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Abstract: Recent histopathological investigations in patients with hepatitis suggested 

possible involvement of Met-enkephalin and its receptors in the pathophysiology of 

hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this 

endogenous opioid pentapeptide in the experimental model of acetaminophen induced 

hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective 

effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for 
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several different animal disease models. In this group plasma alanine aminotransferase and 

aspartate aminotransferase enzyme activities, as well as liver necrosis score were 

significantly reduced in comparison to control animals treated with physiological saline  

(p > 0.01). The specificity of the peptide hepatoprotection was investigated from the 

standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin 

effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of  

Met-enkephalin confirmed the safety of the peptide. 

Keywords: met-enkephalin; hepatoprotection; genotoxicity; antisense peptide; binding; 

spectroscopy 

 

1. Introduction 

Met-enkephalin is an endogenous opioid pentapeptide (YGGFM), also named opioid growth factor 

(OGF) [1,2]. It is the agonist of δ and ζ opioid receptors, and its pharmacological effects could be 

blocked by the competitive receptor antagonist naltrexone [1,2]. In addition to the biological effects on 

neurotransmission and neuroimmunomodulation Met-enkephalin also exhibits strong protective effects 

in different animal disease models, including gastric cytoprotection [1–8]. It is also primary opioid 

peptide involved in the cell and tissue growth regulation and wound healing [2]. 

Recent histopathological investigations suggest the involvement of Met-enkephalin and related 

opioid system receptors in the pathophysiology of hepatitis and hepatoprotection [9,10]. However, the 

potential hepatoprotection of this well known neuropeptide has not been defined on the standard 

animal model. Therefore, we investigated the hepatoprotective effects of Met-enkephalin in the 

experimental model of acetaminophen induced hepatotoxicity in male CBA mice, a useful animal 

model of hepatoprotection [11–13]. We also tested the specificity of Met-enkephalin mediated 

hepatoprotection under the conditions of the opioid receptor blockade and Met-enkephalin  

blockade. Naltrexone was used as a receptor antagonist [1,2], and antisense peptide IPPKY as  

Met-enkephalin antagonist [6]. 

2. Results and Discussion 

2.1. Hepatoprotective Effects of Met-enkephalin 

Protective potential of Met-enkephalin was evaluated using experimental model of acetaminophen 

induced hepatotoxicity in male CBA mice, an established screening procedure for the evaluation of 

hepatoprotective compounds [11–13]. The model is especially useful for testing substances with 

potential anti-inflammatory and anti-necrotic properties [14–16]. Protective effects were observed by 

using three criteria: plasma activities of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) enzymes, as well as liver necrosis score [11,12,17–19]. 

Met-enkephalin dose of 7.5 mg/kg was the most efficient dose by all criteria (Tables 1–3; Figures 1–3). 

Other doses also showed lowered levels of AST, ALT and liver necrosis in comparison to control 

animals (0.9% NaCl), however, the results were not statistically significant (Tables 1–3; Figures 1–3). 
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Figures 1–3 suggest U-shaped curve relationship between applied doses and observed effects. This 

phenomenon is often observed with peptide ligands, including opioid system ligands [20]. The U-shape 

curve is characterized by low-dose stimulation and high-dose inhibition. However, it is often 

unrecognized and requires great care in planning and performing the experiments, as well as 

interpreting the results [20]. 

The protective dose of Met-enkephalin is in the range of optimal protective doses (4–10 mg/kg) in 

other animal models of inflammatory/autoimmune diseases in rat, mouse and guinea pig, e.g., 

experimental allergic encephalomyelitis, histamine induced bronchoconstriction, arthus skin reaction, 

delayed skin reaction, adjuvant arthritis, allograft rejection, anaphylactic shock [3–8]. 

Met-enkephalin sequences are found in proenkephalin (PENK) and pro-opiomelanocortin hormones 

(POMC). It is worth mentioning that other pro-opiomelanocortin (POMC) peptides also exhibit 

hepatoprotective effects in the same hepatotoxicity model (Figure 4) [11–13]. Consequently, opioid 

and melanocotrin classes of G-protein-coupled receptors seem to be involved in the regulation of liver 

inflammation [11–13,21].  

