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Abstract

Background: The integration of large-scale drug sensitivity screens and genome-wide experiments is changing the
field of pharmacogenomics, revealing molecular determinants of drug response without the need for previous
knowledge about drug action. In particular, transcriptional signatures of drug sensitivity may guide drug
repositioning, prioritize drug combinations, and point to new therapeutic biomarkers. However, the inherent
complexity of transcriptional signatures, with thousands of differentially expressed genes, makes them hard to
interpret, thus giving poor mechanistic insights and hampering translation to clinics.

Methods: To simplify drug signatures, we have developed a network-based methodology to identify functionally
coherent gene modules. Our strategy starts with the calculation of drug-gene correlations and is followed by a
pathway-oriented filtering and a network-diffusion analysis across the interactome.

Results: We apply our approach to 189 drugs tested in 671 cancer cell lines and observe a connection between
gene expression levels of the modules and mechanisms of action of the drugs. Further, we characterize multiple
aspects of the modules, including their functional categories, tissue-specificity, and prevalence in clinics. Finally, we
prove the predictive capability of the modules and demonstrate how they can be used as gene sets in

conventional enrichment analyses.

Conclusions: Network biology strategies like module detection are able to digest the outcome of large-scale
pharmacogenomic initiatives, thereby contributing to their interpretability and improving the characterization of the

drugs screened.

Background

Gene expression profiling has become a mainstay ap-
proach to characterize cell properties and status, unveil-
ing links between gene activities and disease phenotypes.
Early efforts were channeled into discovering transcrip-
tional signatures that are specific to a disease state. This
work involved the comparison of a relatively small num-
ber of diseased and healthy samples [1]. Although pro-
viding a rich account of disease biology, these studies
have failed to yield better drug therapies, as causality
and response to drug perturbations cannot be inferred
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directly from two-state (diseased vs. healthy) differential
gene expression analysis [2, 3]. To address this issue, ini-
tiatives have flourished to profile the basal gene expres-
sion levels of hundreds of cell lines, together with their
response to treatment over an array of drug molecules
using a simple readout such as growth rate [4—7]. Pro-
vided that the panel of cell lines is large enough, this ap-
proach allows for a new type of gene expression analysis
where basal expression levels are correlated to drug re-
sponse phenotypes. A series of recent studies demon-
strate the value of this strategy for target identification,
biomarker discovery, and elucidation of mechanisms of
action (MoA) and resistance [8—13].

The largest cell panels available today are derived from
cancerous tissues, since a crucial step towards personal-
ized cancer medicine is the identification of transcrip-
tional signatures that can guide drug prescription.
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However, current signatures are composed of several
hundred genes, thereby making them difficult to inter-
pret, harmonize across platforms, and translate to clin-
ical practice [14-16]. Recent assessment of sensitivity
signatures for over 200 drugs [9] revealed that key genes
include those involved in drug metabolism and trans-
port. Intended therapeutic targets, though important, are
detected in only a fraction of signatures, and cell line tis-
sue of origin has been identified as a confounding factor
throughout the signature detection procedure. In prac-
tice, the length of the signatures largely exceeds the
number of sensitive cell lines available for each drug,
which often vyields inconsistent results between cell
panels from different laboratories [14]. The current chal-
lenge is to filter and characterize transcriptional signa-
tures so that they become robust, informative, and more
homogeneous, while still retaining the complexity (hence
the predictive power) of the original profiles [17].

Network biology offers means to integrate a large
amount of omics data [18]. Most network biology capi-
talizes on the observation that genes whose function is
altered in a particular phenotype tend to be
co-expressed in common pathways and, therefore,
co-localized in specific network regions [19]. Following
this principle, it has been possible to convert
genome-wide signatures to network signatures, or mod-
ules, that are less noisy and easier to interpret [20].
Raphael and co-workers, for instance, developed an algo-
rithm to map cancer mutations on biological networks
and identify “hot” regions that distinguish functional
(driver) mutations from sporadic (passenger) ones [21].
Califano’s group combined gene expression data with
regulatory cellular networks to infer protein activity [22].
Overall, network-based methods come in many flavors
and offer an effective framework to organize the results
of omics experiments [23].

While many genes and proteins have enjoyed such a
network-based annotation (being circumscribed within
well-defined modules such as pathways and biological
processes), drug molecules remain mostly uncharacter-
ized in this regard. For a number of drugs, the mechan-
ism of action is unclear [3] and off-targets are often
discovered [24]. Recent publications of drug screens
against cancer cell line panels, and the transcriptional
signatures that can be derived from there, provide a
broader view of drug activity and enable the full imple-
mentation of network biology techniques. Here we
undertake the task of obtaining and annotating tran-
scriptional modules related to 189 drugs. We show how
these modules are able to capture meaningful aspects of
drug biology, being robust to inherent biases caused by,
for example, the cell’s tissue of origin, and having a tight
relationship to mechanisms of action and transportation
events occurring at the membrane. Finally, we perform a
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series of functional enrichment analyses, which contrib-
ute to a better understanding of the molecular determi-
nants of drug activity.

Methods

Data preparation and drug-gene correlations

We collected gene expression and drug response data
from the GDSC resource (https://www.cancerrxgene.
org). We first discarded those genes whose expression
levels were low or stable across cell lines (Add-
itional file 1: Figure S1A). To this end, we analyzed the
distribution of basal expression of each gene in every
CCL and filtered out those with an expression level
below 4.4 (log2 units) across the panel (see Additional
file 1: Figure S1B for a robustness analysis). Regarding
drug response data, GDSC provides measurements of
cell survival at a range of drug concentrations (area
under the dose-response curve (AUC)). Since this meas-
ure is inversely proportional to drug sensitivity (i.e., the
more sensitive the cell, the shorter its survival), we used
the 1-AUC as a measure of potency. Thus, positive cor-
relations denote drug sensitivity caused by gene overex-
pression while wnegative correlations indicate that
sensitivity is associated with gene underexpression.

