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Abstract: The conventional finger-vein recognition system is trained using one type of database and
entails the serious problem of performance degradation when tested with different types of databases.
This degradation is caused by changes in image characteristics due to variable factors such as position
of camera, finger, and lighting. Therefore, each database has varying characteristics despite the same
finger-vein modality. However, previous researches on improving the recognition accuracy of
unobserved or heterogeneous databases is lacking. To overcome this problem, we propose a method
to improve the finger-vein recognition accuracy using domain adaptation between heterogeneous
databases using cycle-consistent adversarial networks (CycleGAN), which enhances the recognition
accuracy of unobserved data. The experiments were performed with two open databases—Shandong
University homologous multi-modal traits finger-vein database (SDUMLA-HMT-DB) and Hong
Kong Polytech University finger-image database (HKPolyU-DB). They showed that the equal error
rate (EER) of finger-vein recognition was 0.85% in case of training with SDUMLA-HMT-DB and
testing with HKPolyU-DB, which had an improvement of 33.1% compared to the second best method.
The EER was 3.4% in case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB,
which also had an improvement of 4.8% compared to the second best method.

Keywords: finger-vein recognition; camera position; finger position; lighting; unobserved database;
heterogeneous database; domain adaptation; cycle-consistent adversarial networks; SDUMLA-HMT-
DB; HKPolyU-DB

1. Introduction

Finger-vein images are difficult to forge and easy to obtain, but the image qualities are
easily affected by the shades inevitably generated by other biological tissues (e.g., bone and
fingernail) [1,2]. A finger-vein recognition system employs a small amount of feature
for recognition because of this fundamental characteristic of data [3]. Therefore, models
trained using such a dataset are ineffective for unobserved data.

To consider this issue, non-training-based finger-vein recognition methods have been
studied extensively to overcome this drawback. However, they exhibit significantly poorer
performance than training-based methods because a large amount of information is re-
moved by noise, thus making the classifier incapable of making an accurate decision [1–3].
Moreover, variations in the environment when acquiring images such as the camera po-
sition, lighting position, and lighting intensity create a large discrepancy between each
dataset domain. This also deteriorates the performance of non-training-based methods.

The existing non-training-based finger-vein recognition method extracts specific fea-
tures using local binary patterns for recognition [1]; however, these features are significantly
affected by misalignment or image quality, making them unsuitable for finger-vein recogni-
tion. Subsequently, local directional patterns (LDPs) [2] and optimal filter-based finger-vein
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recognition [3] have been proposed, which can solve the misalignment problem but cannot
solve the fundamental problem of image quality or removed information.

Hence, training-based finger-vein recognition methods have been extensively re-
searched [4,5]. In [4], authors increased the number of training images by five times based
on the data augmentation of image translation and cropping. In [5], they also increased
the number of training images by 121 times based on the data augmentation of image
translation and cropping. Although the similarity among augmented images increased by
simple image translation and cropping, the training of proposed models was successfully
performed with the augmented images, and the consequent accuracies of recognition were
enhanced in their methods [4,5]. These methods exhibit good performance for finger-vein
images with low quality by extracting features using a filter optimized for the distribution
of input data rather than extracting features of a fixed form.

Although the training-based methods exhibit better recognition performance than
non-training-based methods, their recognition rate in the cross-domain environment is
significantly lower. The training-based methods are trained for optimizing the distribution
of the training data used as input; thus, they exhibit poorer generality in the cross-domain
than non-training-based methods, which extract features of a fixed form regardless of the
training data. Moreover, the distances between domains are inevitably increased as training
is repeated with a small amount of information of finger-vein data. In general, a specific
dataset used for training refers to one domain, and the model trained using this dataset is
optimized for this specific domain. However, if the dataset of a different domain is used
for testing, the performance is significantly deteriorated because the data encountered by
the model are different from those used to train the model (the problem of heterogeneity).

For mitigating the trade-off between recognition performance and generality, this study
proposes a method for improving the finger-vein recognition rate of cross-domain databases
through finger-vein domain adaptation using cycle-consistent adversarial networks (Cycle-
GAN).

This paper is organized as follows. Section 2 presents previous studies related to the
finger-vein recognition method, domain transfer, and domain adaptation, and Section 3
presents the contributions of this study. Section 4 provides the details of the proposed
method, and Sections 5 and 6 present the experimental results of this study and discussions,
respectively. Lastly, Section 7 concludes this study.

2. Related Work

Research on finger-vein recognition in which domain adaptation is considered is
lacking. In this section, the scope of previous studies is expanded to include hand-based
biometrics; whether domain adaptation was performed, was analyzed by dividing the
studies into non-training-based and training-based methods.

2.1. Non-Training-Based Methods

Lu et al. performed domain adaptation to some extent by reducing the difference in
brightness present in each finger-vein dataset using a peak-value-based method (PVM) [6].
The difference in brightness occurs when different sensors are used during acquisition of
the dataset; this study focused on the difference between domains from this perspective.
Jia et al. attempted to solve the cross-sensor problem using various dimension reduction
algorithms and orientation coding methods [7].

Wang et al. performed a simple normalization to reduce the heterogeneity between do-
mains for a dorsal hand-vein database obtained from various sensors and then performed
segmentation to remove unimportant information which could increase heterogeneity [8].
In this study, matching was based on the scale-invariant feature transform (SIFT). The gen-
erality was high because matching was performed using a non-training-based algorithm;
however, the performance was not suitable for biometric systems which require a high
level of security. Wang et al. then performed soft domain adaptation using the same nor-
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malization algorithm followed by matching using an improved SIFT algorithm. This model
was a more general and robust dorsal hand-vein recognition system [9].

Alshehri et al. used various handcrafted features to solve the problem of heterogeneity
generated by different sensors when acquiring a fingerprint dataset, and in particular, ridge
pattern, orientation, and minutiae points present in fingerprint images were used [10].
Binary gradient pattern (BGP) and Gabor-histogram of oriented gradients (Gabor-HoG)
were used as descriptors, and the Sobel operator was used to compute the gradient.
A robust fingerprint recognition system was proposed by performing score level fusion
of the scores obtained from each descriptor. Ghiani et al. confirmed the problem with
the accuracy of a fingerprint spoof attack detection system being abruptly reduced in the
cross-sensor environment [11]. A least squares-based domain transformation function was
adopted to reduce the extent of changes in the distribution caused by cross-sensors.

2.2. Training-Based Methods

Kute et al. used the Bregman divergence regularization method to reduce the distribu-
tion gap between domains; the researchers used Fisher linear discriminant analysis (FLDA)
subspace learning algorithm to find a subspace through a projection matrix between fully
heterogeneous data and then used the subspace to perform recognition using a support
vector machine and K-nearest neighbor classifier [12]. Gajawada et al. performed domain
adaptation between spoof attack databases to perform augmentation to improve the gener-
ality of a fingerprint spoof attack detector [13]. Here, a synthetic spoof attack patch was
created using a universal material translator wrapper.

