, there are many cases of CO gas poisoning [1]. Therefore, gas
sensors that can effectively monitor CO and other dangerous gases in real time have
attracted extensive attention [2].

At present, the most widely used gas sensors are metal oxide semiconductor (MOS)
gas sensors, optical sensors, electrochemical sensors, and so on. These different types of
gas sensors have their own advantages and disadvantages. Optical sensors are difficult
to be applied in many cases due to their high cost. Electrochemical gas sensors have the
drawbacks of short life and high cross sensitivity with other gases. MOS gas sensors are
highly attractive with high sensitivity, long life, and low cost. However, these gas sensors
can only operate at high temperatures (around 400 ◦C), which is energy consuming and
dangerous [3–8]. For CO gas detection, the traditional metal oxides are SnO2, NiO, ZnO, and
so on [9]. Nelli et al. prepared SnO2-Au thin film through rheotaxial growth and thermal
oxidation technique (RGTO) and it is responsive to CO and CH4 at 400 ◦C [10]. Wang
et al. invented a high temperature mixed potential CO gas sensor for on-site combustion
control, and these porous NiO sensors were able to detect a low CO range of 0–100 ppm at
1000 ◦C [11]. Wang et al. obtained Pt/SnO2 nanostructures through microwave-assisted
hydrothermal synthesis with strong and quick responses 100 ppm CO at 225 ◦C [12].
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In recent years, many investigations have been conducted to develop room-temperature
CO sensors based on MOSs and some remarkable results have been achieved. In 2015,
Pan et al. developed an ultra-sensitive room-temperature CO sensor using zinc oxide
nanocombs, whose peak sensitivities to 250 ppm and 500 ppm CO are as high as 7.22
and 8.93, respectively [13]. In 2018, Wang et al. prepared palladium(Pd)–SnO2 composite
nanoceramics with highly attractive room-temperature CO-sensing capabilities, includ-
ing high sensitivities around 15, short response time of 20 s and recovery time of 60 s
for 100 ppm CO in air [14]. In 2019, it was further revealed that the formation of Pd4+

in Pd–SnO2 composite nanoceramics is responsible for the observed room temperature
CO-sensing capability [15]. In 2020, Stanoiu et al. fabricated CO sensors from In-doped
Pd-SnO2 powders through screen-printing and heating, which showed sensitivities around
100 to 50 ppm CO at 50 ◦C [16]. These contributions suggest that room-temperature MOS
CO sensors are highly promising for practical applications in the near future.

Service behavior represents a basic performance for all kinds of materials. As for
gas sensors, their long-term performances, including sensitivity, selectivity, response, and
recovery speeds, are of vital importance for their practical applications [17]. Before room-
temperature MOS gas sensors can be successfully commercialized, their long-term stability
has to be systematically evaluated. For room-temperature hydrogen sensitive Pt-SnO2
composite nanoceramics, their room-temperature response to 1% H2 remained stable for
about 6 months, however, their recovery time in air was dramatically increased [18]. For
Pt/WO3 thin films, their room-temperature gasochromic hydrogen response was slightly
decreased after 43 days of aging, and both the response and recovery speeds were severely
decreased [19]. From these limited studies, it can be concluded that the long-term stability
may represent as a major obstacle for room-temperature MOS gas sensors in their course of
commercialization and should be studied systematically.

Though several kinds of room-temperature CO sensors have been prepared and stud-
ied [13–16,20–22], there have been no reports on the long-term stability of room-temperature
CO sensors based on MOSs in the literature up to date. In particular, an impressive room-
temperature CO-sensing capability has been obtained for Pd-SnO2 composite nanoceramics,
whose Pd content has been revealed to have an intriguing effect on the formation of the
room-temperature CO-sensing capability [14,15]. As bulk materials prepared through
pressing and sintering, these composite nanoceramics are more promising for practical ap-
plications than low-dimensional nanostructured MOSs in robustness and mass production.
Presently, we have prepared Pd-SnO2 composite nanoceramics from SnO2 and Pd powders
with a series of Pd content. All samples exhibit strong responses to CO at room temperature,
and a study on the time dependence of the room-temperature CO-sensing characteristics
has been conducted. Their important room-temperature CO-sensing parameters, includ-
ing their response to CO, their response and recovery speeds, all degrade seriously with
increasing aging time. Interestingly, the room-temperature CO-sensing characteristics of
those aged samples can be mostly restored through rather mild heat treatments (e.g., 150 ◦C
for 15 min in air). These results should be highly meaningful for the development of room-
temperature CO sensors based-on MOSs with high long-term stability. To our knowledge,
there have been no reports on reactivating aged room-temperature gas-sensitive MOSs
through such mild heat treatments.