Recent studies report a confounding effect of certain
tissues in the global analysis of drug-gene correlations
[9]. In order to identify these potential biases in our
dataset, we performed a principal component analysis
(PCA) on the matrix of raw drug-gene correlations
(Pearson’s between 1-AUC and gene expression
units). Then, we correlated the loadings of the first PC
with gene expression values for each CCL. Finally, we fil-
tered out CCLs belonging to tissues that were strongly
correlated to the drug-gene correlation profiles (Add-
itional file 1: Figure S2A). We removed leukemia, mye-
loma, lymphoma, neuroblastoma, small cell lung cancer
(SCLC), and bone CCLs. In addition, we considered only
drugs with sensitivity measurements available for at least
400 CCLs, as recommended by Rees et al. [9].

After this filtering process, we recalculated, for each
drug-gene pair, the Pearson’s correlation between basal
gene expression and 1-AUC drug potencies across CCLs.
We applied Fisher’s z-transformation to the correlation
coefficients in order to account for variation in the num-
ber of CCLs available for each drug [25]. Overall, we ob-
tained positive and negative drug-gene correlations for
217 drugs and 15,944 genes across a total of 671 CCLs.
Drug-gene correlations (z.,,) beyond + 3.2 were consid-
ered to be significant (Additional file 1: Figures S1C and
S1D shows that this cutoff is a robust choice).

Frequently correlated genes
For each gene, we counted the number of correlated
drugs (z., beyond +3.2) and inspected the resulting
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cumulative distribution (Additional file 1: Figure S3).
Genes at the 5% end of the distribution were considered
to be “frequently correlated genes” (FCGs). We found
869 positive and 799 negative FCGs, which were re-
moved from further analyses. Finally, we performed en-
richment analyses on those genes using the Gene
Ontology database [26] and the DAVID toolbox (https://
david.ncifcrf.gov/summary.jsp) (hypergeometric tests).

Tissue-specific correlations

First, we split the CCL panel into sets of CCLs belonging
to the same tissue. We then calculated drug-gene corre-
lations (z.,;) separately for each of the 13 tissues repre-
sented in our dataset. In order to verify that measures of
positively correlated genes (PCGs) and negatively corre-
lated genes (NCGs) were consistent across tissues, we
calculated the median z., across tissues for each
drug-PCG/NCG pair. In general, tissue-specific correla-
tions had the same “direction” (i.e., same sign of z.,) as
the global correlation used throughout the study (Add-
itional file 1: Figure S4A, left panel).

Drug-target correlations

We obtained drug targets from the GDSC resource (dis-
ambiguating them with DrugBank [27], when necessary).
We assigned at least one target to 202 of the 217 drugs.
We focused on the z., correlation of the targets to
check whether target expression (positively) correlates
with drug sensitivity. When more than one target was
annotated per drug, we kept the maximum correlation.
To validate the statistical significance of this measure,
we randomly sampled genes (corresponding to the num-
ber of known targets per drugs; here again, we kept the
maximum correlation). This process was repeated 1000
times for each drug. The mean and the standard devi-
ation of this null distribution were used to derive a
z-score, making results comparable between drugs.

Drug module detection

After removing frequently correlated genes from the list
of drug-gene correlations, we kept 182 [median; Q1: 84,
Q3: 372] positively and 122 [median; Q1: 41, Q3: 337]
negatively correlated genes (PCGs, NCGs) per drug. Fur-
ther, we used correlation values (z,) to run a gene-set
enrichment analysis (GSEA) [28] for each drug and iden-
tify the genes that participate in enriched Reactome
pathways [29, 30]. We only considered Reactome path-
ways composed of at least 5 genes. Then, for each drug,
we kept the significantly correlated genes found in any
of the enriched pathways (P value < 0.01). The resulting
GSEA-filtered list of genes retained 100 [median; Q1: 49,
Q3: 277] positive and 77 [median; QI: 30, Q3: 221]
negative correlations per drug. Then, taking the z.,
values as input scores, we submitted the GSEA-filtered
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list of genes to HotNet2 [31], using a high-confidence
version of STRING [32] (confidence score >700). We
ran HotNet2 iteratively, keeping the largest module and
removing its genes for the next iteration, until the mod-
ules had fewer than 5 genes or were not statistically sig-
nificant (p value >0.05). To recall strong drug-gene
correlations “proximal” to the drug modules (missed,
most likely, by the incomplete coverage of Reactome),
we used the DIAMOnD module-expansion algorithm
[29]. We considered only genes that (i) were correlated
to the drug response, (ii) were not present in any of the
Reactome pathways, and (iii) were in the top 200 closest
genes to the module, according to DIAMOnD (this cut-
off was proposed by the authors of DIAMOnD based on
orthogonal functional analyses). Hence, we obtained at
least one positively correlated module for 175 of the
drugs (48 genes [median; Q1: 23, Q3: 83]) and one nega-
tively correlated module for 154 of the drugs (40 genes
[median; Q1: 21, Q3: 78]). Robustness analysis of this
procedure is found in Additional file 1: Figure S1D. A
GMT list of the drug modules can be found in Add-
itional file 2. The correlation values of the genes in the
drug modules are available in Additional file 3.

