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Abstract

Background

There are numerous studies that show an increased incidence of cardiovascular disease

with increasing levels of socio-economic disadvantage. Exposures that might influence

the relationship include elements of the built environment and social systems that

shape lifestyle risk behaviors. In Canberra (the Australian capital city) there has been a

particular housing policy to create ‘mixed-tenure’ neighborhoods so that small pockets of

disadvantage are surrounded by more affluent residences (known as a ‘salt-and-pepper’

pattern). This may contribute to a scatter of higher incidence rates in very small areas in

this population that may be obscured if aggregated data are used. This study explored

the effect of changing the scale of the spatial units used in small area disease modelling,

aiming to understand the impact of this issue and the implications for local public health

surveillance.

Methods

The residence location of hospitalized individuals were aggregated to two differently scaled

area units. First, the Australian Bureau of Statistics Statistical Area 2 (SA2) which is nor-

mally used as the basis for deidentification and release of health data. Second, these data

were aggregated to a smaller level: the Statistical Area 1 (SA1). Generalized Additive Mod-

els with penalized regression splines were used to assess the association of age-sex-stan-

dardized rates for cardiovascular disease hospital admissions with disadvantage.

Results

The relationships observed were different between the two types of spatial units. The SA1

level exposure-response curve for rates against the disadvantage index extended in a

linear fashion above the midrange level, while that found at SA2-level suggested a curvi-

linear form with no evidence that rates increased with higher disadvantage beyond the

midrange.
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Conclusion

Our result supports findings of other work that has found disadvantage increases risk of car-

diovascular disease. The shape of the curves suggest a difference in associations of cardio-

vascular disease rates with disadvantage scores between SA1 versus SA2. From these

results it can be concluded that scale of analysis does influence the understanding of geo-

graphical patterns of socio-economic disadvantage and cardiovascular disease morbidity.

Health surveillance and interventions in Canberra should take into account the impact of the

scale of aggregation on the association between disadvantage and cardiovascular disease

observed.

Introduction

Cardiovascular disease incidence may vary geographically, due to the spatial variation of the

determinants of these diseases. Understanding the pattern requires spatial data analysis. But a

well-known problem exists in analysis of any health data that analyses at an inappropriate scale

may obscure or distort the relationships investigated.

The problem of finding different results at different scales is well-recognised. There may be

different statistical results at different levels, and sometimes severe bias may attenuate toward

the null or even the opposite relationship may be found in analyses across different scales [1,

2]. Openshaw [3] coined the term ‘Modifiable Areal Unit Problem’ (MAUP) to define it. The

observed relationships of any spatial data analysis may differ substantially between analyses of

the same data, aggregated to different areal units. This is due to differences between the aggre-

gated information content (e.g. levels of signal and noise).

The MAUP consists of two sub-problems; the scale of aggregation issue and the zoning

configuration issue [4]. The scale issue is a problem when the aggregation units used are at an

inappropriate resolution (granularity) for the phenomenon under investigation. The scale

issue can arise when analyses are performed at levels of aggregation that may not be at appro-

priate scale to capture the true variation in the outcome of interest, and the exposures to risk

factors contributing to this [5]. The zonation issue is a problem when areal units aggregate

data into different patterns than the underlying phenomena due to their artefactual shapes. In

some instances there is a mismatch created between the outcome data and the spatial pattern

of the exposures which may obfuscate the association found in statistical models. It has been

suggested that the use of smaller spatial units is likely to mitigate these issues because these

allow flexible aggregation in a spatial hierarchy [6]. This can result in data that are more sensi-

tive to the underlying spatial pattern of the outcome response and the driving exposures. In

experimentation with simulated point patterns Kang et al. [7] showed that different results

were observed and different inferences would be made when analysing data at different spatial

scales. In this study we analysed empirical data based on areal units, to extend our knowledge

of the impact of this issue. Our study question specifically relates to the common practice of

aggregating point data into areal units prior to release for researchers, because releasing point

data is considered a privacy and ethical risk. We use observed data to demonstrate the effect

this has on the ability to detect and describe the association between cardiovascular disease

and disadvantage.