Table 1. Effects of Met-enkephalin on AST activity in plasma (U/L) 24 h after acetaminophen 

administration (150 mg/kg i.g.). Met-enkephalin was given intraperitoneally 1 h before 

acetaminophen. * comparison with control using Steel’s test. 

Group (n = 8) Mean SD Median p value * 

1. Control (0.9% NaCl) 7545 4114 7170  
2. Met-enkephalin (0.075 mg/kg) 3362 3052 2470 0.2169 
3. Met-enkephalin (0.75 mg/kg) 2621 3959 1127 0.0967 
4. Met-enkephalin (7.5 mg/kg) 1313 1317 836 0.0039 
5. Met-enkephalin (75 mg/kg) 3161 2982 2440 0.1190 

Table 2. Effects of Met-enkephalin on ALT activity (U/L) in plasma 24 h after acetaminophen 

administration (150 mg/kg i.g.). Met-enkephalin was given intraperitoneally 1 h before 

acetaminophen. * comparison with control using Steel’s test. 

Group (n = 8) Mean SD Median p value * 

1. Control (0.9% NaCl) 3946 1752 3355  
2. Met-enkephalin (0.075 mg/kg) 2547 1263 2139 0.7596 
3. Met-enkephalin (0.75 mg/kg) 1062 821 730 0.0751 
4. Met-enkephalin (7.5 mg/kg) 794 911 370 0.0072 
5. Met-enkephalin (75 mg/kg) 2194 1765 2810 0.6620 

Table 3. Effects of Met-enkephalin on liver necrosis (scale 0–5) 24 h after acetaminophen 

administration (150 mg/kg i.g.). * comparison with control using Steel’s test. 

Group (n = 8) Minimum Q1 Median Q3 Maximum p value * 

1. Control 1 (0.9% NaCl) 3 3.8 4.0 5.0 5  
2. Met-enkephalin (0.075 mg/kg) 3 3.0 4.0 5.0 5 0.9657 
3. Met-enkephalin (0.75 mg/kg) 3 3.0 3.5 4.3 5 0.5495 
4. Met-enkephalin (7.5 mg/kg) 2 2.0 2.5 3.0 4 0.0094 
5. Met-enkephalin (75 mg/kg) 2 2.8 3.5 4.3 5 0.4770 
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Figure 1. Effects of Met-enkephalin on plasma AST activity (U/L) 24 h after acetaminophen 

administration. Data are presented as medians and interquartile ranges.  

 

Figure 2. Effects of Met-enkephalin on plasma ALT activity (U/L) 24 h after acetaminophen 

administration. Data are presented as medians and interquartile ranges. 
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Figure 3. Effects of Met-enkephalin on liver necrosis (scale 0–5) 24 h after acetaminophen 

administration. Data are presented as medians and interquartile ranges. 
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Figure 4. Pro-opiomelanocortin derived peptides and relevant doses that exert their 

hepatoprotective effects in the experimental model of acetaminophen induced hepatotoxicity 

in male CBA mice [11–13]. 

Pro-opiomelanocortin (POMC)

γ-MSH (77-87) α-MSH (138-150) β-MSH (217-234) Met-enkephalin (237-241)

CLIP (156-176) γ-lipotropin (179-234) β-endorphin (237-267)

β-lipotropin (179-267)ACTH (138-176)

0.15 mg/kg 2.5 mg/kg 0.25 mg/kg

melanocortin receptors
(MC1R, MC3R, MC4R)

opioid receptors
(δ, ζ)

7.5 mg/kg

 

δ and ζ opioid receptors are present in the liver tissue, however, both opioid receptors subtypes 

share little sequence homology and have quite different function [2,9,10]. Beneficial effects of δ opioid 

receptors in the liver could be related to the modulation of immune mediated tissue injury and 
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oxidative stress, while ζ opioid receptors are involved in the regulation of tissue growth and wound 

repair [1,2]. Consequently, strong hepatoprotection exerted by Met-enkephalin dose of 7.5 mg/kg may 

result from the peptide effects on both opioid receptor subtypes. 