Distances between drug targets and modules

DIAMOnD [29] provides a list of genes sorted by their
network-based proximity to the module. Accordingly,
we retrieved from the STRING interactome the top clos-
est 1450 genes (~ 10% of the largest connected compo-
nent of the network) for every drug module. We then
checked the ranking of drug targets in the resulting
DIAMOnD lists, (conservatively) taking the median
value when more than one target was available. To as-
sess the proximity of drug targets to the modules, we
measured distances to three different sets of random
proteins. The first random set corresponded to the
STRING proteome. For the second, we collected all
genes defined as Tclin or Ichem in the Target Central
Resource Database [33] (i.e., “druggable proteins”). Fi-
nally, the third random set included all pharmacologic-
ally active drug targets reported in DrugBank (https://
www.drugbank.ca/).

Distances between modules

We calculated distances between positively and nega-
tively correlated modules separately using the network
distance proposed by Menche et al. [34]. This distance
measure is sensitive to the number of genes (size) in-
cluded in the modules. To normalize this measure, we
devised the following procedure. First, we grouped drug
modules on the basis of their size. Then, for each mod-
ule, we calculated the distribution of shortest distances
from each gene to the most central one [35]. We used
this distribution to sample random modules from the
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network. When the distribution constraint could not be
fully met, we used the DIAMOnD algorithm [29] to re-
trieve the remaining genes (50% of the genes at max-
imum). We repeated this process to obtain 10 random
modules of each size. Next, we distributed the random
modules into ranges (intervals) of 5 (i.e., from 10 to 14
genes, from 15 to 19, etc; 50 random modules per inter-
val). Then, for each pair size, we randomly retrieved 100
pairs of modules and calculated the network-based dis-
tance between them. The mean and standard deviation
of the distances at each pair size were used to normalize
the observed distances, correspondingly (z-score
normalization) (we checked that 100 random pairs were
sufficient to approximate the mean and standard devi-
ation of the population). The more negative the network
distance (dye), the more proximal the modules are. We
provide the network distances as an Additional file 4.

Drug response prediction using drug modules
We performed drug response predictions in the GDSC
dataset by using drug modules (only first PCMs and
NCMs, to make results comparable between drugs). We
devised a simple GSEA-like predictor in which CCLs
were evaluated for their up-/downregulation of the mod-
ules, correspondingly. To this end, we first normalized
the expression of each gene across the CCL panel
(z-score). Then, for each drug, we ranked CCLs based
on the GSEA enrichment scores (ES), taking drug mod-
ules as gene sets. To evaluate the ranking, we chose the
top 25, 50, and 100 CCLs based on the known drug sen-
sitivity profile. Performance was evaluated using the
AUROC metric. Results were compared to those ob-
tained with positively and negatively correlated genes
(PCG, NCGQG) from the full signatures (z.,, beyond * 3.2).
To check whether modules derived from GDSC
generalize to other CCL panels, we applied the same
procedure to the Cancer Therapeutics Response Portal
(CTRP) (https://ocg.cancer.gov/programs/ctd2/data-por-
tal). As done with the GDSC panel, we removed all
CCLs derived from neuroblastomas, hematopoietic,
bone, and small cell lung cancer tissues, leaving a total
of 636 CCLs, 397 in common with our GDSC panel (67
drugs in common). Drug response predictions for CTRP
were performed as detailed above. We used the best ES
among all modules associated with the drug. In addition,
we did the analysis using CCLs exclusive to CTRP (ie.,
not shared with the GDSC panel).

Module enrichment in Hallmark gene sets

We downloaded the Hallmark gene set collection from
the Molecular Signature Database (MSigDB) of the
Broad Institute http://software.broadinstitute.org/gsea/
index.jsp). We evaluated each gene set independently
using a hypergeometric (Fisher’s exact) test (first and
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second modules were merged, when applicable; the gene
universe was that of GDSC). Enrichments can be found
in the Additional file 5.

Drug module enrichments in the TCGA cohort

We downloaded gene expression data (median z-scores)
for 9788 patients and 31 cancer tissues from the Pan-
Cancer Atlas available in the cBioPortal resource (http://
www.cbioportal.org). “Presence” or “expression” of the
module in each patient was evaluated using GSEA (P
value <0.001), ensuring that the direction (up/down) of
the enrichment score corresponded to the “direction” of
the module (PCM/NCM). For a complete list of enrich-
ment results, please see Additional file 6 (results are or-
ganized by tumor type). Further, to identify associations
between drug modules and cancer driver genes, we
checked whether patients “expressing module of drug X”
(P value <0.001) were “harboring a mutation in driver
gene Y” (Fisher’s exact test). We considered 113 driver
genes (obtained as described in [36], using the “known”
flag) (Additional file 7).

Characterization of drug modules

In order to characterize drug modules from different
perspectives, we designed 21 features belonging to the
following categories: (i) General features derived directly
from the pharmacogenomics panel, (ii) Network features
related to network measures such as topological proper-
ties, and (iii) Biological features encompassing a series of
orthogonal analyses related to drug biology. For more
information, please see Additional file 8 and its corre-
sponding legend.