This issue is very important for health surveillance systems managers around the world. Cur-

rently the effect of the MAUP is inherent in the spatial units used in health data dissemination
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in many countries, including in Australia, due to the misguided aggregation of locational iden-

tifiers in an attempt to maintain privacy and confidentiality of individuals. This practice may

easily confound any associations observed, and lead to incorrect cross-level inference, and poor

public health outcomes. This is known as the so-called ‘ecological fallacy’, a concept that has

been used to describe the inappropriate inference of individual-level (and small-area) associa-

tions from aggregate-level results [8]. This can introduce errors, bias and contradictions to the

understanding of exposures causing disease.

The important processes determining the successful analysis of geographical health data

therefore involve both the interaction between individuals, society and the living and non-liv-

ing environments on the one hand, and the protection of individual identity, confidentiality

and security on the other. In this paper, we focus primarily on the scale issue since this is a crit-

ical first step in analysis. The issues of zonation, and how best to represent the residual varia-

tion within the spatial structures used is the subject of ongoing research [5].

In Canberra the impact of the scale issue may be large for any observed associations

between cardiovascular disease and socio-economic disadvantage because this city is well-

known for its pockets of socioeconomically disadvantaged residents, surrounded by more

affluent residents [9, 10]. Cardiovascular disease in Canberra neighbourhoods have also been

investigated at high spatial resolution and findings suggest that disease incidence varies at

small area levels, possibly related to factors such as walkability [11, 12].

The ecology of cardiovascular disease

Cardiovascular disease (CVD) is an important cause of morbidity and mortality in Australia.

The Australian profile derived from the Global Burden of Disease (GBD) 2015 ranks some cat-

egories of CVD as causing the most premature deaths [13]. Risk factors such as smoking are

well known [14]. However, other less understood risk factors include social disadvantage [15],

physical activity patterns [16, 17], and atmospheric pollution [18]. The mechanisms by which

disadvantage influences CVD morbidity can be contextualized using the interconnected ele-

ments of population composition, behavior and habitat [19]. Population composition includes

the age, sex and genetic characteristics of the people. Behaviors, such as diet and physical activ-

ity influence risk factors. Habitat includes the configuration of the urban environment that

encourages (or limits) access to amenities that lead to physical activity. One of the salient fea-

tures of cardiovascular disease progression is atherosclerosis. Genetic and metabolic processes

influence this universal process creating some disparity between sub-population groups. The

behavior element incorporates the way humans interact with one another and with their envi-

ronment. These include smoking, physical activity, and diet. Cultural differences between

different groups of people will drive different behavior patterns and thus the exposure and sus-

ceptibility of individuals to these cardiovascular health risks. In the habitat element there are

many environmental factors implicated with cardiovascular disease including: urban design,

transport, atmospheric pollution; meteorological systems; water quality; and aspects of land-

scape geochemistry [19].

Socio-economic disadvantage

A variety of epidemiology literature focuses on health inequalities caused by the differences in

poverty, deprivation, and disadvantage [20, 21]. There is often an inverse association evident

in morbidity and mortality rates with Socio-Economic Status (SES). This may be due to a

variety of individual level risk factors such as diet or smoking, which are influenced by SES.

Other explanations refer to the contextual attributes of disadvantaged neighbourhoods. This

understanding is further complicated by findings that it is not just simple material wealth or
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deprivation, but relative status and hierarchy that are involved [22]. In Australia, statistical

analyses have found differences between SES groups in the rates of various causes of death,

including CVD [15] as well as with life-expectancy [23].

The mechanisms whereby disadvantage influences cardiovascular disease are complex and

may include: social relationships; access to medical resources; access to healthy or unhealthy

foods; harmful behavior such as smoking; inadequate or inappropriate diet; and polluted

atmospheric conditions.

Other important predictors and potential confounding

In statistical studies of exposure-response associations we need to control for other important

predictors, which are unrelated to the exposure of interest, but explain some variability in the

outcome and so reduce the standard errors on the estimated parameter. It is also important to

assess the potential for confounding by variables that might be associated with both the expo-

sure of interest and the health outcomes. An example that is relevant to the city of Canberra is

the location of medical and aged care facilities (including aged persons’ independent living

units, assisted living and high nursing home care). For instance Bynum et al found that there

were fewer hospitalizations when primary care was highly integrated into a retirement com-

munity [24]. It is also possible the socio-economic disadvantage indicators of the areas in

which these facilities are situated may be influenced by the location of these, which has poten-

tial to confound the statistical association between CVD and disadvantage.

In this study we explore the impact of the scale of spatial aggregation when describing the

spatial distribution of selected hospital admissions for CVD and examine the associations

socio-economic disadvantage has with these health outcomes.

