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ABSTRACT: Two salt cocrystals, C31H34N4O8 (DDD) and C17H20N2O8 (MDD), were
synthesized and their structures were determined by single-crystal X-ray diffraction. DDD is
made up of one (C13H13O8)− anion, one (C9H11N2)+ cation, and one 5,6-dimethyl-1H-
benzo[d]imidazole molecule.MDD consists of one (C4H7N2)+ cation and one (C13H13O8)− anion.
DDD and MDD belong to the monoclinic, P21/c space group and triclinic, P-1 space group,
respectively. A 1D-chained structure of DDD was constituted by N−H···N and N−H···O
hydrogen bonds. However, a 1D-chained structure of MDD was bridged by N−H···O hydrogen
bonds. Their density functional theory-optimized geometric structures with a B3LYP/6-311G(d,p)
basis set fit well with those of crystallographic studies. By calculating their thermodynamic
properties, the correlation equations of C0p,m, S0m, H0

m, and temperature T were obtained. By
comparing the experimental electronic spectra with the calculated electronic spectra, it is found
that the PBEPBE/6-311G(d,p) method can simulate the UV−Vis spectra of DDD and MDD. In
addition, the fluorescence spectra in the EtOH solution analysis show that the yellowish-green
emission occurs at 570 nm (λex = 310 nm) for DDD and the purplish-blue emission occurs at 454
nm (λex = 316 nm) for MDD.

1. INTRODUCTION
As an important kind of N-heterocycle, imidazole and its
derivatives have been widely applied in various fields including
medicinal chemistry,1 bio-organic chemistry,2 fuel cells and
solar cells,3,4 mild steel corrosion,5 electrocatalysts,6 agricul-
ture,7 industry,8 organic light-emitting diodes (OLEDs),9,10

colorimetric and fluorometric chemosensors,11 and lumines-
cent materials.12 As another kind of N-heterocycle, benzimi-
dazole and its derivatives have also received significant
attention owing to their potential applications in fluorescent
sensors,13,14 fluorescent probes,15 chemodosimeters,16

OLEDs,17 and phosphorescent organic light-emitting diodes
(PhOLEDs).18

Recently, Meldrum’s acid plays an increasingly important
role in the synthesis of pharmacologically active compounds
such as dual inhibitors of AChE and BChE in the treatment of
Alzheimer’s disease,19 antibacterial agents,20 anticancer
agents,21 and antioxidant agents.22 In particular, C-5-
substituted derivatives of Meldrum’s acid have attracted
considerable interest owing to their structure and unique
properties. Different synthetic routes toward the C(5)-position
of Meldrum’s acid have been reported.23−26 Based on the
above facts, a series of C-5-substituted derivatives of
Meldrum’s acid were prepared by our group during the past
10 years.27−30 However, to the best of our knowledge, most of
the reported preparation methods are step by step, and each
intermediate needs to be isolated and purified. In this work,
two salt cocrystals containing Meldrum’s acid group are

available via a simple one-pot eco-friendly method. Further-
more, less theoretical calculations or vibrational analyses have
been carried out on Meldrum’s derivatives coupled with a
benzo[d]imidazole or imidazole nucleus. As a part of ongoing
research, two new compounds (Chart 1), 5,6-dimethyl-1H-
benzo[d]imidazol-3-ium5-((2,2-dimethyl-4,6-dioxo-1,3-diox-
an-5-ylidene)methyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-
ide,5,6-dimethyl-1H-benzo[d]imidazole (DDD) and 2-methyl-
1H-imidazol-3-ium5-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-
ylidene)methyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ide
(MDD), were obtained by reacting Meldrum’s acid with 5,6-
dimethyl-1H-benzo[d]imidazole and 2-methyl-1H-imidazole in
the mixture of trimethoxymethane and ethanol. Their crystal
structures, vibrational frequencies, thermodynamic properties,
and electronic spectra along with density functional theory
(DFT) or time-dependent DFT (TD-DFT) calculational
results are also reported.
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2. EXPERIMENTAL AND THEORETICAL METHODS
2.1. Physical Methods. IR data were obtained on a