Anand et al. customized the DeepDomainPore network, which is a pore detection
network trained with high-resolution images to enable the pore information observed only
in high-resolution fingerprint images to be used in low-resolution images [14]. Domain
adaptation was performed for inserting pore information in the low-resolution image.
Using this method, pores, which are a level 3 feature, can be exploited even when low-
resolution images are input in a fingerprint recognition system. Shao et al. proposed
PalmGAN, which generates synthetic data using a palmprint dataset with labels [15].
Fake labeled data were generated using the palmprint dataset without labels as the target
and the palmprint dataset with labels as the source. The fake labeled data were then used
as new data with a newly inserted label while maintaining the identity information of the
target domain, i.e., domain adapted data. The data were input to a deep hash network to
perform palmprint recognition.

Moreover, the researchers attempted to solve the cross-domain problem by perform-
ing domain adaptation using an auto-encoder structured model [16]. Malhotra et al.
highlighted the need to reinforce the touch-based biometric recognition system as the coro-
navirus disease (COVID-19) is increasingly becoming a serious issue across the globe [17].
Accordingly, the system was reinforced so that the fingerprint authentication system imple-
ments matching using a finger-selfie image. The finger-selfie image is segmented primarily
using a handcrafted method to reduce the difference between the enrolled finger-scan
image and finger-selfie domain. The segmented finger-selfie image and enrolled image
undergo feature extraction through a deep ScatNet to allow matching with the trained
random decision forest (RDF) model.

Jalilian et al. performed finger-vein segmentation using a fully convolutional net-
work (FCN) [18]. The recognition performance was assessed in the cross-domain environ-
ment using the segmented image. However, the performance was not satisfactory in the
cross-domain environment even when recognition was performed using only compact
information. Dabouei et al. verified the performance in the cross-sensor environment
using a conditional generative adversarial network (CGAN) for fingerprint ridge map
reconstruction [19].

Nogueira et al. performed fingerprint spoof attack detection using visual geom-
etry group (VGG)-16 and a convolutional neural network (CNN) and verified that a
deep learning-based method is not effective in the cross-data, cross-sensor environment,
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even though this study was not related to recognition [20]. Chugh et al. confirmed that fin-
gerprint spoof detection based on the minutiae-based local patch approach and MobileNet
did not exhibit good performance in the cross-sensor environment [21]. Thus, training the
distribution of the training data in the cross-domain, cross-sensor environment without
using specific domain adaptation methods is ineffective for unobserved databases.

Although it is not the hand-based biometrics, Chui et al. proposed a CGAN and
improved fuzzy c-means clustering (IFCM) algorithm called CGAN-IFCM for the multi-
class voice disorder detection of three common types of voice disorders for smart healthcare
applications [22].

To overcome the drawbacks of previous studies, we propose a method to improve
the finger-vein recognition rate in cross-domain databases through finger-vein domain
adaptation based on a CycleGAN. The reason for using CycleGAN in our method is that
there is no paired data of input and target images in our experiments. That is, two finger-
vein images from two different open databases (Shandong University homologous multi-
modal traits finger-vein database (SDUMLA-HMT-DB) and Hong Kong Polytech University
finger-image database (HKPolyU-DB)) are respectively used in our experiments. Because
they are not from same class, there is no target image about input image in our case, and one
of them can be used as input and the other can only be used as the reference image for the
unpaired cases. Due to this reason, we use CycleGAN, which can use this kind of unpaired
images. It is different from other types of GAN such as conditional GAN, which requires
the paired data of input and target images [23].

CycleGAN can perform a task where the information of the source domain data is
retained to some extent while reflecting the target domain information, instead of carrying
out a task for simply making the source and target identical [24]. It is confirmed that our
CycleGAN-based method showed better performances than other types of GAN.

3. Contributions

Our research is novel in the following five ways compared to previous works:

• This is the first study to examine GAN-based domain adaptation to solve the problem
of performance deterioration of the finger-vein recognition system in a heterogeneous
cross dataset.

• Domain adaptation was performed through a CycleGAN so that the existing training-
based finger-vein recognition method can handle unobserved data. Each finger-vein
dataset has different numbers of classes. Therefore, we used CycleGAN, which can
deal with unpaired datasets.

• The proposed finger-vein recognition system does not have to be trained again when
unobserved data are input into the system.

• The experiments with two open databases of SDUMLA-HMT-DB and HKPolyU-DB
showed that the equal error rate (EER) of finger-vein recognition was 0.85% in case
of training with SDUMLA-HMT-DB and testing with HKPolyU-DB, which is the
improvement of 33.1% compared to the second best method. The EER was 3.4% in
case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB, which is also
the improvement of 14.1% compared to the second best method.

• CycleGAN-based domain adaptation models and finger-vein recognition models
trained with our domain adapted dataset proposed in this study are disclosed for
a fair assessment of performance [25] by other researchers. On the website (http:
//dm.dgu.edu/link.html) explained in [25], we include the instructions of how other
researchers can obtain our CycleGAN-based domain adaptation models and finger-
vein recognition models.

4. Proposed Method

In this section, we would explain the overview of the proposed method in Section 4.1,
our preprocessing method in Section 4.2, and proposed data adaption method based
on CycleGAN in Section 4.3. In addition, we would explain the method of generating

http://dm.dgu.edu/link.html
http://dm.dgu.edu/link.html
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composite image for the input to CNN in Section 4.4, and finger-vein recognition method
by DenseNet and shift matching in Section 4.5.

4.1. Overview of the Proposed Method

Figure 1 shows the overall procedure of the proposed finger-vein recognition method.
The method involves preprocessing to remove unnecessary information generated by near-
infrared light (NIR) used while acquiring images of finger veins, other biological tissues
(e.g., bone or fingernail), or parts where information has been removed by shades [26]
(Step 2 of Figure 1).
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First, binary thresholding is performed to distinguish the finger region from the
background region. The image that has undergone binary thresholding is used as a mask
of the original finger-image and then undergoes linear stretching to fit the input size of a
CNN subsequently. The finger region is not stretched uniformly if burrs are present in the
mask during linear stretching. Thus, boundary smoothing enables the finger region to be
stretched uniformly, thus minimizing information loss.

In addition, misalignment may occur when the user’s finger trembles or is not fixed
properly when acquiring finger-vein images. Misalignment is a major factor that reduces
the finger-vein recognition performance. Hence, in-plane rotation compensation is per-
formed to eliminate the misalignment problem. During in-plane rotation compensation,
second-order moments of the entire image are found with respect to the finger-shape,
and then, rotation is performed accordingly. In general, both edges of the finger image
are thick and thus are affected more by biological tissues than other regions, or shades are
generated by fingernails. Therefore, it is difficult to obtain the essential information of the
finger vein. To overcome this problem, the parts are removed in the preprocessing step.
Only the regions with the best finger-vein representation are segmented using the final
mask obtained to be used as an input for finger-vein recognition.