Results and discussion

The Genomics of Drug Sensitivity in Cancer (GDSC) is
the largest cancer cell line (CCL) panel available to date
[8]. This dataset contains drug sensitivity data
(growth-inhibition, GI) for 265 drugs screened against
1001 cell lines derived from 29 tissues, together with
basal transcriptional profiles of the cells (among other
omics data). Aware of the work by Rees et al. [9], we first
looked for the dominant effect of certain tissues in de-
termining associations between drug response and gene
expression. We found that CCLs derived from neuro-
blastoma, hematopoietic, bone, and small cell lung can-
cers may confound global studies of drug-gene
correlations due to their unspecific sensitivity to drugs
(Additional file 1: Figure S2A). These tissues were ex-
cluded from further analyses. We also excluded genes
whose expression levels were low or constant across the
CCL panel and drugs tested against fewer than 400
CCLs (see the “Methods” section for details). As a result,
we obtained a pharmacogenomic dataset composed of
217 drugs, 15,944 genes, and 671 CCLs.
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Following the conventional strategy to analyze phar-
macogenomic datasets, we calculated independent
drug-gene associations simply by correlating the expres-
sion level of each gene to the potency of each drug (area
over the growth-inhibition curve; 1-AUC) across the
CCL panel. We used a z-transformed version of Pear-
son’s , as recommended elsewhere [25]. Figure la
shows the pair-wise distribution of the z-correlation
(zeor) measures between the 15,944 genes and the 217
drugs. We validated the correlations identified in the
GDSC panel on an independent set by applying the same
protocol to the Cancer Therapeutic Response Portal
(CTRP) panel [9] (Additional file 1: Figure S4B). To
identify the strongest drug-gene associations, we set a
cutoff of +3.2 z,,, based on an empirical null distribu-
tion obtained from randomized data (see Additional file
1: Figure S1C and the “Methods” section). Please note
that this is a widely adopted procedure that is not de-
signed to detect single drug-gene associations (which
would require multiple testing correction) [37]. Instead,
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and similar to signature identification in differential gene
expression analysis, the goal is to identify sets of genes
that are (mildly) correlated with drug response. For each
drug, we obtained a median (Med) of 249 positively cor-
related genes [first quartile (Q1): 120, third quartile
(Q3): 584], and Med of 173 negatively correlated genes
[Q1: 59, Q3: 484] (Fig. 1b). Some drugs, like the BRAF
inhibitor dabrafenib, or the EGFR inhibitor afatinib, had
over 1500 positively and negatively correlated genes,
while others, like the antiandrogen Bicalutamide or the
p38 MAPK inhibitor Doramapimod, had hardly a dozen.
We observed that the number of genes that correlate
with drug response strongly depends on the drug class
(Fig. 1c), EGFR and ERK-MAPK signaling inhibitors be-
ing the classes with the largest number of associated
genes, and JNK/p38 signaling and chromatin histone
acetylation inhibitors being those with the fewest corre-
lations. This variation may be partially explained by the
range of drug potency across the CCL panel, as it is
“easier” to detect drug-gene correlations when the drug
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Fig. 1 Analysis of drug-gene correlations. a Observed drug-gene correlation distribution (purple) and randomized drug-gene correlation
distribution (blue) (random permutation of expression values). Vertical lines denote the percentiles 5 and 95 of each distribution. b The left panel
shows the “number of correlated genes per drug”, while the right panel shows the “number of correlated drugs per gene”. In the left panel, one
can read, for example, that there are about 25 drugs (y-axis) with at least 1250 correlated genes (x-axis). Likewise, in the right panel, one can read
that about 4000 genes (y-axis) are correlated to at least 10 drugs (x-axis). ¢ Number of positively (red) and negatively (blue) correlated genes
across drug classes. d Positively correlated targets (see the “Methods” section for details on the z-score normalization procedure of this correlation
measure). Each dot represents one drug-target correlation. A full account of drug-target annotations is provided in Additional file 8. The red
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receptor (EGFR) across tissues. In the upper plots, we show the drug sensitivity (1-AUC) across tissues. In the middle plots, we show basal gene
expression of EGFR across tissues. Bottom plots show the Afatinib/Gefitinib-EGFR correlation. The rightmost values refer to the correlation when
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has a wide sensitivity spectrum (Additional file 1: Figure
S5).

Similarly, analysis of independent drug-gene correla-
tions suggests that some genes are positively correlated
to many drugs. For instance, we found 5% of the genes
to be associated with more than 10% of the drugs (Fig. 1b
and Additional file 1: Figure S3). The transcripts of these
“frequent positively correlated genes” are enriched in
membrane processes, specifically focal adhesion (P value
<52%x107'%)  and extracellular matrix (ECM)
organization (P value <5 x 107'°), including subunits of
integrin, caveolin, and platelet-derived growth factors
(PDGFs). These genes determine, among others, the ac-
tivation of Src kinases [38—41]. Overall, ECM proteins
are known to play an important role in tumor prolifera-
tion, invasion, and angiogenesis [42, 43] and are often
involved in the upstream regulation of cancer pathways
[44] such as PI3K/mTOR [38-40], MAPK [39], and Wnt
signaling [45], and in cell cycle and cytoskeleton regula-
tion [46]. It is thus not surprising that ECM genes deter-
mine drug response in a rather unspecific manner.

On the other hand, “frequent negatively correlated
genes” are associated with small molecule metabolism
(xenobiotic metabolic processes, P value < 3.2 x 107%). In
this group, we found, among others, the cytochrome
CYP2J2 and the GSTK1 and MGST glutathione transfer-
ases, which are highly expressed in cancers and known
to confer drug resistance through their conjugating ac-
tivity [47-50]. Following other studies that reported
similar results [9], we checked for the presence of multi-
drug transporters (MDTs). Reassuringly, we found the
efflux pump transporter ABCC3 and a total of 27 differ-
ent solute carriers (SLCs) to be negatively correlated to
the potency of many drugs. Of note, we also found the
ABCA1 transporter and other 8 SLCs to be among the
frequent positively correlated genes, thus emphasizing
the key role of transporters and carriers in determining
drug potency.