2. Materials and Methods
2.1. Materials Preparation

SnO2 nanoparticles (99.99%, 70 nm, Aladdin, Shanghai, China), Pd particles (99.9%,
~1 µm, Aladdin, Shanghai, China) were used as the starting materials. First, three kinds
of mixtures were prepared by dispersing SnO2 nanoparticles and Pd particles into 30 mL
deionized water at weight ratios of 90:10, 95:5, and 98:2, separately. The mixtures were
stirred at 800 rpm for 4 h on a magnetic stirrer, dried in an oven at 100 ◦C for 15 h. The
obtained dry powders were ground for 30 min, then deionized water was added as a
binder and pellets with a diameter of about 10 mm and a thickness of 1.5 mm were pressed
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from the powders through a hydraulic press at about 3 MPa. Finally, the pellets were
sintered at 950 ◦C in air for 2 h. A pair of rectangular Au electrodes was formed on a major
surface of sintered pellets through direct current (DC) magnetron sputtering for gas-sensing
measurement, as described in some previous papers [14,15].

2.2. CO-Sensing Measurement

A commercial gas-sensing measurement system (GRMS-215, Partulab Com., Wuhan,
China) was used for CO-sensing measurement. The samples were placed in a sealed
chamber (about 350 mL) with four gas inlets and one gas outlet, which are used to change
the gas environment in the chamber. In the response process, specific atmospheres were
introduced through mixing O2, N2, and 0.1% CO in N2 at some designed ratios, as shown
in Figure 1. The total gas flow rate was 300 mL/min. For the recovery process, air was
pumped into the chamber at a rate of 1000 mL/min. A DC voltage of 2 V was applied
between the Au electrodes of the samples, and the flown electric current was measured
through a Keithley 2400 Source/Meter. The room temperature was kept at 25 ◦C and the
relative humidity (RH) in air was maintained at 50% through a commercial humidifier.
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Figure 1. A scheme for CO-sensing measurement set-up.

2.3. Materials Characterization

X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (BRUKER
AXS D8 ADVANCE) using Cu Kα radiation. A scanning electron microscopy (SIRION,
FEI, The Netherlands) was used to analyze microstructure. Energy dispersive spectroscopy
(EDS) analyses were recorded through OXFORD Aztec 250 instrument.

3. Results and Discussion
3.1. Phase and Microstructural Analysis

Figure 2 shows a representative XRD diffraction pattern, which was taken on the
surface of a sintered pellet of 5 wt% Pd. It can be seen that most strong peaks are from
rutile SnO2 phase, and some peaks from metallic Pd can also be observed. It indicates
that the sintered pellets we obtained are composites of SnO2 and Pd. This is in agreement
with a previous paper, which shows that metallic Pd is formed for the system of Pd-SnO2
when it is heat treated at temperatures above 900 ◦C [15]. Generally speaking, for these
sintered pellets of 2, 5, and 10 wt% Pd, the intensity of Pd peaks increases with increasing
Pd content.
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Figure 2. X-ray diffraction pattern taken for the surface of a pellet of 5 wt% Pd after being sintered at
950 ◦C for 2 h in air.

An SEM micrograph analysis for a sample of 5 wt% Pd sintered at 950 ◦C for 2 h is
shown in Figure 3a. First of all, it should be pointed out that the microstructure is quite
porous. Many pores of quite different size and shape can be observed. As a matter of
fact, there were no sintering shrinkages in the diameter of the pellets, which is due to a
unique sintering behavior of SnO2 nanoparticles [14,15]. In a previous investigation, no
sintering shrinkage was observed even for pressed pellets of SnO2 nanoparticles sintered
at 1200 ◦C [23]. Second, two kinds of grains with greatly different sizes can be seen in the
microstructure. According to EDS analyses as shown in Figure 3b, the one around 70 nm in
size is SnO2 grains; and the other much larger one is Pd grains. For sintered pellets of 2, 5,
and 10 wt% Pd, the number of these much larger Pd grains in SEM micrograph increases
with increasing Pd content. In view of the as-received SnO2 nanoparticles, the sintering
has resulted in the formation of many grain-boundaries between SnO2 grains, while grain
growth and densification are quite limited. Such a sintering is actually especially helpful
for gas-sensing applications.