Methods

Hospital admissions

Canberra is Australia’s capital city, in the Australian Capital Territory (ACT), with a popula-

tion of around 380,000 people [25]. Hospital admissions for acute care of CVD for residents of

Canberra between 1 January 2010 and 31 December 2012 were used from the Admitted

Patient Care Data (APCD) collection. This period was chosen to match up to the population

denominator data from the 2011 Census of Population and Housing conducted by the Austra-

lian Bureau of Statistics (ABS). The APCD database is maintained by the ACT Government

Health Directorate and records the date of admission, primary diagnosis for each episode of

care, type of care for each episode, age, sex and street address of residence for all admissions to

public hospitals.

All episodes of admission to acute care were selected from the database. Acute care episodes

are any cases where the patient is admitted (or transferred to) the hospital with the intent to

cure the condition or alleviate symptoms. CVD episodes were selected based on diagnosis data

which uses the 10th Revision of the International Classification of Diseases Australian Modifi-

cation (ICD-10-AM) system. We used the following two groupings: Primary diagnosis of Myo-

cardial Infarction (PMI) (ICD10 I21) and Primary diagnosis for Cardiovascular Disease

(PCVD) where the primary diagnosis was any of the circulatory diseases (ICD10 I00-I99). This

is consistent with the terminology used by the WHO Global Health Estimates project (http://

terrance.who.int/mediacentre/data/ghe/). PMI occurs when blood flow stops to a part of the

heart, and is commonly known as a ‘heart attack’.

To avoid artefactual inflation of admission counts by a few high-frequency patients we

excluded readmission episodes from the total counts of PMI if a subsequent admission for

myocardial infarction occurred within the same month of a prior admission for any person.
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Re-admissions were also excluded from the total count of PCVD if the person was admitted to

hospital within the same month with any CVD code as the primary diagnosis. Therefore each

person could only be counted once per month as an admission with primary diagnosis of PMI

or PCVD.

The hospital database was geocoded for the patient’s residential address by the ACT Gov-

ernment and released at SA1 level. Ethical approval was obtained (ACT Health Ethics Protocol:

ETH.11.14.310 and the University of Canberra Ethics Protocol: 12-158).

Spatial aggregation at varying scales

Statistical Area Level 1. The Statistical Area Level 1 (SA1) is one level larger than the

smallest census unit in the census boundaries of the Australian Statistical Geography Standard

(ASGS) [26]. The smallest unit is called a Meshblock (there is a very limited set of non-identifi-

able data published at that scale, such as total residents and land use class). Our study SA1s

contained between 110 to 1711 persons. There were 848 SA1s with a median area of 0.20

square km (range = 0.01 to 3.64), covering a total area of 257 square kilometers in southeastern

Australia.

Statistical Area Level 2. Statistical Area Level 2 (SA2s) are the next level up from SA1 in

the hierarchical set of spatial units of Australian census geography. SA2s generally represent

an equivalent size to an Australian Suburb (e.g. a distinct neighborhood of the city) [26]. Our

study SA2s contained between 344 to 15873 persons. There were 88 SA2s with a median area

of 2.47 square km (range = 1.09 to 11.34), with total extent of 257 square kilometers.

Index of relative socio-economic disadvantage

The SA1 and SA2 of residence was used to assign an area-level measure of socio-economic dis-

advantage using the ABS socioeconomic indexes for areas (SEIFA) index of relative socio-eco-

nomic disadvantage (IRSD) [27]. The IRSD is a composite measure of disadvantage indicators,

and consists of variables pertaining to income, education, employment and occupation (see S1

File for more information) [28]. We standardised the original data to Z-scores based on the fact

that SA1 values are known to have a national mean of 1,000 and standard deviation of 100. As

the principal components used to construct the index are arbitrary with respect to their sign

(positive or negative), we rescaled the index to improve intuitive interpretation. That is, we

gave more-disadvantaged areas positive scores, and less-disadvantage areas negative scores. At

the broader spatial level the SA2 scores were constructed from the population weighted average

of SA1 level scores [28], and these were then standardised. Therefore the SA2 level area indexes

were standardised around the national SA2 mean of 999 and standard deviation of 82.