All of the above suggests that systematic analysis of in-
dependent drug-gene correlations is sufficient to high-
light unspecific determinants of drug sensitivity and
resistance (i.e., frequent positively and negatively corre-
lated genes). However, while these determinants are rec-
ognized to play a crucial role, they do not inform
targeted therapies, as they are usually unrelated to the
mechanism of action of the drug. Thus, we assessed
whether measuring drug-gene correlations would also be
sufficient to elucidate drug targets, ie., we tested
whether the expression level of the target correlates with
the potency of the drug. Since most drugs had more
than one annotated target, to measure significance, we
randomly sampled 1000 times an equal number of genes
and derived an empirical z-score (see the “Methods”
section). Figure 1d shows that the expression level of
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most drug targets did not correlate with drug response.
In fact, only ~10% of the drugs had “positively corre-
lated targets” (z-score > 1.9, P value ~ 0.05). Remarkably,
the 6 EGF pathway inhibitors in our dataset were among
these drugs, as were 3 of the 4 IGF pathway and 3 of the
21 RTK pathway inhibitors. We noticed that the molecu-
lar targets for these pathways were usually cell surface
receptors, e.g., EGFR, IGFR, ALK, ERBB2, MET, and
PDGFRA. Overall, of the 20 drugs with positively corre-
lated targets, 13 bind to cell surface receptors, showing a
propensity of drug-gene correlations to capture mem-
brane targets (odds ratio = 15.13, P value = 1.9 x 107). In
Additional file 1: Figure S6, we show how this trend is
driven mostly by the over-expression of the target on the
cell surface.

The relatively small number of positively correlated
targets illustrates how the analysis of expression levels
alone is insufficient to reveal MoAs, especially when the
drug target is located downstream of the cell surface re-
ceptors in a signaling pathway. Some authors have sug-
gested that the tissue of origin of the cells might play a
confounding role in defining drug response signatures.
To address this notion, we repeated the calculation of
Pearson’s z.,, correlations separately for each of the 13
tissues in our dataset. In general, the trends observed at
the tissue level were consistent with the global trends,
although tissue-specific correlations were milder due to
low statistical power (i.e., few cell lines per tissue) (Add-
itional file 1: Figure S4A, right panel). Accordingly, we
confirmed that none of the tissues had a globally domin-
ant effect on the measures of drug-gene correlations
(Additional file 1: Figure S2B) and verified that certain
tissue-specific associations were still captured by the
analysis. For instance, going back to the targeting of
EGEFR (which was positively correlated with Afatinib and
Gefinitib), we show in Fig. le that the “global” correl-
ation can be partly attributed to non-small cell lung can-
cer (NSCLC) cells (z,, >1.96, P value <0.05). Indeed,
afatinib and gefitinib have an approved indication for
NSCLC. Both drugs correlate with EGFR also in the
aerodigestive tract, an observation reported in an inde-
pendent study dedicated to the discovery of drug-tissue/
mutation associations (ACME) [7]. Moreover, and con-
sistent with recent findings [51-54], gefitinib has a sig-
nificant correlation to EGFR in breast cancers, whereas
afatinib correlates with this target in pancreatic CCLs.
Afatinib, in turn, is associated with ERBB2 in breast
CCLs, as also confirmed by ACME analysis (Additional
file 1: Figure S4C).

From drug-gene correlations to drug modules

The previous analysis demonstrates that conventional
drug-gene correlations do not directly identify drug tar-
gets and suggests that standard transcriptional drug
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signatures contain unspecific and indirect correlations
that may mislead mechanistic interpretation. Recent ad-
vances in network biology precisely tackle these prob-
lems, as they can (i) filter signatures to make them more
functionally homogeneous and (ii) allow for the meas-
urement of network distances so that genes proximal to
the target can be captured and connected to it, even if
the expression of the target itself is not statistically asso-
ciated with the drug.

Hence, we set to mapping drug-gene correlations onto
a large protein-protein interaction (PPI) network, retain-
ing only genes that could be grouped in network mod-
ules (i.e., strongly interconnected regions of the
network). In the “Methods” section, we explain in detail
the module detection procedure. In brief, starting from
drug-gene correlations (Fig. 2A), we first filtered out
those genes whose expression was frequently (and
unspecifically) correlated to the potency of many drugs
(Additional file 1: Figure S3). This reduced the number
of associations to 182 [median; Q1: 84, Q3: 372] posi-
tively and 122 [median; Q1: 41, Q3: 337] negatively cor-
related genes per drug, respectively. Next, in order to
identify genes acting in coordination (i.e., participating
in enriched Reactome pathways [29, 30]), we adapted
the gene set enrichment analysis (GSEA) algorithm [28]
to handle drug-gene correlations (instead of gene ex-
pression fold-changes) (Fig. 2B). The resulting
GSEA-filtered list of genes kept 100 [median; Q1: 49,
Q3: 277] positive and 77 [median; Q1: 30, Q3: 221]
negative correlations per drug. After this filtering, we
submitted this list to HotNet2 [31], a module detection
algorithm that was originally developed for the identifi-
cation of recurrently mutated subnetworks in cancer pa-
tients (Fig. 2C; Additional file 1: Figure S7 shows the
importance of the Reactome-based filtering previous to
HotNet2). As a reference network (interactome) for Hot-
Net2, we chose a high-confidence version of STRING
[32], composed of 14,725 proteins and 300,686 interac-
tions. HotNet2 further filtered the list of genes corre-
lated to each drug, keeping only those that were part of
the same network neighborhood. Finally, we used the
DIAMOnD module expansion algorithm [29] to recover
strong drug-gene correlations that had been discarded
along the process. Although this step made a relatively
minor contribution to the composition of the modules
(less than 5% of the genes; Additional file 1: Figure S8),
we did not want to lose any strong association caused by
the limited coverage of the Reactome database (Fig. 2D).