2.2. Modulation of Hepatoprotection with Naltrexone and Antisense Peptide 

The specificity of Met-enkephalin hepatoprotection was investigated from the standpoint of the 

receptor and peptide blockade (Figure 5). It is believed that the effects of Met-enkaphalin are mediated 

via δ and ζ opioid receptors [1,2,4]. The blockade of these receptors with specific antagonist 

naltrexone confirmed this fact, because the effects of Met-enkephalin were completely abolished, i.e., 

the mortality rate of this group was high (6/8). Similar mortality was observed when antisense peptide 

IPPKY was applied with Met-enkephalin (5/8), or alone (4/8). This mortality rate probably results 

from the blockade of both pharmacologically applied and endogenous Met-enkephalin. Sense-antisense 

peptide complex could also elicit adverse biological effects [22].  

The blockade of Met-enkephalin with naltrexone suggests that the effects are mediated via δ and ζ 

opioid receptors, while the blockade of Met-enkephalin with antisense peptide [6,13,22,23] allowed us 

to observe the hepatoprotection/hepatotoxicity in the state of fully preserved receptor function, 

enabling other endogenous substances to act on them. It can be concluded that Met-enkephalin effects 

on the liver are peptide specific and mediated via δ and ζ opioid receptors.  

Figure 5. (A) Modulation of Met-enkephalin binding to δ and ζ opioid receptor by menas 

of the opioid receptor antagonist naltrexone. (B) Modulation of Met-enkephalin binding to 

δ and ζ opioid receptor by means of antisense peptide antagonist.  

opioid receptor

X

naltrexone

Met-enkephalin
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2.3. Genotoxic Testing of Met-enkephalin  

In order to test the genotoxic potency of Met-enkephalinan in vivo micronucleus (MN) assay was 

used, which enables detection of clastogenic and aneugenic mechanisms [24]. Selection of the doses 

(A) (B) 
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was based on the previously published results, stating that 4–10 mg/kg is the relevant therapeutic  

Met-enkephalin dose for cytoprotective and organ protective experimental mice models in vivo [3,4]. 

The assay requests small sample and it is possible to use same animals for estimation of background 

value and for sampling during the experiment, which significantly improves the reliability of results. 

Erythroblasts, as cell type, are optimal for the investigation of genome damage due to high rate of division 

and life span in peripheral blood. As erythroblasts circulate through organism they act as natural  

bio-dosimeters. The limitation of this method is that it is not possible to recognize whether the mechanism 

by which tested agent may cause genome damage is preferentially aneugenic or clastogenic. 

Data were modeled using Poisson distribution and presented as rates (number of MN per  

1000 cells/reticulocytes), and their 95 per cent confidence intervals. There was no significant 

difference between male and female mice. As a positive control cylophospahmide at a concentration of 

10 mg/kg caused significant increase in MN frequency (12.62/1000 cells). Exposure of animals to 

concentrations of Met-enkephalin of 0.5 mg/kg, 5 mg/kg and 50 mg/kg did not increase the MN 

frequency in comparison with background values both at 48 and 96 h after application. There was no 

significant changes of MN frequency for concentrations of 0.5 mg/kg, 5 mg/kg and 50 mg/kg between 

sampling times (Table 4). 

Our in vivo results in the large range of Met-enkephalin doses on a relevant and well known method 

to test the genotoxic potency of the substance, confirm previous pre-clinical experiments and clinical 

trials indicating the safety of the peptide in this respect [1,5,6,25]. 

Table 4. The results of genotoxic testing of Met-enkephalinan using in vivo micronucleus 

assay. * 95 per cent confidence interval. 

Group (n = 8)  

Background Value Exposed 48 h Exposed 96 h 

Mean Rate  

(95% CI) * 

Mean Rate 

(95% CI)* 

Mean Rate 

(95% CI)* 

1. Met-enkephalin (0.5 mg/kg) 0.13 (0.05–0.23) 0.24 (0.14–0.37) 0.29 (0.18–0.43) 

2. Met-enkephalin (5 mg/kg) 0.13 (0.05–0.23) 0.22 (0.12–0.34) 0.29 (0.18–0.43) 

3. Met-enkephalin (50 mg/kg) 0.09 (0.03–0.24) 0.14 (0.07–0.26) 0.09 (0.04–0.18) 

3. Experimental Section 

3.1. Test Compounds 

1. Met-enkephalin (YGGFM, mw 573.66, >99% purity; Biofactor GmbH, Bad Harzburg, Germany).  

2. Antisense peptide (IPPKY, mw 616.75, 98.5% purity, and IPPKYW, mw 802.96, >99% purity; 

GenScript, Piscataway, NJ, USA).  