The existing finger-vein recognition system has improved the performance of finger-
vein recognition while being biased to the training dataset. The proposed method, in con-
trast, adds a domain adaptation stage to the acquired finger-vein images using a CycleGAN
to better handle unobserved data, thus improving the generality of the finger-vein recogni-
tion system. After inputting the actual finger-vein images obtained in the preprocessing
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stage to the CycleGAN, the mapping function needed for domain adaptation is found
during training. The mapping function converts the source domain into the target domain.
Owing to the unpaired trait of the CycleGAN, a completely one-to-one mapping function
is not observed; instead, training is continued to identify style information of the target
domain. Therefore, the main structure of the data of the source domain is fairly main-
tained to create a new image to which the distribution characteristics of the target domain
are transferred (Steps 2-1 and 2-2 of Figure 1). This process mitigates the heterogeneity
between datasets.

Subsequently, a composite image is generated using the new image obtained with
a CycleGAN (Step 3 of Figure 1), and it is then input to a densely connected network
(DenseNet)-161 (Step 4 of Figure 1). Then, finger-vein recognition is finally performed via
shift matching (Steps 5 and 6 of Figure 1).

4.2. Preprocessing

The obtained finger image has both a background and finger region; therefore, the fin-
ger region and the background region need to be primarily segmented to obtain only the
finger region in the preprocessing step. Figure 2 shows each preprocessing stage. Binary
thresholding and segmentation are performed using the Sobel edge detector and Otsu
thresholding method [27]. The image for which binary thresholding has been performed
becomes a masked image filled with 255 in the finger region and with 0 for other regions.
If the background region and both edges of the finger region have areas with a small pixel
value, areas can be mis-classified as the finger region. To remove such areas, both edges
are removed and the image is corrected again with component labeling. The boundary of
this mask has numerous burrs; thus, a smoothing process would be required to perform
accurate linear stretching. Then, in-plane rotation compensation is performed to ensure
that the angles of all data are identical. Misalignment in the input image is a major factor
that causes false rejection in particular and thus needs to be removed. In-plane rotation
compensation involves calculating the second-order angle moments of the binarized mask
as shown in Equations (1)–(4), thereby performing misalignment compensation so that all
images can have the same angle with respect to the central axis [28].

∅11 =
∑(a,b)∈M(b−mb)

2 I(a, b)

∑(a,b)∈M I(a, b)
, (1)

∅22 =
∑(a,b)∈M(a−ma)

2 I(a, b)

∑(a,b)∈M I(a, b)
, (2)

∅12 =
∑(a,b)∈M(b−mb)(a−ma)I(a, b)

∑(a,b)∈M I(a, b)
, (3)

τ =

 arctan(∅11−∅22+
√

(∅11−∅22)
2+4∅12

2

−2∅12
) (i f ∅11 > ∅22)

arctan

(
−2∅12

∅22−∅11+
√
(∅22−∅11)

2+4∅2
12

)
(otherwise)

, (4)

where I(a, b) and (ma, mb) represent the pixel value and center index in the (a, b) index of
the input, M(a, b) represents the pixel value of the mask obtained through binary segmen-
tation; its value should be 255 for the actual finger region and 0 for all other regions. ∅ is
the second-order moments for each axis based on which the rotation compensation angle
τ is calculated. In detail, ∅11 and ∅22 represent the correlation values in the vertical and
horizontal directions, respectively. In addition, ∅12 shows that in the diagonal direction.
For example, if ∅11 is larger than ∅22, the correlation value of input (I(a, b)) with mask
(M(a, b)) in the vertical direction is larger than that in the horizontal direction, which indi-
cates that the input (I(a, b)) with mask (M(a, b)) has the elliptical shape, which is longer
in the vertical direction than the horizontal direction. If ∅12 is larger than ∅11 and ∅22,
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the correlation value of input (I(a, b)) with mask (M(a, b)) in the diagonal direction is
larger than those in the vertical and horizontal directions, which indicates that the input
(I(a, b)) with mask (M(a, b)) has the elliptical shape, which is longer in the diagonal direc-
tion than the vertical and horizontal directions. Based on this information, the rotation
compensation angle τ is calculated by Equation (4) [28]. With respect to the central axis,
in-plane rotation is performed for the initial finger image and binary mask based on this
rotation compensation angle; then, the final finger-vein region is obtained by taking the
mask as a condition. In the obtained finger region, the areas in which a finger-vein region
cannot be observed easily due to the thickness of the finger or areas in which finger-vein
information has been removed due to shades created by the fingernail or bone need to be
removed. Therefore, removing a certain portion in the left and right sides of the mask used
for acquiring the finger-vein region presents confident finger-vein information.
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 Figure 2. Sample images of each preprocessing stage: (a) original image, (b) image obtained after
Sobel edge detection and thresholding, (c) image after edge smoothing, (d) image after in-plane
rotation compensation, (e) finger-vein image obtained by region of interest (ROI) mask, and (f) finally
cropped finger-vein ROI image.

Certain areas in the mask region, such as the background region represented as a dark
area, may be mis-segmented as the finger region during binary thresholding; such areas
need to be removed by component labeling [27]. Moreover, if there are areas eroded
by additional noise in the finger-shape area, the final ROI mask is obtained through
compensation during the smoothing process for removing such areas [26]. The finger
region obtained thus undergoes linear interpolation to a size of 256 × 256 to be used as an
input of the CycleGAN, which is detailed in the next section.

4.3. Domain Adaptation

The existing finger-vein recognition systems are specialized for training data to simply
improve performance. However, a finger-vein recognition system is generally used for
security purposes; therefore, performance improvement for unobserved data needs to be
prioritized. If the image characteristics including brightness, shape, and texture between
datasets are different, the network trained with a specific dataset experiences serious
performance deterioration when tested with a different dataset. This problem implies
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that the model lacks generality, and its performance will fluctuate when it is applied in
the real world, thus inhibiting the construction of a stable security system. In this study,
therefore, both performance and generality are guaranteed by improving the generality in
the distribution of the fundamental data through domain adaptation. The network used
for domain adaptation in the proposed finger-vein system for this purpose is a CycleGAN.

4.3.1. CycleGAN Architecture

When performing domain adaptation for finger-vein images, there is a high possibility
that the features generated in a latent space cannot encompass all the data distribution of
each domain if the shape information of the finger-vein is transformed to a high extent.
Thus, the image should be generated in a form such that texture information can be inserted
while maintaining a shape information of specific domain.

A generative adversarial network which exploits unpaired data is most appropriate
for this study because finger-vein image datasets have a different number of classes and
thus require unpaired data to be utilized. The purpose is to find the latent space of a new
domain between each domain. A CycleGAN uses unpaired data as the source and target;
therefore, it can perform a task where the information of the source domain data is retained
to some extent while reflecting the target domain information, instead of carrying out a
task for simply making the source and target identical [24]. Therefore, a CycleGAN is most
appropriate considering these circumstances. A CycleGAN is a network consisting of two
discriminators and two generators.

A 70 × 70 PatchGAN [23] was used as the discriminator. Unlike a general discrimina-
tor, PatchGAN is a classifier that discriminates images at a patch unit. The prediction made
by a discriminator of a typical GAN is output in an image unit, whereas the prediction
made by a discriminator of a PatchGAN is output in a specific patch unit. In other words,
the chronic problem of a GAN where blurry output is generated occurs less frequently
by determining whether a specific patch region is fake or real, and the process is faster.
When the finger-vein shape information used for recognition becomes blurry, the gradient
between the finger-vein boundary and skin region is reduced, which implies that it cannot
be used effectively. Accordingly, a CycleGAN was selected for domain adaptation in
this study.