Our pipeline yielded at least one “positively correlated
module” (PCM) for 175 of the 217 drugs (48 genes [me-
dian; Q1: 23, Q3: 83]). Similarly, we obtained “negatively
correlated modules” (NCMs) for 154 of the drugs (40
genes [median; Q1:21, Q3:78]). Thus, compared to the
original signatures, drug modules are considerably
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smaller (80% reduction) (Fig. 3a) and are commensurate
with manually annotated pathways in popular databases
(Additional file 1: Figure S9). For roughly two thirds of
the drugs, we obtained only one PCM and one NCM.
For the remaining drugs, a second (usually smaller)
module was also identified (Additional file 1: Figure
S10A). The complete list of drug modules can be found
in Additional file 2. Pair-wise drug-gene correlations of
the modules are listed as Additional file 3. Additionally,
the code of the module-detection pipeline is available at:
https://github.com/sbnb-lab-irb-barcelona/GDSC-drug-
modules.

Drug modules are tightly related to mechanisms of action
To assess the mechanistic relevance of drug modules,
we measured their distance to the corresponding drug
targets, i.e., we formulated the hypothesis that drug tar-
gets should be “proximal” to dysregulated network re-
gions. To this end, we used the DIAMOnD algorithm
again [29], this time to retrieve, for each drug, a list of
genes ranked by their proximity to the corresponding
drug module(s) (see the “Methods” section). Figure 3b
shows that drug targets are remarkably up-ranked in
these lists, making them closer to the drug modules than
any other set of random proteins, including druggable
genes and pharmacological receptors [33], which usually
have prominent positions in the PPI network due to the
abundant knowledge available for them. In 82% of the
PCMs, the corresponding targets were among proximal
proteins (top decile), which means a dramatic increase
in mechanistic interpretability compared to the 12.25%
of drugs that could be linked to their targets via conven-
tional analysis of drug-gene correlations.

A unique feature of drug modules is that
network-based distances can be natively measured be-
tween them [34]. We computed the distance between
drug modules pair-wise (Additional file 4) and grouped
them by drug class (Fig. 3c) (see the “Methods” section
and alternative statistical treatments in Additional file 1:
Figure S11). The diagonal of Fig. 3c clearly indicates that
drugs belonging to the same category tend to have
“proximal” modules (some of them in a highly specific
manner, like in the case of ERK-MAPK signaling cascade
inhibitors). Most interestingly, we could observe proxim-
ities between modules belonging to different drug clas-
ses. For instance, modules of drugs targeting RTK
signaling were “located” near to those of drugs affecting
genome integrity, in good agreement with recently re-
ported cross-talk between these two processes [55, 56].
Likewise, and as proposed by some studies [57-59],
IGFR-related drugs were “proximal” to drugs affecting
cell replication events such as mitosis, cell cycle, and
DNA replication.
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lines sensitive to a certain drug were enriched in the cor-
responding drug modules. We expect genes in PCMs to
be over-expressed in sensitive cell lines and those in
NCMs to be under-expressed. Analogously, we took the

Drug modules retain the ability to predict drug response

We have shown that drug modules are related to the
MoA of the drug, but the question remains as to the ex-
tent to which they retain the predictive capabilities of

the full transcriptional profiles/signatures. In the CCL
setting, gene expression profiles are valuable predictors
of drug response [5, 11, 60] and crucially contribute to
state-of-the-art pharmacogenomic models. To test
whether our (much smaller) drug modules retained pre-
dictive power, we devised a simple drug sensitivity pre-
dictor based on the GSEA score (see the “Methods”
section). In brief, given a drug, we tested whether cell

positively and negatively correlated genes from the full
drug-gene associations (signatures) and also performed a
GSEA-based prediction. To nominate a cell “sensitive”
to a certain drug, we ranked CCLs by their sensitivity
and kept the top n CCLs, n being 25, 50, or 100, based
on the distribution of sensitive cell lines provided by the
authors of the GDSC (Additional file 1: Figure S12A).
This simple binarization is, in practice, proportional to
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more sophisticated “sensitive/resistant” categorizations
such as the waterfall analysis [14], and it yields predic-
tion performance metrics comparable between drugs.
Additional file 1: Figure S13 suggests that, when ap-
plied to the GDSC, drug module enrichment analysis
can classify sensitive cell lines with high accuracy, espe-
cially for the top 25 sensitive cell lines (area under the
ROC curve (AUROC) 0.77), which is a notable achieve-
ment considering that drug modules are 80% smaller
than the original signatures. To assess the applicability
of our modules outside the GDSC dataset, we performed
an external validation with the CTRP panel of cell lines.
About 37% of our drugs were also tested in this panel.

In CTRP, drug sensitivity is measured independently of
GDSC, which poses an additional challenge for predic-
tion as a result of experimental inconsistencies [14]. Of
the CCLs, 397 are shared between GDSC and CTRP,
and gene expression data are also measured independ-
ently. We performed the GSEA-based sensitivity predic-
tion for all CTRP CCLs. Figure 3d and e show the
distribution of prediction performances for the 70 drugs,
and illustrative ROC curves corresponding to four drugs
(namely Daporinad, Vorinostat, I-BET-762 and Doce-
taxel), respectively. We found that, when focusing on
the top 25 sensitive CCLs, over a quarter of the drugs
had AUROC >0.7, including Daporinad. Acceptable
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(AUROC > 0.6) predictions were achieved for half the
cases (e.g., Vorinostat and I-BET-762), which is a com-
parable result to recent attempts to translate sensitivity
predictors between different CCL panels [61]. For the
remaining drugs, predictive performance did not differ
to random expectation (AUROC < 0.6) (e.g., docetaxel).
Notably, performance declined only slightly when con-
sidering CCLs that were exclusive to the CTRP panel
(i.e., not part of the GDSC dataset) (Fig. 3d, blue boxes).
The figure was comparable, if not better, to that ob-
tained using full signatures (PCGs and NCGs) (Add-
itional file 1: Figure S13, gray boxes). These observations
support previous recommendations to pre-filter pharma-
cogenomic data based on prior knowledge [62] (Add-
itional file 1: Figure S14).