Population denominators

The resident populations for each area at the 2011 census population were obtained from the

Australian Bureau of Statistics. The populations at SA1 level came from the Census Table-

Builder database and represent the count of persons usually resident in each area, by 5 year age

groups [29]. The SA2 level populations are the estimated resident population by 5 year age

groups for the areas at each year from the ABS model of population growth and decline (Esti-

mated Resident Populations 2001–2013, ABS Catalogue Number 3235.0).

Age-sex standardized rates

The outcome measure was age-sex-standardized incidence rates. We used the indirect stan-

dardization method. The rate ratio is the number of incident cases observed in an area (Oi)
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divided by an expected count (Ei). Indirect adjustment uses externally specified age-sex-spe-

cific rates found from a ‘standard population’. In our case Ei is estimated by multiplying the

age-sex specific population years-lived for each age/sex group (signified by the subscript jk) in

each small area (signified by subscript i) by the overall incidence rate in that age-sex group for

the entire population of Canberra 2010–2012.

Eijk ¼ Popijk � StandardRatejk ð1Þ

The standardised incidence rate ratio is then

RateRatioi ¼

P
Oijk

P
Eijk

ð2Þ

To account for the small numbers of hospitalization in some study populations we used

Empirical Bayes (EB) rate shrinkage to down-weight some standardized rate ratios dependent

on the weights estimated using Marshall’s global EB method from the ‘spdep’ R package [30].

Further information is in S1 File. When these were multiplied by the crude rate of the standard

population this gives the indirectly age-sex-standardized rates (per 1000 person-years-lived)

[19].

Medical and aged care facilities

To adjust for important nuisance parameters and potential confounding we included locations

of hospitals and aged care facilities. We classified small areas (both SA1 and SA2) as including

a medical facility if any of the component ABS Meshblocks within them was classed as a ‘Hos-

pital/Medical’ type [26].

Similarly, to identify areas which contain aged care facilities we used the Community Facil-

ity Information System data provided by the ACT Government Environment and Sustainable

Development Directorate. Any areas that contained a building with the class ‘Aged care’ were

identified.

Statistical analysis

Analyses were performed using R statistical language and environment version 3.2.5 (http://

www.r-project.org). We used penalized regression splines in Generalized Additive Models

(GAMs). We used the generalized cross-validation tool in the ‘mgcv’ package of R to automati-

cally estimate the appropriate curvature of these response functions [31]. The estimated opti-

mal smooth on the disadvantage term was derived from a single variable model, we then used

these in a secondary model to test the impact of controlling for potential confounding due to

the location of aged care or medical facilities, and residual spatial autocorrelation. Further

information is in the Additional file 1.

Results

Descriptive statistics

Between 2011 and 2013, there were a total of 1,365 admissions for PMI and 10,441 hospitaliza-

tions for any PCVD code (Table 1). The rate of admissions for both groups started to increase

from the ages of 40–45 and was highest for those over age 80. Hospitalization rates were con-

sistently higher for men than women across all ages, with men having a notably larger number

of admissions than women in the age groups between 45 and 79 years old (Fig 1).

In our selected study region there were approximately 350,000 resident persons followed

for three years, giving 1,056,834 person-years of followup. In the whole study population there
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was a crude incidence rate for PMI of 1.3 per 1000 person-years and 9.9 admissions per 1000

person-years for any PCVD cases. Additional descriptive statistics are in S1 File.

Spatial patterns

Primary diagnosis of Myocardial Infarction (PMI). The standardized incidence rate for

PMI varied between 0.05 and 17.02 per 1000 person years across SA1s. Variation captured at

Table 1. Total hospitalization episodes and populations (person-years-lived) for males and females, Canberra, 2010–2012.

Females Males Total

Age group PMI PCVD Population PMI PCVD Population PMI PCVD Population

0–4 0 29 32593 0 31 35243 0 60 67836

5–9 0 37 29923 0 35 31893 0 72 61816

10–14 0 48 29839 0 57 30663 0 105 60502

15–19 0 26 34931 0 30 37044 0 56 71975

20–24 0 48 46915 1 57 48800 1 105 95715

25–29 0 60 45538 1 69 47019 1 129 92557

30–34 1 77 40253 4 98 40373 5 175 80626

35–39 2 97 39219 10 124 38785 12 221 78004

40–44 9 137 38137 32 201 37300 41 338 75437

45–49 15 193 36818 66 300 35039 81 493 71857

50–54 24 244 35832 85 450 33739 109 694 69571

55–59 39 277 31394 115 610 29561 154 887 60955

60–64 35 291 27676 125 718 26507 160 1009 54183

65–69 51 397 19993 96 685 18841 147 1082 38834

70–74 53 481 14258 111 730 13160 164 1211 27418

75–79 54 527 10931 93 746 9123 147 1273 20054

80–84 84 579 8821 80 606 6469 164 1185 15290

85 and over 107 814 9311 72 532 4893 179 1346 14204

Total 474 4362 532382 891 6079 524452 1365 10441 1056834

PMI = Primary diagnosis of Myocardial Infarction, PCVD = Primary diagnosis of Cardiovascular Disease