Nicolet 5700 FT-IR Spectrometer. The UV−Vis absorption
and fluorescence spectra were collected on a TU-1901
spectrometer and an RF-5301PC fluorospectrophotometer,
respectively. The C, H, and N atoms of the two compounds
were recorded on an Elementar Vario EL III elemental
instrument. The NMR (1H and 13C) spectra in CDCl3 were
obtained on a Bruker AVANCE III HD instrument (400
MHz).
2.2. Preparation of Two Cocrystals. The synthetic

method of the two compounds was the same as that in our
earlier report.31 Briefly, a mixture of Meldrum’s acid (0.72 g, 5
mmol) and trimethoxymethane (0.635 g, 6 mmol) was
dissolved in EtOH (20 mL) and refluxed at 70 °C for 2−2.5
h. Then, 2-methyl-1H-imidazole (0.41 g, 5 mmol) was added
to the reaction solution and the mixture continued refluxing for
another 5 h. The solution was cooled, and the product was
filtered, washed, dried, and recrystallized at room temperature
in EtOH to collect red block-shaped crystals of MDD. Yield,
48.5%. Found: C, 53.62%; H, 5.38%; N, 7.41%. Calc. for
C17H20N2O8: C, 53.68%; H, 5.30%; N, 7.37%. m.p.: 172.6−
173.0 °C. FT-IR(KBr) cm−1: 1718, 1678 (C�O), 1456 (C−
N), 1275, 1190 (C−O). 1H NMR (400 MHz, CDCl3, δppm):
7.52 (s, 1H), 7.00 (s, 1H), 5.45 (s, 1H), 3.53 (s, 3H), 2.73 (s,
1H), 2.18 (s, 1H), 1.76 (s, 6H), 1.25 (s, 6H). 13C NMR (125
MHz, CDCl3, δppm): 150, 118, 101, 94, 26, 11.
The preparation method of DDD was the same as that of

MDD except that 5,6-dimethyl-1H-benzo[d] imidazole (0.73
g, 5 mmol) replaced 2-methyl-1H-imidazole (0.41 g, 5 mmol)
to get a red powder (DDD). Yield, 28.5%. m.p.: 173.8−174.5
°C. Found: C, 63.58%; H, 5.85%; N, 9.52%. Calc. for
C31H34N4O8: C, 63.04%; H, 5.80%; N, 9.49%. FT-IR(KBr)
cm−1: 1698, 1633 (C�O), 1449 (C−N), 1272, 1197 (C−O).

1H NMR (400 MHz, CDCl3, δppm): 14.23 (d, 1H), 9.11 (d,
1H), 8.78 (s, 1H), 7.68 (s, 3H), 5.35 (s, 1H), 3.09 (s, 6H),
2.44 (s, 6H), 2.20 (s, 3H), 1.94 (s, 6H), 1.25 (s, 6H). 13C
NMR (125 MHz, CDCl3, δppm): 150, 140, 134, 132, 115, 101,
94, 26, 19. Red block-shaped crystals appeared by using
solvents (v petroleum ether/v acetone = 1:1).
2.3. X-ray Diffraction Analysis of DDD and MDD. The

X-ray data of DDD and MDD were collected on a Spider
Rapid IP (Rigaku, Japan) detector. The molecular structures of
the two compounds were ascertained by SHELXL-2015 and
SHELXT-2015.32,33 The H atoms of the two compounds were
placed in calculated positions and refined using the riding
coordinates with C−H distances of 0.93−0.97 Å and N−H
distances of 0.86 Å. Uiso(H) = 1.2Ueq(C) for aromatic/amide
H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.
2.4. Computational Methods. DFT calculations of DDD

and MDD were performed with the Gaussian 0934 package
using a hybrid functional, namely, B3LYP or PBEPBE at the
basis set 6-311G(d,p).35,36 TD-DFT37,38 calculations were
used to predict the electronic spectra of the two compounds.
The calculated vibrational frequencies and electronic spectra
were obtained at the B3LYP/6-311G(d,p) level and the
PBEPBE/6-311G(d,p) level.