Module-based characterization of drugs

Since drug modules are highly connected in biological
networks, they are expected to be (at least to some ex-
tent) functionally coherent and easier to interpret. Ac-
cordingly, we tested the enrichment of drug modules in
a collection of high-order biological processes (the Hall-
mark gene sets) available from the Molecular Signatures
Database (MSigDB) [63]. Additional file 1: Figure S15A
shows that the number of enriched Hallmark gene sets
depends upon the MoA of the drug. The results of the
enrichment analysis are given in Additional file 5 and as
an interactive exploration tool based on the CLEAN
methodology (Additional file 9; https://figshare.com/s/
932dd94520d4a60f076d) [64]. We chose three drug clas-
ses to illustrate how to read these results, namely drugs
targeting mitosis, RTK signaling inhibitors, and
ERK-MAPK signaling inhibitors (Fig. 4a).

Drugs targeting mitosis have modules enriched in cell
cycle and replication processes (Fig. 4a, top). Specifically,
genes related to the Myc transcription factor are
over-represented in three of the drug modules
(NPK76-11-72-1, GSK1070916, and MPS-1-IN-1). The
modules of these drugs have a rather distinct compos-
ition, NPK76-1I-72-1 having the largest coverage of
Myc-related genes and being, together with
MPS-1-IN-1, related to both Mycl and Myc2 processes.
In Additional file 1: Figure S15B, we show how, for these
two drugs, cell line sensitivity is dependent on Myc ex-
pression levels.

In contrast to mitosis inhibitors, drugs targeting the
RTK pathway are enriched in biological processes out-
side the nucleus (Fig. 4a, middle), among these hypoxia
and the epithelial-mesenchymal transition (EMT). Both
mechanisms are known to be associated with tyrosine
kinases [65, 66]. Interestingly, a subgroup of RTK inhibi-
tors (namely ACC220, CEP-701, NVP-BHG712, and
MP470) is characteristically associated with the
PI3K-AKT-mTOR signaling cascade. With the exception
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of NVP-BHG712, these inhibitors have the tyrosine kin-
ase FLT3 as a common target [67, 68]. Deeper inspection
of FLT3 inhibitors reveals module proximities to certain
PI3K  inhibitors  (e.g, = GDC0941), and the
PI3K-AKT-mTOR pathway is enriched in ERBB2 inhibi-
tors as well (Additional files 4 and 5).

As for ERK-MAPK pathway inhibitors, we observed a
total of 17 enriched Hallmarks, making this class of
drugs the one with most variability in terms of enrich-
ment signal of the modules (Fig. 4a, bottom; Additional
file 1: Figure S15A). However, while some processes like
apoptosis are detected in most of the drugs in this cat-
egory, others are target-specific. Oxidative phosphoryl-
ation (OXPHOS), for example, is represented in 3 of the
4 BRAF inhibitors. It is known that, while BRAF inhibi-
tors boost OXPHOS (leading to oncogene-induced sen-
escence), activation of glycolytic metabolism followed by
OXPHOS inactivation yields drug resistance [69, 70].
Similarly, VX11e (the only drug in our dataset targeting
ERK2) shows a distinctive enrichment in Myc-regulated
proteins, while FMK (the only drug targeting the Riboso-
mal S6 kinase) is enriched in p53 signaling pathway and
inflammatory response processes. All these observations
are consistent with previous studies [71-74], and Add-
itional file 1: Figure S15C demonstrates that the variabil-
ity observed between drugs in this class is driven mostly
by differences in the sensitivity profiles of the drugs.

Overall, the enrichment signal (i.e., the functional coher-
ence) of drug modules is substantially higher than that of
full signatures (PCGs and NCGs) (Fig. 4b,c). This facilitates,
in principle, the mechanistic interpretation of drug-gene
correlation results (Additional file 1: Figure S15D). We
show an illustrative module (CEP-701) in Fig. 4d.

We next examined whether our results could be ex-
tended beyond CCL panels. We found that drug mod-
ules are indeed identified (GSEA P value < 0.001) in the
majority of patients in the TCGA clinical cohort (Add-
itional file 1: Figure S15E; see the “Methods” section for
details). Closer inspection by TCGA tumor type further
supports the clinical relevance of our results (Additional
file 6). For example, drugs affecting MAPK signaling
(specifically, BRAF inhibitors, e.g., dabrafenib) have a
tendency to “occur” in skin cutaneous melanomas
(SKCM), as expected (Fig. 4e, blue). Of note, one PPAR
inhibitor (FH535) was also found enriched in a high
number of SKCM patients, in good agreement with
work by others proposing the use PPAR inhibitors to
treat skin cancer [75, 76]. Similarly, we observed an
abundance of EGFR inhibitor modules among pancreatic
cancers (PAAD) (Fig. 4e, green), in line with the known
crucial role of EGFR in pancreatic tumorigenesis [77,
78]. As for gliobastomas (GBMs) (Fig. 4e, purple), we
found two GSK3 inhibitors (CHIR-99021 and SB216763)
and one TNKS inhibitor (XAV939), all of them targeting
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WNT signaling, which is a potential mechanism against
this tumor type [79]. We also found one EGEFR inhibitor
(Gefitinib) and the PLK inhibitor NPK76-1I-72-1 men-
tioned above in the context of Myc enrichment analysis.
Both mechanisms have shown promise in EGFR- and
Myc-activated gliomas, respectively [80, 81]. Finally, we
encountered a more heterogeneous pattern in breast
cancer patients (BRCA) (Fig. 4e, orange), including
mechanisms supported by the literature, such as AKT,
IRAK1, and PLK3 inhibition [82—84].