Table 1 shows the architecture of a 70 × 70 PatchGAN based discriminator. The fake
image and original image created in the generator are concatenated to be input. Because
it uses a 70 × 70 PatchGAN based method, it is parameter efficient and the relationship
between adjacent pixels can be clearly identified based on a local-level discrimination
rather than by determining real or fake data in the entire image.

Table 1. Architecture of the discriminator used in CycleGAN.

Layer Filter
(Number/Size/Stride) Input Size Output Size

Input layer 256 × 256 × 3 (×2) 256 × 256 × 6

Conv1 * 64/4 × 4 × 3/2 256 × 256 × 6 128 × 128 × 64

Conv2 * 128/4 × 4 × 64/2 128 × 128 × 64 64 × 64 × 128

Conv3 * 256/4 × 4 × 128/2 64 × 64 × 128 32 × 32 × 256

Conv4 * 512/4 × 4 × 256/1 32 × 32 × 256 31 × 31 × 512

Conv5 1/4 × 4 × 512/1 31 × 31 × 512 30 × 30 × 1
* denotes that the convolutional layer is followed by instance normalization and a leaky rectified linear unit
(ReLU) with a slope parameter of 0.2.

For the generator, a residual network (ResNet) based on an encoder-decoder structural
network was used. Figure 3 shows the overall structure of the CycleGAN. Table 2 presents
the detailed network architecture of the generator. We use the same settings of parameters
and number of layers to those of [24] in Tables 1 and 2.
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Table 2. Architecture of the generator used in CycleGAN.

Layer Filter
(Number/Size/Stride) Input Size Output Size

Input layer 256 × 256 × 3 256 × 256 × 3

Conv1 64/7 × 7 × 3/1 256 × 256 × 3 256 × 256 × 64

Conv2 * 128/3 × 3 × 64/2 256×256×64 128 × 128 × 128

Conv3 * 256/3 × 3 × 128/2 128 × 128 × 128 64 ×64 × 256

Res1 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res2 (256/3 × 3 ×256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res3 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res4 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res5 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res6 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res7 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res8 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Res9 (256/3 × 3 × 256/1) × 3 ** 64 × 64 × 256 64 ×64 × 256

Up-conv1 128/3 × 3 × 256/2 64 × 64 × 256 128 ×128 × 128

Up-conv2 64/3 × 3 × 256/2 128 × 128 × 128 256 × 256 × 64

Conv4 3/7 × 7 × 3/1 256 × 256 × 64 256 × 256 × 3
* denotes that the convolutional layer is followed by instance normalization and ReLU. ** denotes that the Res(k)
is a residual block where an input feature map is added to the output of each residual block, and each residual
block includes three convolutional layers.

4.3.2. Generating a Domain Adapted Finger-Vein Image

The data of each domain are used as a source and a target of the CycleGAN to generate
an image for which domain adaptation has been applied. Figure 4 shows an example of
the domain adapted image. It resembles the shape of an image used as a source and
shows the shape in which the distribution of lighting intensity or contrast of the target
domain is reflected. Hence, an image of a new domain is obtained for which information
is composited.
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Figure 4. Examples of the domain translated image.

The loss function of a CycleGAN is the weighted sum of adversarial loss and cycle-
consistency loss (see Equations (7)–(9)). The purpose of a generator is to deceive a discrim-
inator by generating fake data that resemble the real data as much as possible, whereas
a discriminator is trained to distinguish fake data from real data. Comparing the real
data and simply generated data generates adversarial loss, as shown in Equations (5)–(7),
while cycle-consistency loss helps in building a robust model through reconstruction by
comparing the real data with source data, as shown in Equation (8). Ultimately, the loss
function in which both adversarial loss and cycle-consistency loss are considered, as shown
in Equation (9), is used. We use the same loss functions of Equations (5)–(9) to those in
traditional CycleGAN [24].
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Losstotal = Lossadv + λLosscyc, (9)

where G and D represent the generator and discriminator, respectively, xi and yi are the
source image and target image selected in the X, Y domain, respectively, and m is the total
number of data of each domain. λ is a cycle-consistency coefficient; a value of 10 was used
in this study. Processing heterogeneous data through domain adaptation, as proposed in
this study, enables us to retain the shape information of a specific domain while generating
new domain data through adaptation of the texture information of a different domain.
Thus, for a proper mixture of shape information and texture information, cycle-consistency
loss value and adversarial loss value were adjusted using λ.
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4.4. Generating Composite Image

A composite image is generated using the domain adapted image [26]. It is gener-
ated for a matching case, and it maximizes the network utilization rate more than the
feature-based Euclidean distance matching method used in conventional finger-vein recog-
nition systems. For the feature-based Euclidean distance matching method, matching
is performed using the features extracted before the fully connected layer in a trained
CNN model for the finger-vein recognition system. Thus, a trained fully connected layer
cannot be used. In contrast, when generating authentic and imposter matching images
as composite images, all layers in the trained CNN model for finger-vein recognition
including the fully connected layer can be used. Furthermore, a data augmentation effect
is observed during training because composite images are generated for the number of
matching cases, and it is more robust for noise than difference image-based matching [5].
As shown in Figure 5, a composite image is an image generated by having an enrolled
image, a matched image, and a concatenated image in each channel. The concatenated
image is created by resizing the enrolled image and the matched image into 1/2 size images
and then concatenating vertically. As a result, a three-channel shape image is generated
and input in the CNN classifier. The composite image-based method does not involve
Euclidean distance calculation by a n-dimensional feature vector, thus requiring a shorter
time during inference compared to feature distance-based matching.
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4.5. Finger-Vein Recognition Based on Deep Densenet and Shift Matching

In this study, DenseNet-161 was used as the model for finger-vein recognition [26,29].
Table 3 represents architecture of DenseNet-161 that used in this study. We use the same
settings of parameters and number of layers to those of [29] in Table 3. In the DenseNet-
161 used for proposed method, the growth rate was set to 48. The original structure of
DenseNet was designed for ImageNet classification [29]. The output of the fully connected
layer was a 1000-dimensional vector. As only two types of output—authentic matching
score and imposter matching score—are used in this study, the existing fully connected
layer was removed and fine tuning was performed after replacing it with a fully connected
layer that outputs a two-dimensional score vector. DenseNet can effectively convey low
level features to deeper layers through a dense connection.
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Table 3. Architecture of DenseNet-161.