3. Naltrexone hydrochloride (mw 377.86, >99% purity; Sigma-Aldrich Co. LLC, St. Louis,  

MO, USA). 

3.2. Treatment Regimen and Experimental Models  

Hepatotoxicity and Genotoxicity experiments were performed according to the ILAR Guide for the 

Care and Use of Laboratory Animals, Council Directive 86/609/EEC, and Croatian Animal Protection 
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Act (Official Gazette 135/06) [26–28]. The experiment on animals was approved by the Croatian 

Ministry of Agriculture, Forestry and Water Management. 

3.2.1. Hepatotoxicity Model 

The experimental animals were 12–16 weeks old male CBA mice, weighing 20–25 g, bred at the 

Ruđer Bošković Institute. The animals were kept in a room with dark-light cycle (12/12 h) and 

constant temperature (22 ± 1 °C). Hepatotoxicity was induced according to the slightly modified 

procedure of Guarner et al. [29,30]. Mice were given 0.3 g/L phenobarbital (Phenobarbiton Pliva, 

Zagreb, Croatia) for 7 days, to induce hepatic drug-metabolizing enzymes. Prior to inducing liver 

damage by acetaminophen the animals were fasted overnight with free access to water. 

Acetaminophen (Sigma-Aldrich Co.) was given intragastrically (i.g.), in a dose of 150 mg/kg, via a 

gastric tube, in a volume of 0.5 mL. Mice were re-fed after 4 h. The test substances were given 

intraperitoneally (i.p.) 1 h before acetaminophen administration, in a volume of 0.2 mL.  

We tested: hepatoprotective effects of: (1) Met-enkephalin, (2) antisense peptide IPPKY, (3) 

naltrexone, (4) equimolar administration of neltrexone and Met-enkephalin (naltrexone was given 30 

min prior to Met-enkephalin), and (5) equimolar mixture of Met-enkephalin and antisense peptide 

(mixed together 30 min prior to administration under the same physicochemical conditions used for 

spectroscopy binding experiment described in Section 3.3.). Control animals were treated with 

physiological saline (0.9% NaCl). The size of experimental groups was 8. 

The experimental animals were sacrificed 24 h after acetaminophen application. For biochemical 

analyses 250 IU of heparin was given intraperitoneally (i.p.) to each animal 15 min before sacrifice, 

and the trunk blood was collected into heparinized tubes. Alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) activity was determined on an Olympus AU® 400 analyzer using 

standard reagents. Mice that died of acetaminophen toxicity before 24 h period were excluded from the 

biochemical and/or histopathological analysis [17]. In control and Met-enkephalin treated groups only 

one experimental animal died of acetaminophen toxicity (Met-enkephalin in dose of 0.75 mg/kg). 

For histopathological analysis sections of the liver were fixed in 10% phosphate buffered formalin 

and embedded in paraffin. Three specimens were taken from each liver, cut into six sections of 3 μm, 

and stained with hemalaun-eosin (HE). Sections were examined using light microscope (×100). 

Grading of the liver lesions was done on 0–5 point scale: 0 = no lesions; 1 = minimal lesions 

(individual necrotic cells); 2 = mild lesions (10% to 25% of necrotic cells or mild diffuse degenerative 

changes); 3 = moderate lesions (25% to 40% of necrotic cells); 4 = marked lesions (40% to 50% of 

necrotic cells); and 5 = severe lesions (more than 50% of necrotic cells)) [19]. The final score for each 

liver was the consensus score of all examined sections. 

3.2.2. Genotoxicity Testing 

The study included four male and four female (BALB/CJ) mice per each applied compound 

concentration. The mice were obtained from the Ruđer Bošković Institute (Zagreb, Croatia) breeding 

colony. During the experiment period four animals were kept per cage. The bottom of cage was 

covered with sawdust (Allspan®, Karlsruhe, Germany). Standard food for laboratory mice (4 RF 21 GLP 

Mucedola srl, Milan, Italy) was used. All animals had free access to food and water ad libitum. 
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Animals were kept in conventional conditions with the light/dark cycle exchanging every 12 h, 

temperature 22 °C, and humidity 55%. Positive control was performed by 10 mg/kg of 

cyclophosphamide (CP) (Krka, Novo Mesto, Slovenia). Met-enkephalin was administered i.p to 

animals as single dose at concentrations of 0.5 mg/kg, 5 mg/kg and 50 mg/kg. Blood samples were 

taken from mice before treatment, 48 h and 96 h after treatment. The advantage of this method is a 

small sample size, which is why the same animals can be used for repeated measurements with 

diminished possible bias of inter individual variability. 