Beyond the tumor-type level, we looked for modules
that were significantly enriched (odds ratio > 2, P value <
0.001) in patients harboring specific driver mutations (see
the “Methods” section). A full account of this enrichment

analysis is given in Additional file 7. We found, for in-
stance, that modules of drugs targeting ERK/MAPK sig-
naling are related to patients with mutations in HRAS and
BRAF [85, 86] and that, in turn, BRAF is (together with
KRAS) frequently mutated in patients “expressing” mod-
ules of EGER signaling inhibitors [87]. Taken together, and
although TCGA treatment response data is too scarce to
allow for prediction assessment [88], these results indicate
that the drug modules identified in CCLs hold promise for
translation to clinical practice.

Conclusions
Two limitations of large-scale pharmacogenomic studies
are the difficulty to reproduce results across screening
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platforms and the eventual translation to clinics, as it re-
mains unclear whether immortalized cells are able to
model patient samples [89]. Another important limita-
tion is the overwhelming number of drug-gene correla-
tions that can be derived from these experiments,
yielding signatures of drug sensitivity that are almost im-
possible to interpret. We have shown, for example, that
(i) the number of correlated genes is highly variable
across drugs, (ii) some genes are unspecifically corre-
lated to many drugs, and (iii) not all drug-gene pairs are
equally correlated in every tissue. We propose that con-
verting transcriptional signatures to network modules
may simplify the analysis, since network modules are
smaller, more robust, and functionally coherent. We
have validated this strategy by proving that drug re-
sponse modules, which are enriched in biological pro-
cesses of pharmacological relevance and exhibit
comparable predictive power to the full signatures, are
tightly related to the MoA. Further, we have character-
ized the modules extensively (Additional file 8 and e.g.,
Additional file 1: Figure S16) and confirmed their occur-
rence in the TCGA clinical cohort (Additional file 6 and
Additional file 10).

However, our approach does have some of the limita-
tions of ordinary transcriptomic analyses. Expression
levels of mRNA do not perfectly match protein abun-
dance, nor are they able to capture post-translational
modifications such as phosphorylation events, which are
key to some of the pathways studied here. Moreover,
wide dynamic ranges in gene expression and drug sensi-
tivity data are necessary for drug-gene correlations to be
captured, thus requiring, in practice, considerably large
panels of CCLs, which limits the throughput of the tech-
nique to a few hundred drugs. In particular, one cannot
precisely measure correlations within poorly represented
tissues, which in turn makes it difficult to disentangle
tissue-specific transcriptional traits that may be irrele-
vant to drug response. Our module-based approach par-
tially corrects for this confounding factor, although the
integration of other CCL omics data (such as mutations,
copy number variants and chromatin modifications)
could further ameliorate these issues and also provide
new mechanistic insights. In this context, systems biol-
ogy tools that learn the relationships between different
layers of biology are needed. Along this line, the release
of CCL screens with readouts other than growth inhib-
ition or proliferation rate [90, 91] will help unveil the
connections between the genetic background of the cells
and the phenotypic outcome of drug treatment.

All in all, transcriptomics is likely to remain the dom-
inant genome-wide data type for drug discovery, as re-

cent technical and statistical developments have
drastically reduced its cost [92]. The L1000
Next-generation Connectivity Map, for instance,
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contains about one million post-treatment gene expres-
sion signatures for 20,000 molecules [90]. These signa-
tures await to be interpreted and annotated, and more
importantly, they have to be associated with
pre-treatment signatures in order to identify therapeutic
opportunities. We believe that network biology strategies
like the one presented here will enable this connection,
encircling relevant “regions” of the signatures and meas-
uring the distances between them.

Additional files

Additional file 1: Contains supplementary figures 1-16. (PDF 2107 kb)

Additional file 2: Collection of drug modules in GMT format. The first
column indicates the name of the drug while the second column
indicates whether the module is a secondary module (“second_module”)
or not (“na"). From the third column onwards, there are the genes
composing the module (gene names). (XLSX 219 kb)

Additional file 3: Drug module-gene correlations across tissues.
(XLSX 2823 kb)

Additional file 4: Pair-wise distances between drug modules. Network
distances (dney) are normalized (z-scores): negative values denote
proximity. Secondary modules receive with the suffix “_md2". See the
“Methods” section for a detailed explanation of the network distance
measurement. (XLSX 1742 kb)

Additional file 5: Enrichment scores and p values between drug
modules (rows) and Hallmark gene sets (columns). For simplicity,
secondary modules were merged with the main ones. (XLSX 453 kb)

Additional file 6: Enriched (p value <0.001) drug module count across
31 TCGA cancer types, ie, number of patients where each module is
“expressed”. (XLSX 79 kb)

Additional file 7: Cancer driver and drug module associations (OR > 2, p
value < 0.001), based on patients “expressing/not-expressing” a module
and "having/not-having” a driver mutation in the TCGA cohort.

(XLSX 56 kb)

Additional file 8: We have chosen 21 features from network-based
measures and other functional data: (i) General features (columns 2-9).
They illustrate basic and general features derived from the omics panel.
We provide, for instance, the number of genes in each module, the aver-
age correlation among module genes and a measure of how “unique”
are those genes with respect to other modules. Besides, we annotate
drug classes and the AUROC predictions in both the GDSC and CTRP
panels. (i) Network features (columns 10-12). These include distances be-
tween module genes and drug targets, “connectivity” within module
genes (ie, distance between them), and proximity to genes from other
modules. (iii) Biological features (columns 12-21). A series of biological
features related to drug biology. We give most of them as simple propor-
tions of genes/proteins. Among others, we provide the cellular
compartmentalization of the genes, transcription factor specificity and
the proportion of disease-related and “druggable” genes inside the mod-
ule. Annotated drug targets are listed as well. (XLSX 156 kb)

Additional file 9: CLEAN cluster results using drug module genes and
Hallmark gene sets. We provide an additional table with the significant
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