Layer Filter (Number/Size/Stride) Input Size Output Size

Input layer 224 × 224 × 3 224 × 224 × 3

Conv (96/7 × 7 × 96/2) 224 × 224 × 3 112 × 112 × 96

Max pool (96/2 × 2 × 1/2) 112 × 112 × 96 57 × 57 × 96

Dense block (6/(1 × 1 × 192, 3 × 3 × 48)/1) 57 × 57 × 96 57 × 57 × 384

Transition block (1/(1 × 1 × 192, 2 × 2 × 192) */1) 57 × 57 × 384 29 × 29 × 192

Dense block (12/(1 × 1 × 192, 3 × 3 × 48)/1) 29 × 29 × 192 29 × 29 × 768

Transition block (1/(1 × 1 × 384, 2 × 2 × 384) */1) 29 × 29 × 768 15 × 15 × 384

Dense block (36/(1 × 1 × 192, 3 × 3 × 48)/1) 15 × 15 × 384 15 × 15 × 2112

Transition block (1/(1 × 1 × 1056, 2 × 2 × 1056) */1) 15 × 15 × 2112 8 × 8 × 1056

Dense block (24/(1 × 1 × 192, 3 × 3 × 48)/1) 8 × 8 × 1056 8 × 8 × 2208

Global average pool (2208/8 × 8 × 1/1) 8 × 8 × 2208 1 × 1 × 2208

Fully connected layer 1 × 1 × 2208 1 × 1 × 2

* denotes the shape of the convolutional filter and average pooling filter, respectively.

Therefore, DenseNet was determined to be a very suitable classifier because low
level features such as a ridge are the core components of the vein shape information
present in the finger-vein data used in this study. For the composite image generated by
acquiring the domain adapted image, the enrolled image and matched image are input
in the same DenseNet-161. The spatial similarity of each image was evaluated in the
classifier to confirm whether it is an authentic matching case or an imposter matching case.
However, while evaluating the spatial similarity, misalignment or rotation, which were
not removed during preprocessing, could be observed. These factors significantly affect
the process of matching. To solve these problems, the enrolled image or matched image
was matched through eight-way translation in this study. Then, the misalignment issue
such as pixel translation was solved by designating the minimal matching value as the
final matching score.

5. Experimental Results

In this section, we would explain experimental environments in Section 5.1, training of
the domain adaptation model in Section 5.2, and training of finger-vein recognition model
in Section 5.3. In addition, we would explain evaluation metrics in Section 5.4, and testing
results and analyses with HKPolyU-DB after training with SDUMLA-HMT-DB (including
ablation study) in Section 5.5. Finally, testing results and analyses with SDUMLA-HMT-DB
after training with HKPolyU-DB (including ablation study) are presented in Section 5.6.

5.1. Experimental Environments

In this study, SDUMLA-HMT-DB [30] and HKPolyU-DB version 1 [31] were used.
The HKPolyU database is divided into session 1 and session 2; only session 1 data were used
in this study. HKPolyU-DB session 1 consists of 1872 images; two fingers of 156 persons
were used for image acquisition, and six images were captured for each finger. SDUMLA-
HMT-DB consists of 3816 images in which three fingers of each hand of 106 persons were
used, and six images were captured for each finger. Each dataset was classified according
to the finger used to acquire the image. HKPolyU-DB and SDUMLA-HMT-DB have a
total of 312 classes and 636 classes, respectively. The number of classes is calculated by
“the number of fingers”× “the number of hands”× “the number of persons”. For example,
because “the number of fingers”, “the number of hands”, and “the number of persons”
in SDUMLA-HMT-DB are 3, 2, and 106, respectively, the number of classes becomes
636 (3 × 2 × 106) in SDUMLA-HMT-DB. To perform two-fold cross validation for training
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and testing, 156 classes were used for the training set and another 156 classes were used
for the testing set for HKPolyU-DB, whereas 318 classes were used for the training set
and another 318 classes were used for the testing set for SDUMLA-HMT-DB in 1st-fold
validation. Specifically, the training and testing datasets did not include data from the
same class. The training set and testing set were switched once for the experiment in
the second-fold validation, and the average of the two accuracy values was used as the
final value. In detail, as shown in Table 4, in the first-fold validation, the images of 318
classes (classes 1~318) were used for training whereas those of the remaining 318 classes
(classes 319~636) were used for testing. In the second-fold validation, the images of 318
classes (classes 319~636) were used for training whereas those of the remaining 318 classes
(classes 1~318) were used for testing. The sets used in each database are summarized
in Table 4.

Table 4. Details of the experimental databases.

Database Subset Classes Number of Original Images Number of Augmented Images

HKPolyU-DB
Training 156 936 4680

Test 156 936 -

SDUMLA-HMT-
DB

Training 318 1908 9540

Test 318 1908 -

We increased the number of training images by five times (including original training
images) based on the data augmentation of image translation and cropping in the four
directions (left, right, up, and down directions) by referring to [4]. Therefore, the total
number of training images in HKPolyU-DB is 4680 (936 × 5) for each fold, and that in
SDUMLA-HMT-DB is 9540 (1908 × 5) for each fold as shown in Table 4. With these
augmented data, our models for domain adaptation and finger-vein recognition were
successfully trained as shown in Figures 6 and 7.
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When we generated the images from HKPolyU-DB by CycleGAN, the test images
of HKPolyU-DB were used for generation. Therefore, the number of generated images
is 936 as shown in Table 4. When we generated the images from SDUMLA-HMT-DB by
CycleGAN, the test images of SDUMLA-HMT-DB were used for generation. Therefore,
the number of generated images is 1908 as shown in Table 4.

Training and testing were performed using a desktop computer equipped with an
Intel® Core™ i7-3770K CPU @ 3.50GHz with 12GB RAM, and the graphics processing
unit (GPU) card of NVIDIA Geforce GTX 1070 [32]. Moreover, compute unified device
architecture (CUDA) version 9.0 [33] and CUDA deep neural network library (CUDNN)
version 7.4.2 [34] were used. To execute the model and algorithm proposed in this study,
Tensorflow framework version 1.15.1 [35] based on Python version 3.7.1 [36] was used.

5.2. Training of the Domain Adaptation Model

For the optimizer of the CycleGAN used for domain adaptation, the adaptive moment
estimation (Adam) optimizer [37] was used. The initial learning rate was 0.0001; the expo-
nential decay rate of the Adam optimizer was 0.9 for the first moment estimate and 0.999
for the second moment estimate. The learning rate strategies such as linear decay were
not used. The model was trained for a total of 100 epochs. The discriminator was trained
once for one mini-batch, whereas the generator was trained five times to solve the problem
of the difficulty in training the generator of CycleGAN. Owing to this training strategy,
the CycleGAN model used in this study was appropriately optimized for both the discrim-
inator and generator. Figure 6 shows the loss graph of the generator and discriminator of
the CycleGAN used in this study.

5.3. Training of Finger-Vein Recognition Model

A transfer learning strategy was used for training the finger-vein recognition model.
The fully connected layer of the original network fine-tuned with the ImageNet was
replaced with a fully connected layer with two-dimensional output, thus freezing the pre-
vious convolutional layer part and using the fully connected layer in the domain adapted
image for training. Figure 7 shows the loss and accuracy graphs of the DenseNet-161 used
in this study. These graphs imply that the DenseNet-161 model has been appropriately
optimized.
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5.4. Evaluation Metrics

An EER was used as the evaluation metric in this experiment. Each input determines
genuine matching cases and imposter matching cases based on the matching score obtained
during finger-vein recognition. Here, the rate of cases in which imposter matching cases
have been categorized as genuine matching cases is the false acceptance rate (FAR), whereas
the rate of cases in which the genuine matching cases are categorized as the imposter
matching cases is the false rejection rate (FRR). The final EER is obtained at the threshold
point where FAR and FRR are the same.