3.2. Room-Temperature CO-Sensing Capabilities

For the Pd-SnO2 composite nanoceramics prepared by Zhu et al., only those of rel-
atively low Pd content (≤2 wt%) and heat treated at unusually high temperatures (e.g.
≥1000 ◦C for samples of 2 wt% Pd) show strong responses to CO at room temperature [15].
While Pd-SnO2 composite nanoceramics with 2, 5, and 10 wt% Pd prepared in this study
all exhibit strong responses to CO at room temperature, as shown in Figure 4. For the
Pd-SnO2 system, it was found that metallic Pd particles are formed at high temperatures,
whose surface is partially of +2 valence and partially of +4 valence. For samples prepared
by Zhu et al., as obvious room-temperature CO-sensing capability can only be observed
in those samples with the presence of Pd4+, it has been proposed that CO molecules are
first chemisorbed on Pd nanoparticles at sites of Pd4+, and through spill-over effect they
are moved to and chemisorbed on SnO2 with their electrons donated to SnO2 [15]. On the
other hand, as both relatively low Pd content (≤2 wt%) and heat treatment at unusually
high temperatures are necessary for the formation of Pd4+, it is clear that SnO2 has a
vital role in the oxidation of Pd, namely the formation of Pd4+ at high temperatures [15].
This role of SnO2 in the oxidation of Pd must be depressed when too much Pd is present.
For the samples prepared by Zhu et al., metallic Pd was formed through the following
replacement reaction:

Zn + Pd2+ → Zn2+ + Pd, (1)
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and the particles were only a few nanometers in size. So, for the same Pd content, there
was much larger contact area between Pd and SnO2 and much stronger depression effect
of Pd for the samples prepared by Zhu et al. Pd grains are much larger in our samples
and Pd4+ must have been formed even in samples of 10 wt% Pd. It is thus reasonable that
room-temperature CO-sensing capabilities have been observed for all samples prepared in
our study.
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For gas sensors, the response S is usually defined as S = Ra/Rg, where Ra and Rg
represent the resistances of the sensors in air and in the test gas, respectively. The time taken
by the sensors to reach 90% of the total resistance change in the response (recovery) process
is defined as the response (recovery) time. From Figure 4, the samples of 2, 5, and 10 wt% Pd
show responses of 50, 100, and 60 to 0.04% CO-20% O2-N2 at room temperature, respectively,
with response times of 56, 44, and 57 s, respectively, and recovery times of 53, 39, and
41 s, respectively. It is clear that these three kinds of samples all show strong and stable
responses to CO at room temperature, with both especially quick response and recovery
speeds. As a matter of fact, similar results were also obtained for Pd-SnO2 composite
nanoceramics in some previous investigations [14,15]. It is worthy to note that SnO2-based
gas sensors usually show responses to multiple reducing gases. While a Pd–SnO2 composite
nanoceramic sample showed a representative response of 2 to 0.08% H2-20% O2-N2 at room
temperature [14], a Pt–SnO2 sample showed a response of 12 to 0.06% H2-20% O2-N2 under
the same condition [18], which indicates that Pd–SnO2 composite nanoceramics have a
better selectivity for CO against H2 than Pt–SnO2 composite nanoceramics. Obviously, Pd-
SnO2 composite nanoceramics are especially promising to be applied as room-temperature
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CO sensors in future. Samples with 5 wt% Pd show the strongest response and our further
studies are focused on samples of 5 wt% Pd.
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3.3. Time Dependence of Room-Temperature CO-Sensing Characteristics of Pd-SnO2
Composite Nanoceramics

To study their long-term stability, the samples prepared in this study were kept at room
temperature for dozens of days, and their room-temperature CO-sensing characteristics
were measured repeatedly with some time intervals.

Unfortunately, all samples were found to degrade obviously in their room-temperature
CO-sensing characteristics after dozens of days’ aging. As an example, the results measured
for a sample of 5 wt% Pd as-sintered, 12 and 20 days aged, separately, are shown in Figure 5.
After 20 days of aging, the response to 0.04% CO-20% O2-N2 was 27, which was almost
only one-fourth of that as-sintered, and the response and recovery times were increased to
55 and 202 s, respectively. It is reasonable to assume that the sample will eventually show
no response to CO at room temperature when the aging time is long enough.

Such an aging behavior is actually very similar to that reported for room-temperature
hydrogen-sensitive MOSs [18,19]. In the future, there must be more and more reports
on aging behavior of various kinds of room-temperature gas-sensitive MOSs when they
are becoming more and more promising for practical applications. Obviously, if it is not
overcome in some way, aging behavior will prevent those room-temperature gas sensors
from commercialization, or greatly decrease their service time.