https://doi.org/10.1371/journal.pone.0188161.t001

Fig 1. Age-specific rates by sex for a) Primary diagnosis of Myocardial Infarction (PMI) and b) Primary diagnosis of

Cardiovascular Disease (PCVD) admissions in Canberra, 2010–2012.

https://doi.org/10.1371/journal.pone.0188161.g001
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the SA2 level of aggregation was much less (1.12–1.43). The SA2s are usually large areas that

tend to ‘smooth’ the detail of the social and demographic data they portray. This effect can be

seen in Fig 2 where the age-sex-standardized rates are aggregated to the SA1 and SA2 levels.

The black outlines in both maps in Fig 2 are SA2, and were added to facilitate visual linking

between the two maps. The broad regional trend is picked up by the SA2s and we can see that

the north-western and far south areas have generally higher rates than the inner south areas.

However the SA1s show there is some fine detail pattern of high rates between the central east

and the southeast, and some heterogeneity in the north that is not displayed by the SA2s.

Primary diagnosis of Cardiovascular Disease (PCVD). Rates for PCVD at SA1 level var-

ied between 3.2–25.7 per 1000 person years, whereas at the lower resolution SA2 level esti-

mated rates varied between 7.2–13.1 per 1000 person years. The SA2 rates for PCVD shown in

Fig 3 display the age-sex-standardized rates aggregated to the SA1 and SA2 levels. The broad

regional trend is high in the north-western and inner-north. We can see that in the north-west

there is a particular cluster of higher rates, especially when compared with the inner-south.

The SA1s show this fine detail pattern of high rates most clearly. The far-south is higher than

the inner south, and overall there is more heterogeneity displayed by SA1s than by the SA2s.

Fig 2. Rates of Primary diagnosis of Myocardial Infarction (PMI) in SA1 (N = 848) and SA2 (N = 88). In Panel A additional boundaries

are shown for SA2 (black lines) to enable comparisons with Panel B.

https://doi.org/10.1371/journal.pone.0188161.g002
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Statistical associations

The SA1 level analysis identified an increasing relative risk of hospitalization for PMI with

increasing disadvantage, whereas the SA2 analysis does not (Fig 4). Fig 5 shows a similar pat-

tern wherein the SA1 level indicates an association but the SA2 level showed a curvilinear

form with no evidence that rates increased with higher disadvantage beyond the midrange.

Discussion

Comparison of rates across spatial scales

The rate of hospitalization for PMI and PCVD varied strongly at the SA1 level, but not at the

larger level (SA2). It can be seen from Figs 2 and 3 that the spatial distribution of hospitaliza-

tion rates was captured at the SA1 level of aggregation, implying that this level of geography

may be better for targeted planning and resource allocation purposes. Rate variation was not

captured as well when data were aggregated at SA2 level. This finding has clear implications

for effective targeting of resources and public health interventions. Furthermore, it challenges

the current practice of using even larger districts than SA2s for planning and allocation of pub-

lic health resources (e.g. the ABS Statistical Areas level 3—SA3).

Fig 3. Rates of Primary diagnosis of Cardiovascular Disease (PCVD) in SA1 and SA2. In Panel A additional boundaries are shown for

SA2 (black lines) to enable comparisons with Panel B.

https://doi.org/10.1371/journal.pone.0188161.g003
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Assessing the impact of socioeconomic disadvantage

When aggregation was considered at SA2 level, the association of rates of hospitalization for

PCVD with socioeconomic disadvantage only captured a socioeconomic gradient below the

middle range of disadvantage, where areas with lower disadvantage had lower rates of

Fig 4. Fitted terms (solid line) and 95% confidence (dashed lines). Disadvantage increases to the right-hand side of the graph. The

association between age-sex standardized rates of admissions for Primary diagnosis of Myocardial Infarction (PMI) and Disadvantage Z-

scores are shown at the scale of A) Statistical Area 1 (Note: axes have been truncated to focus on the data) and B) Statistical Area 2.