5.5. Testing with HKPolyU-DB after Training with SDUMLA-HMT-DB (Including
Ablation Study)

In this section, the results of the experiment which proved the effect of the database
that has been domain adapted from HKPolyU-DB to SDUMLA-HMT-DB are presented.
As shown in Table 5, our CycleGAN was trained with the training data of HKPolyU-DB
(input domain) and SDUMLA-HMT-DB (target domain), and the trained CycleGAN gener-
ated the domain adapted image (similar to the images of SDUMLA-HMT-DB) by using the
testing data of HKPolyU-DB. Then, for testing, the generated images (similar to the images
of SDUMLA-HMT-DB) were used as input to our finger-vein recognition model trained
with the training data of SDUMLA-HMT-DB.

Table 5. Experimental scenario of our domain adaptation method (unit: %).

Training of CycleGAN Image Generation by
CycleGAN

Training of Finger-Vein
Recognition Model

Testing of Finger-Vein
Recognition Model

Using the training data of
HKPolyU-DB (input domain)

and SDUMLA-HMT-DB
(target domain)

Using the testing data of
HKPolyU-DB

Using the training data of
SDUMLA-HMT-DB

Using the generated images
by CycleGAN (similar to

SDUMLA-HMT-DB)

For two-fold cross validation, the model for domain adaptation was trained using the
training set. When both types of databases (HKPolyU-DB, SDUMLA-HMT-DB) were used
during domain adaptation, the training set and the testing set were strictly separated for
both databases in two-folds. Accordingly, the experiment was performed in an open-world
setting in which the class of training data was different from the class of testing data.

Table 6 shows the comparison of the drop of finger-vein recognition performance
for the same domain and cross-domain environment while the DenseNet-161 network is
applied in the same manner without the CycleGAN-based domain adaptation proposed in
this study.

Table 6. Comparisons of EER with same domain and cross-domain environment without our domain adaptation method
(unit: %).

Training of Finger-Vein Recognition Model Testing of Finger-Vein Recognition Model EER

HKPolyU-DB HKPolyU-DB 0.58

SDUMLA-HMT-DB HKPolyU-DB 1.80

As shown in Table 6, when training and testing were conducted using HKPolyU-DB,
the recognition rate was high with the EER of 0.58%. In contrast, when the model was
trained using SDUMLA-HMT-DB and tested using HKPolyU-DB without the CycleGAN-
based domain adaptation, the accuracy was significantly lower. As shown in Table 4,
the amount of data used in SDUMLA-HMT-DB were considerably greater than that used
on in HKPolyU-DB, and performance drop occurred even though they are both databases of
the same finger-vein scope. The difference in data between the two domains is not visually
noticeable; however, the heterogeneity between the two domains is definitely present.
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Moreover, the qualities of images in HKPolyU-DB are relatively better than those of images
in SDUMLA-HMT-DB, and the intra-class variance is lower. In other words, the training
set is a much more complex case than the testing set; thus, the performance drop is not
significant. However, compared with the same domain environment, the cross-validation
environment experienced a considerable performance drop, and the domain adaptation
method was used to solve this problem. Table 7 and Figure 8 show the accuracy of finger-
vein recognition of the various domain adaptation methods. Here, genuine acceptance
rate (GAR) is defined as 100–FRR (%). Therefore, we can find that the ratio of FRR to FAR
is smaller in case that the ROC curve is positioned higher (closed to the left-top position
of Figures 8 and 9), which means the ratio of GAR to FAR is higher. The experimental
results showed that the accuracy is significantly higher when the proposed CycleGAN-
based method is used compared to the cases when a domain adaptation method is not
applied or other domain adaptation methods were used. This result implies that domain
adaptation based on the proposed method sufficiently transferred the feature information
of each domain.

Table 7. Comparisons of EERs of the proposed method and other domain adaptation methods in
case of training with SDUMLA-HMT-DB and testing with HKPolyU-DB (unit: %).

Method EER

No domain adaptation 1.80

StarGAN-v2 [38] 1.34

ComboGAN [39] 2.77

CycleGAN (proposed method) 0.85
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Table 8 shows a comparison of the accuracy of the proposed method and the state-of-
the-art methods. The experimental results highlighted that the proposed method had a
higher recognition accuracy than the state-of-the-art methods.

Table 8. Comparisons of EER by the state-of-the-art methods and the proposed method in case of
training with SDUMLA-HMT-DB and testing with HKPolyU-DB (unit: %).

Method EER

Huang et al. [40] 9.46

Miura et al. [41] 6.49

Liu et al. [42] 5.01

Gupta et al. [43] 4.47

Miura et al. [44] 4.45

Dong et al. [45] 3.53

Liu et al. [46] 1.47

Xi et al. [47] 1.44

Joseph et al. [48] 1.27

Proposed method 0.85

5.6. Testing with SDUMLA-HMT-DB after Training with HKPolyU-DB (Including
Ablation Study)

In this section, we performed the experiments again by exchanging HKPolyU-DB
and SDUMLA-HMT-DB compared to the experiments of Section 5.5. Table 9 shows the
result of performing training and testing with SDUMLA-HMT-DB and of performing
training with HKPolyU-DB and testing with SDUMLA-HMT-DB. The performance drop
is greater compared to the result shown in Table 6, which can be because the degree of
noise, misalignment, and blur in the images in SDUMLA-HMT-DB are considerably greater
than those of the images in HKPolyU-DB. Therefore, the recognition performance in the
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cross-domain environment is significantly low because of the unique trait of the domain
transformed by noise or an image capturing device.

Table 9. Comparisons of EER with same domain and cross-domain environment without our domain adaptation method
(unit: %).

Training of Finger-Vein Recognition Model Testing of Finger-Vein Recognition Model EER

SDUMLA-HMT-DB SDUMLA-HMT-DB 2.17

HKPolyU-DB SDUMLA-HMT-DB 4.42

Table 10 and Figure 9 show the accuracy of finger-vein recognition obtained by various
domain adaptation methods. The experimental results showed that the accuracy is signifi-
cantly higher when the proposed CycleGAN-based method is used compared to when a
domain adaptation method is not applied or other domain adaptation methods were used.
Thus, the feature information that can be obtained from SDUMLA-HMT-DB has been well
adapted while partially maintaining the unique shape information of HKPolyU-DB. The re-
sults of StarGAN-v2 and ComboGAN are poorer than those of the proposed CycleGAN.
Table 7 and Figure 8 present similar results. Fundamentally, a CycleGAN is a network
designed for style transfer between two domains, whereas ComboGAN and StarGAN-v2
are designed for multi-domain transfer. Particularly, a StarGAN-v2 can not only simply
discriminate between real or fake data using a style code but can also discriminate the type
of domain generated. In a multi-domain focused architecture, performance is poorer as the
discrepancy between domains is greater. Only a specific region cannot have high activation
due to the trait of finger-vein data, and the heterogeneity in the shape information is
noticeably significant even if the databases appear similar. Furthermore, ComboGAN not
only mitigates the number of generators which increases with multi-domain transfer cases
but also attempts to solve the problem of deteriorating performance caused by a greater
difference in the domains of the existing StarGAN. However, the encoder and decoder
separated by the number of domains recognize a specific database as one style as proposed
by the ComboGAN, i.e., it failed to completely learn the domain distribution.