For all groups, peripheral blood (5 µL per sample) was collected from the tail vein. The blood was 

smeared on an acridine-orange coated slide, covered with a cover slip and analyzed according to 

Hayashi et al. [24]. Micronuclei were analyzed in 2,000 reticulocytes per sample. Data were analysed 

using pois.exact (epitools package) and poisson.test (exactci package) procedures inside R data 

analysis software [31–33]. 

3.3. Peptide Binding Assay Using Tryptophan Fluorescence Spectroscopy  

Antisense peptides specified by the complementary RNAs bind to each other with enhanced 

specificity and affinity due to the principle of amino acid complementary hydropathy, and consequently 

may be used to abolish the biologic activity of the sense peptides/hormones [13,22,23,34–36].  

This biologic phenomenon has been proved for more than 40 peptide-peptide interaction systems, 

including Met-enkephalin, and represents a useful tool for the investigation of peptide-receptor  

systems [6,22,23,34–36]. 

Fluorescence spectra were measured by OLIS RSM 1000F spectrofluorimeter (Olis, Inc., Bogart, 

GA, USA) equipped with thermostated cell at 25 °C [13,23]. The concentration of Met-enkephalin 

varied from 2.5 to 500 μM. Figure 6 presents titration of 2.5 µM solution of IPPKYW with  

Met-enkephalin at 25 °C, pH = 7.4, in 10 mM phosphate buffer. Both reactants were fluorophores and 

the third spectrally active species was attributed to the complex of two reactants. Phenylalanine  

Met-enkephalin, which was in excess, had much smaller quantum yield than the tryptophan present in 

IPPKYW. The excitation wavelength at 290 nm was chosen in order to diminish the fluorescence of 

phenylalanine and maximise the fluorescence of tryptophan. All spectra in fluorescence titrations were 

analysed with SPECFIT software and three spectrally active species were suggested by SVD (single 

value decomposition) statistical analysis [37–41]. Data analysis suggested 1 to 1 complex formation 

and did not indicate any higher order complexes. Consequently, proposed model is given by Equation (1) 

and Equation (2) where Kd is dissociation constant of the complex: 

IPPKYW − YGGFM↔IPPKYW + YGGFM (1) 

Kd=
[ IPPKYW][YGGFM]
[ IPPKYW-YGGFM]  

(2) 

Dissociation constant (Kd) calculated from fluorescence titrations for the complex of Met-enkephalin 

with IPPKYW peptide was 19 ± 3 µM (mean ± SD). 
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Figure 6. The binding of Met-enkephalin and antisense peptide (Kd = 19 ± 3 µM;  

mean ± SD) evaluated by means of fluorescence spectroscopy. Fluorescence in arbitrary 

units (AU) is given as a ratio of signals obtained from sample and reference PMTs. Inset: 

Fitting curve at 350 nm.  
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3.4. Statistical Analysis 

Statistical analysis and plotting was made using GraphPad Prism for Windows version 5 and 

KyPlot version 4 [42,43]. AST and ALT activities are described as means, medians, and standard 

deviations. Liver necrosis scores are described as minimum, first quartile (Q1), median, third quartile (Q3) 

and maximum. Data in plots are shown as medians and interquartile range. Differences between the 

groups were analyzed using Steel’s test. All tests were two-tailed, and the results were considered 

significant if the p values were ≤ 0.05 [44]. 

4. Conclusions  

1. Met-enkephalin showed protective effects in the model of acetaminophen induced hepatotoxicity 

in male CBA mice.  

2. The optimal hepatoprotective dose of Met-enkephalin was 7.5 mg/kg, which is in the range of 

protective doses (4–10 mg/kg) observed in animal models of inflammatory/autoimmune 

diseases.  

3. Met-enkephalin effects on the liver are peptide and receptor specific, mediated via δ and ζ 

opioid receptors. 

4. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide. 
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