https://doi.org/10.1371/journal.pone.0188161.g004

Fig 5. Fitted terms (solid line) and 95% confidence (dashed lines). Disadvantage increases to the right-hand side of the graph. The

association between age-sex standardized rates of admissions for Primary diagnosis of any Cardiovascular Disease (PCVD) and

Disadvantage Z-Scores are shown at the scale of A) Statistical Area 1 (Note: axes have been truncated to focus on the data) and B)

Statistical Area 2.

https://doi.org/10.1371/journal.pone.0188161.g005
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hospitalization. In contrast, when the exposure-response association was considered at the

SA1 level there appears to be greater effect (e.g. slope). In addition the SA1 level curve

increases as the levels of disadvantage increase above the mid-range, whereas at SA2 level the

curve is virtually level for PMI (Fig 4) and plateaus for PCVD rates (Fig 5). The greater scatter

of data points shown in both plots for SA1 give better indication of the ‘true’ picture (e.g. the

drivers are multifactorial and create a wide range of health outcomes in small areas, but the

socio-economic disadvantage is an important variable).

Increased variation captured at higher spatial resolution

It can be seen from Figs 3 and 5 that the variation captured at the SA1 level is much higher

than that at the SA2 level. Some of this increased variance will undoubtedly be ‘noise’ intro-

duced by random events that are more influential on rate calculations where the underlying

population denominators are small. Most of the random noise due to high variance/small

numbers is smoothed through spatio-temporal aggregation and Bayesian rate shrinkage. On

the other hand, much of this variation is true signal variation related to the exposure to the dis-

tribution of the socio-economic risk factors, or to other important risk factors (which may be

unrelated to the factor under study). So long as these are not confounders on the putative risk

factor of study (i.e. disadvantage), then including these covariates may improve model fit but

will not necessarily help the interpretation of the model parameters.

Another factor that is important, from the statistical modelling perspective, is the loss of sta-

tistical power associated with a smaller number of spatial units for inclusion in the analysis at

the SA2 level. Thus, despite the presence of added variance (possibly noise) at the smaller

scale, the increased signal from a ‘truer’ representation of the exposure measures, and

increased power from a greater number of sampling units, combine to give a better overall

representation of the available data.

Improving population health

On the basis of the research reported here for cardiovascular diseases, which are highly preva-

lent in this community, descriptive analysis and reporting should be carried out at the SA2

level since this captures the broad distribution of disease rates quite well. However, for explan-

atory or inferential studies it may then be necessary to drill down to smaller level to delineate

those areas for specific focus, either to understand the likely exposures or to target resources

for intervention.

Health protection and reducing health inequalities should be seen as linked measurement

and policy issues. High spatial resolution analysis is essential to uncover local risk-related

behaviors and exposures and to enable effective targeting of resources and monitoring of the

impact of interventions. Since only limited research to date has been conducted in Australia

using robust small area analyses, little is known on how levels of (and differentials in) health

outcomes at the very local level of geography track over time or how they may be modified by

targeted resources or public health policy changes or local health system performance.

Reductions in cardiovascular disease mortality and morbidity in developed nations have

been attributed to changes in behaviors at the population level leading to better prevention

and better treatments [32, 33]. However, there is evidence that these gains have not been

shared equitably across populations. Differences in socioeconomic circumstances involving

factors such as psychosocial risks, the physical environment, lifestyle choices, commercial

exploitation, access to and quality of health care, stress and poor living and working environ-

ments may themselves cause poor health. If further gains are to be made in reducing the

impact of CVD, and other non-communicable diseases, on population health, social and
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economic differences will need to be addressed alongside more effective dietary, lifestyle and

healthcare interventions. In addition to these challenges, service delivery is becoming increas-

ingly fragmented in many developed nations with the privatization of many aspects of service

delivery as well as devolving many public health responsibilities to local governments. Under

such a scenario, it is even more important that key decisions are driven by (and their effects

are monitored by) rigorous comparative analysis of health outcomes at high spatial resolution

(small area) to ensure that resources are allocated effectively and fairly to benefit public health

[34, 35].

Strengths and limitations

Strengths. Most importantly, the high spatial resolution of the data was a key strength of

this mapping and modelling study. In addition our model fitting used Bayesian rate shrinkage

to derive robust small-area incidence rate estimates. These methods give the best available

account of age-sex group differences at such small scale.