Table 10. Comparisons of EERs of the proposed method and other domain adaptation methods in
case of training with HKPolyU-DB and testing with SDUMLA-HMT-DB (unit: %).

Method EER

No domain adaptation 4.42

StarGAN-v2 [38] 4.43

ComboGAN [39] 8.96

CycleGAN (proposed method) 3.40

Table 11 shows the comparison of the accuracy between the proposed method and the
state-of-the-art methods. The experimental result showed that the proposed method had a
higher recognition accuracy than the state-of-the-art methods.

Figures 10 and 11 show examples of the image domains adapted using various meth-
ods. Figures 10a and 11a show the examples of the original image; the images on the left in
(b)–(g) are the source images and those on the right are images generated through domain
adaptation using the source images. That is, the left and right images of Figure 10b–g,
respectively, show original images and domain adapted images from SDUMLA-HMT-DB
and HKPolyU-DB using various methods ((b), (c) our method, (d), (e) ComboGAN, (f), (g)
StarGAN-v2). By comparing the right images of (b) and (c) with those of (d)–(g), the right
images of (b) and (c) by our method have more similar image characteristics (including
the distinctiveness of vein patterns) to the original images of HKPolyU-DB (Figure 10a)
compared to the right images of (d)–(g). In addition, as shown in Figure 11, by comparing
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the right images of (b) and (c) by our method with those of (d)–(g) by other methods,
the right images of (b) and (c) have more similar image characteristics (including to the
distinctiveness of vein patterns) to the original images of SDUMLA-HMT-DB (Figure 11a)
compared to the right images of (d)–(g).

Table 11. Comparisons of EER of the state-of-the-art methods and proposed method in case of
training with HKPolyU-DB and testing with SDUMLA-HMT-DB (unit: %).

Method EER

Jalilian et al. [18] 3.57

Pham et al. [49] 8.09

Miura et. al. [44] 5.46

Miura et al. [41] 4.54

Yang et al. [50] 3.96

CycleGAN (proposed method) 3.40

As shown in all examples, the image generated by the proposed method using a
CycleGAN has the best quality; the images generated by the StarGAN-v2 are somewhat
blurry and exhibit dark noises while transferring the target domain style to a certain
extent. Lastly, the image generated by the ComboGAN shows that the difference in data
quantity between SDUMLA-HMT-DB and HKPolyU-DB as well as the separated encoder
and decoder structure did not produce good performance. Unlike facial emotion data in
which features are concentrated in specific regions, the information is not concentrated
in specific regions in the finger-vein data; thus, it is difficult to assign a style. Therefore,
the results in Figures 10 and 11 are produced if the generator structure is not concrete
because the dataset is widely distributed.

Finally, the effect of the proposed method was analyzed by comparing the cases in
which recognition errors were produced in all schemes in which the proposed method and
domain adaptation were not applied and cases in which the model correctly recognized the
images only using the proposed method. Figure 12 summarizes the error cases generated
in the no adaptation method where SDUMLA-HMT-DB was used as the training set and
in the proposed method where SDUMLA-HMT-DB was domain adapted to HKPolyU-
DB. Figure 12a,b show the cases in which errors occurred even when domain adaptation
was performed using the proposed method. Specifically, Figure 12a is an example of a
false rejection case, and Figure 12b is the example of a false acceptance case. As shown
in Figure 12a, a major pixel translation observed even when the enrolled image and the
matched image were an authentic matching case. In Figure 12b, both images were not
properly acquired because of the imbalance in lighting intensity of the NIR sensor used
for acquiring the finger-vein images. Because of these problems, the finger-vein pattern
appeared only in a limited region of the image, which resulted in an imposter matching
case which appeared as an authentic matching case. In addition, correctly recognizing if
the shape pattern, which is important information, is distributed in a similar manner, is a
challenging task.
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adapted images from SDUMLA-HMT-DB and HKPolyU-DB using various methods. (b,c) pro-
posed method, (d,e) ComboGAN, (f,g) StarGAN-v2. 
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Figure 10. Examples of original images and domain adapted images: (a) Original image of HKPolyU-
DB. Left and right images of (b–g) respectively, show original images and domain adapted images
from SDUMLA-HMT-DB and HKPolyU-DB using various methods. (b,c) proposed method, (d,e)
ComboGAN, (f,g) StarGAN-v2.



Sensors 2021, 21, 524 21 of 28

Sensors 2021, 21, x FOR PEER REVIEW 20 of 28 

 

 

 
(e) 

 
(f) 

 
(g) 

Figure 10. Examples of original images and domain adapted images: (a) Original image of 
HKPolyU-DB. Left and right images of (b)–(g) respectively, show original images and domain 
adapted images from SDUMLA-HMT-DB and HKPolyU-DB using various methods. (b,c) pro-
posed method, (d,e) ComboGAN, (f,g) StarGAN-v2. 

 

(a) 

 

(b) 

 

(c) 

Sensors 2021, 21, x FOR PEER REVIEW 21 of 28 

 

 

 

(d) 

 

(e) 

 

(f) 

 

(g) 
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SDUMLA-HMT-DB. Left and right images of (b)–(g), respectively, show original images and do-
main adapted images from HKPolyU-DB to SDUMLA-HMT-DB using various methods. (b,c) pro-
posed method, (d,e) ComboGAN, (f,g) StarGAN-v2. 
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thentic matching case; however, a problem was observed when the intensity of lighting 
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was performed are effective against the variance in lighting intensity as such information 
of the source domain, SDUMLA-HMT-DB, was also transferred. Figure 12d also shows 
that it is difficult to identify the overall finger-vein pattern because finger-vein infor-
mation is acquired from a limited region; however, a good recognition performance was 
still observed when the proposed method was used appropriately using the scarcely avail-
able finger-vein pattern. Therefore, a robust performance was achieved for extracting the 
finger-vein valley through domain adaptation. 

Unlike Figure 12, Figure 13 summarizes the error cases generated in the no adapta-
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Figure 12. Examples of errors in case of testing with HKPolyU-DB: (a) False rejection case by both
proposed method and no domain adaptation, (b) false acceptance case by both proposed method and
no domain adaptation, (c) false rejection case by the no adaptation method, but correct recognition
case by the proposed method, (d) false acceptance case by the no adaptation method, but correct
rejection case by the proposed method. Left and right images of (a–d) show enrolled and matched
images, respectively.

Figure 12c,d are the results of correct recognition when the proposed method was
used in which 12c shows the falsely rejected case and 12d shows the falsely accepted case in
a scheme where the domain adaptation method was not applied. Figure 12c is an authentic
matching case; however, a problem was observed when the intensity of lighting varied
during the image capturing trial. However, the data for which domain adaptation was
performed are effective against the variance in lighting intensity as such information of
the source domain, SDUMLA-HMT-DB, was also transferred. Figure 12d also shows that
it is difficult to identify the overall finger-vein pattern because finger-vein information is
acquired from a limited region; however, a good recognition performance was still observed
when the proposed method was used appropriately using the scarcely available finger-vein
pattern. Therefore, a robust performance was achieved for extracting the finger-vein valley
through domain adaptation.