3.4. Mild Heat Treatment for Aged Room-Temperature CO Sensitive Pd-SnO2
Composite Nanoceramics

Heat treatment is widely adopted to reactivate aged MOS gas sensors. For Pt/WO3
thin films room-temperature gasochromic hydrogen sensors, heat treatment at 500 ◦C for
1 h restored the response and recovery speeds completely [19], which were both severely
decreased after 43 days’ aging. For commercial SnO2 thick-film gas sensors, several days
of inactivity or aging usually make them “dormant”. A significant pre-heating up to
300–700 ◦C is needed to reactivate them [24,25]. Obviously, these results clearly indicate
that heat treatment is a very effective method for the reactivation of aged MOS gas sensors.
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For room-temperature gas sensors, it is meaningful to heat-treat them, if inevitable,
at temperatures as low as possible. Aged Pd-SnO2 composite nanoceramics prepared in
this study had therefore been heat treated at especially low temperatures and some very
encouraging results had been obtained. As shown in Figure 5, the room-temperature
CO-sensing capability of a sample of 5 wt% Pd was seriously degraded after 20 days’
aging. It was heated in air for 15 min at 100 ◦C, 150 ◦C, and 200 ◦C, separately, and
its room-temperature CO-sensing capability was measured immediately after every heat
treatment. It is quite surprising that the heat treatment of 100 ◦C resulted in an obvious
improvement to the room-temperature CO-sensing capability, as shown in Figure 6. For
the heat treatment of 150 ◦C, a better improvement was obtained. The response to 0.04%
CO-20% O2-N2 was 75, which was almost three times of that 20 days-aged. However, when
the sample was heat treated at 200 ◦C, its room-temperature CO-sensing capability was
degraded obviously once again, with a response of only 23 to 0.04% CO-20% O2-N2, as
shown in Figure 6. It seems that there exists an optimal temperature for heat treatment to
reactivate aged Pd-SnO2 composite nanoceramics. It should be pointed out that even the
heat treatment of 150 ◦C did not lead to a full reactivation. The recovery speed was still
much lower than that of the as-sintered sample. More investigations should be conducted
to achieve as full as possible reactivation.

3.5. Discussion on Aging Origin and Strategies for Developing Stable Room-Temperature Gas
Sensors Based-on MOSs

Generally speaking, materials’ aging behavior results from types of changes: one is
internal evolutions in materials, and the other is the reactions from environmental factors.
Pd and SnO2 both are very simple and stable at room temperature. The observed aging
behavior should not be caused by any internal evolutions inside them at room temperature.
On the other hand, there are water and many purity gases in air, among which more than
900 kinds of volatile organic compounds have been identified. The reaction of water with
many materials at room temperature has been well studied [26,27]. Recently, Fei et al. found
that for TiO2 air cleaning photocatalyst, impurity gases in air, such as ammonia, sulfur
compounds, and carbon compounds, can deposit and block the surface-active sites of TiO2,
which is responsible for a rapid deactivation of TiO2 catalyst [28]. Similarly, it is reasonable
to assume that some impurity gases in air also deposit and block the surface-active sites of
Pd in Pd-SnO2 composite nanoceramics, which leads to a decrease in the response to CO.
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The interaction between the impurity gases and Pd must be very weak and rather mild
heat treatments are able to desorb them from Pd. In this way the obvious reactivations by
the mild heat treatments can be well explained.
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While degradation over long time aging is difficult to avoid for many room-temperature
gas sensitive MOSs, our findings in this study actually suggest a relatively simple strategy
for developing stable room-temperature gas sensors based on MOSs. With a heater and
a circuit, room-temperature gas sensitive MOSs can be reactivated through a short and
mild heat treatment periodically. In this way, MOSs not only can maintain highly attractive
room-temperature gas-sensing capabilities for longer periods of time, but also are still much
safer and more cost-effective than high-temperature MOS gas sensors. Further studies on
aging and reactivation are highly expected for the development of room-temperature MOS
gas sensors with high long-term stability.

4. Conclusions

Pd-SnO2 composite nanoceramics have been prepared from SnO2 and Pd powders
through pressing and sintering, which show strong responses of 50, 100, and 60 to 0.04%
CO-20% O2-N2 at room temperature for samples of 2, 5, and 10 wt% Pd, respectively. An
obvious aging behavior was observed for all samples, with the response to CO decreased
by a factor of 4 after 20 days of aging for samples of 5 wt% Pd. However, those aged
samples can be effectively reactivated through rather mild heat treatments. Heat treatment
at 150 ◦C for 15 min in air tripled the response to CO for a 20-days-aged sample of 5 wt%
Pd. These findings suggest that impure gases in air must have deposited on Pd and blocked
the surface-active sites of Pd in Pd-SnO2 composite nanoceramics, which resulted in the
observed aging. On the other hand, those impure gases can be removed through rather
mild heat treatments and the aged samples can be reactivated. A detailed understanding
of aging and reactivation behaviors of room-temperature gas sensitive MOSs is highly
desirable for developing room-temperature MOS gas sensors with high long-term stability.
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