Limitations. A key limitation of this study is the potential cross-level fallacy (e.g. the so-

called ‘ecological’ fallacy), but this also applies to all aggregate-level data modelling. This is the

problem of using associations between area-level indicators of disadvantage and cardiovascu-

lar disease rates to infer associations at individual level. This weakness is unavoidable in this

study design, but the risks from this can be mitigated by maintaining a conservative attitude to

inferences, and assessing the consistency of findings with other studies, the coherence of find-

ings with the generally known facts of the ecology of disease, the plausibility of the mechanisms

postulated, and assessment of a dose-response gradient (along with the other elements of Brad-

ford Hill’s criteria for causal inference [36]).

In our study we applied a conservative and cautious statistical modelling approach using

penalized regression to estimate the area level relationships. We readily acknowledge that fur-

thering our understanding would need to assess the importance of individual level processes

including exposure and susceptibility. The individual level however is not available for analysis

using these administrative data, given the confidentiality concerns currently restricting access

to high resolution data. Because of this, aggregate-level data is often used in spatial epidemiol-

ogy to describe the geographical contexts for studies of morbidity rates and potential drivers.

Another limitation is that the effects of in- and out- migration, and daily movements

between areas is not captured precisely in the data available, which may lead to misclassifica-

tion and error in rate calculations. However, the 2011 Census statistics for the SA1s in our

analysis show that the majority of residents had not changed address from 2010 (with the SA1

mean of 82% of people with same place of residence).

Such small-area analysis is only feasible where exposures and event rates are sufficiently

high to be detectable within small geographical areas over relatively short time frames (e.g. lim-

ited person years of follow up). Again, there is limited individual level data available to support

alternative analyses.

Furthermore, the analysis made use only of public hospital data because that was all that

were available. However, it is likely that public hospitals account for only 60% of admissions

on average across the population, based on the statistics from other jurisdictions [37]. The

Australian Institute of Health and Welfare have found that in 2009–2010 the ratio of hospitali-

zations for patients living in disadvantaged areas of public hospitals to private hospitals was

2.85 (291 per 1000 compared to 102 per 1000 respectively), whereas in the least disadvantaged

areas the ratio of residents who utilized public hospitals to those using private hospitals was

1.51 (rates of 221 per 1000 compared with 146 per 1000 respectively) [37]. Therefore this bias

is less likely to influence the hospital utilization patterns in the most disadvantaged areas, and
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our finding of increasing relative risks associated with increasing socio-economic disadvantage

above the midrange (shown by our SA1 level analysis) may not be affected. But further

research is required to ascertain how robust these findings are.

Conclusion

The choice of scale of aggregation is critically important in the spatial epidemiology of highly

prevalent non-communicable diseases such as CVD. It is notable that the exposure-response

association for PCVD at the SA1 level is somewhat curved with a slight plateau at high disad-

vantage. However it is also apparent that, compared to the SA2 data, there are many SA1s with

high disadvantage scores (above the national average). The fact that the curve does continue

upward from the mid-range in the SA1 analysis provides more compelling evidence that there

is high risk of CVD hospitalization related to socio-economic disadvantage in Canberra.

When data were aggregated at the high spatial resolution SA1 level, estimated age-sex stan-

dardized rates of any primary diagnosis CVD hospital admissions across the small areas varied

much more than when they were aggregated at SA2. This suggests two things: 1) the primary

drivers of CVD may be highly local i.e. in close proximity to individual residences in the most

exposed areas and 2) aggregation to a larger geographic scale may smooth localized variation

within the larger area, effectively attenuating ‘signal’ in the data.

This loss of signal becomes vitally important when one is interested in identifying or deter-

mining the role of potential explanatory factors in the development of non-communicable dis-

eases. In this study we have examined the relationship of rates of hospital admissions for CVD

with socio-economic disadvantage. Effective loss of signal (loss of statistical power) when

aggregating at SA2 level meant that we were barely able to detect any potential influence of dis-

advantage on hospitalizations for myocardial infarction and only effects of low to moderate

disadvantage on hospital admissions rates due to any cardiovascular disease. In contrast, when

data were aggregated at the smaller SA1 level, the influence of disadvantage could be detected

across the full range. If true, and replicated elsewhere, these findings have major implications

for the scale of data collection for surveillance of highly prevalent non-communicable diseases.
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