Unlike Figure 12, Figure 13 summarizes the error cases generated in the no adaptation
method where HKPolyU-DB was used as the training set, and in the proposed method
where HKPolyU-DB was domain adapted to SDUMLA-HMT-DB. The information was
mostly not contained in the images properly for the data of SDUMLA-HMT-DB, which is
similar to the data of HKPolyU-DB. In particular, the cases in Figure 13a,b only contained
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a small amount of finger-vein patterns, and the recognition was performed using the
background information during testing. This problem cannot be easily solved by domain
adaptation, and therefore, it was not successfully recognized in the case where the proposed
method was used. Even though the case in Figure 13c is an authentic matching case,
the pixel translation between the enrolled image and the matched image was significantly
large, while the forms of the shades slightly varied. However, for the data generated using
the proposed method, the finger-vein pattern of each domain was effectively transferred,
thus producing robust performance for the finger-vein pattern of SDUMLA-HMT-DB
along with the focused form of the finger-vein pattern. This shows that the network was
optimized to generate variations in the vein pattern information by focusing on the vein
pattern when training the CycleGAN. Figure 13d also shows that it is difficult to identify the
overall finger-vein pattern because the finger-vein information is acquired from a limited
region; however, a good recognition performance was still observed when the proposed
method was used appropriately using the scarcely available finger-vein pattern.
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Figure 13. Examples of errors in the case of testing with SDUMLA-HMT-DB: (a) False rejection
case by both the proposed method and no domain adaptation, (b) false acceptance case by both the
proposed method and no domain adaptation, (c) false rejection case by the no adaptation method,
but correct recognition case by the proposed method, (d) false acceptance case by the no adaptation
method, but correct rejection case by the proposed method. Left and right images of (a–d) show
enrolled and matched images, respectively.



Sensors 2021, 21, 524 24 of 28

6. Discussion

In this section, we briefly compared the previous and proposed methods with advan-
tages and disadvantages, as shown in Table 12.

Table 12. Comparisons of the previous and proposed methods for hand-based biometrics.

Categories
Considering

the Cross-Domain
Problem

Method Modality Advantage Disadvantage

Non-training-
based

No

Wide line detector and
pattern normalization

[40]

Finger-vein

Simple and
computationally
efficient than
training-based
method

Performance is not
good compared to
training-based
method

Maximum curvature
points [41]

Minutiae matching [42]

Multi-scale matched
filter [43]

Repeated line tracking
[44]

Personalized best
patches map [45]

Superpixel-based [46]

Discriminative binary
codes [47]

Fuzzy rule-based [48]

Local binary pattern [49]

Tri-branch vein structure
[50]

Yes

Dimension reduction
and orientation coding

algorithm [7]
Palmprint

SIFT [8]
Dorsal hand-vein

Improved SIFT [9]

BGP and Gabor-HoG
[10]

FingerprintLeast square-based
domain transformation

function [11]
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Table 12. Cont.

Categories
Considering

the Cross-Domain
Problem

Method Modality Advantage Disadvantage

Training-
based

No

VGG-16 and CNN [20]

Preprocessing is
not required

No consideration
about the
heterogeneous
data problemPatch-based MobileNet

[21]

CGAN [19]

Does not show
good performance
in cross-sensor
environments

FCN [18] Finger-vein

Using compact
information on
recognition stage
increases
generality

Unreliable label
data were used

Yes

FLDA [12] Face and
fingerprint

Simple method for
domain adaptation

Needs multiple
modality data
from same people

Universal material
translator wrapper [13]

Fingerprint

Uses a simple style
transfer network

Generated images
cannot deal with
level 3 features

DeepDomainPore
network [14]

Can exploit level 3
features using
low-resolution
input

Long
preprocessing time
and ground truth
required for source
data

PalmGAN [15]

Palmprint

Automatically
generates label
data for target
domain

- Long
preprocessing time
and ground truth
required for source
data
Segmentation
method is unstableAuto-encoder [16]

Automatically
generates label
data for target
domain
Simple method for
domain matching
with good
matching
performanceDeepScatNet and RDF

[17] Finger-selfie

CycleGAN-based
(Proposed method) Finger-vein

High performance
for domain
adaptation
Does not need
ground truth for
source data

Intensive training
for CycleGAN is
necessary

In case of five-fold or 10-fold cross validation, the number of training data becomes
much larger, and the consequent accuracy of testing becomes higher than that by two-fold
cross validation in most cases due to the sufficient training of model. However, it is very
difficult to acquire the sufficient number of training data in real world cases. Considering
these cases, we aim at measuring the testing accuracies even with insufficient training data
based on two-fold cross validation in our experiments.
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The proposed method failed the correct recognition in the following cases; (i) a major
pixel translation observed even when the enrolled image and the matched image were
an authentic matching case, (ii) both the enrolled and matched images were not properly
acquired because of the imbalance in lighting intensity of the NIR sensor used for acquiring
the finger-vein images, and (iii) the captured image only contained small amount of finger-
vein patterns, and the recognition was performed using the background information
during testing.

7. Conclusions

In this study, we propose a finger-vein recognition system in which domain adaptation
is applied to solve the problem of the performance drop in a finger-vein recognition system
when unobserved data are used. Domain adaptation was performed using CycleGAN,
and the proposed domain adapted model proved to be effective using two databases—
HKPolyU-DB and SDUMLA-HMT-DB. All cases found in the real environment include
unobserved data; thus, a performance drop in similar circumstances is critical. As a finger-
vein recognition system is used for security purposes, unstable performance depending on
specific situations would decrease the reliability, thus making its application to real-world
applications difficult. Using the proposed method, a stable finger-vein recognition system
with improved generality can be applied to various real-world applications.

In this research, we focused on checking the possibility of domain adaptation of
heterogeneous finger-vein databases. Therefore, we used the well-known CycleGAN and
DenseNet-161 whose performances for style transfer of unpaired data and classification
were already confirmed, respectively, in many previous researches of different applications.
We performed only the fine-tuning of CycleGAN and DenseNet-161 with our experimental
data. We would research the method of further customization of CycleGAN and DenseNet-
161 to enhance the accuracies as future works.

In addition, we would research the advanced domain adaptation method, which can
solve the cases of major pixel translation between the enrolled and matched images, the im-
balance of lighting intensity in the captured image, and the small amount of finger-vein
patterns contained in the captured image explained in Section 6. We would also evaluate
the performance by five-fold or 10-fold cross validation in future work. In addition, a finger-
vein recognition system with a more robust performance for unobserved data will be further
studied in the future by improving the generality of the domain through multiple-domain
adaptation, rather than simple domain adaptation between two databases. Furthermore,
the efficacy of domain adaptation proposed in this study will also be researched for diverse
biometric data such as palm and hand dorsal vein images, visible and NIR iris images,
and visible and NIR face images.
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