3. RESULTS AND DISCUSSION
3.1. Crystal Structures of the Two Salt Cocrystals. The

key parameters of the two salts are summarized in Table 1.
Their molecular structures with hydrogen atoms are shown in
Figure 1.
As shown in Figure 1, the molecular structure of DDD

includes one (C13H13O8)− anion, one (C9H11N2)+ cation, and
one 5,6-dimethyl-1H-benzo[d]imidazole molecule. However,
MDD consists of one (C13H13O8)− and one (C4H7N2)+. The

Chart 1. Synthetic Routes of MDD and DDD
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central C(7) atom is bridged by two Meldrum’s acid moieties,
which forms the (C13H13O8)− anion in the two compounds.
As shown in Table 2, bond lengths C7−C8 (1.384 (3) Å)

and C7−C3 (1.374 (3) Å) (DDD) and C6−C7 (1.380 (2) Å)
and C7−C8 (1.398 (2) Å) (MDD) are both larger than the
C�C double bond and shorter than the C−C single bond,
which form a conjugated system. Their bond angles (C3−
C7�C8 (128.81 (19)°) (DDD) and C6−C7�C8 (130.91
(13)°) (MDD)) also both resemble that of our earlier report
(131.19 (1)°).31 The two 1,3-dioxane rings of the
(C13H13O8)− anion in the two compounds are both in a
distorted envelope conformation, with their puckering
parameters as follows: for ring 1 (O1, O2, C1−C4) in

DDD: Q = 0.4616 (2) Å, Q (2) = 0.4360 (2) Å, Q (3) =
0.1518 (2) Å, ϑ = 109.2 (2)°, φ = 243.4 (2)°; ring 2 (O7, O8,
C8−C11) in DDD: Q = 0.4726 (2) Å, Q (2) = 0.4501 (2) Å,
Q (3) = 0.1440 Å, ϑ = 72.26 (2)°, φ = 299.9 (2)°; ring 3 (O3,
O4, C8−C11) in MDD: Q = 0.4372 Å, Q (2) = 0.4073 (2) Å,
Q (3) = 0.1589 (2) Å, ϑ = 111.31 (3)°, φ = 118.5595 (2)°;
ring 4 (O5, O6, C3−C6) in MDD: Q = 0.4728 (2) Å, Q (2) =
0.4529 (2) Å, Q (3) = 0.1357 (2) Å, ϑ = 106.68 (2)°, φ =
243.4468 (2)°.
In the crystal lattice of DDD, one kind of N−H···O

intermolecular interaction and two kinds of N−H···O and N−
H···N intramolecular interactions can be seen in Table 3. The
two Meldrum’s acid moieties of the (C13H13O8)− anion are
connected with the (C9H11N2)+ cation and the C9H10N2
molecule by N−H···O molecular interactions, and the
distances of N4···O4 and N1···O6 are 2.754 (2) and 2.743

Table 1. Crystal Structure Details for MDD and MDDa

compound

DDD MDD

formula C31H34N4O8 C17H20N2O8
CCDC 1817941 2014484
color/shape red/block red/block
Mr 590.62 380.35
crystal system, space group monoclinic, P21/c triclinic, P-1
a, b, c (Å) 13.2873(6),

16.9107(6),
14.3356(6)

9.936(2), 10.556(2),
10.880(2)

α, β, γ (°) 90, 103.2430(10), 90 113.33(3) 100.27(3),
112.39(3)

crystal size (mm) 0.1 × 0.08 × 0.04 0.25 × 0.18 × 0.10
wavelength (Å) 0.71073 0.71073
θ ranges (°) 3.06−27.484 3.476−27.47
V (Å3) 3135.5(2) 893.0(3)
Z 4 2
F(000) 1248 400
D (g·cm−3) 1.251 1.415
−h, h/−k, k/−l, l −17, 17/−20, 21/−

18, 18
−12, 12/−13, 13/−
14, 13

total, unique, and [I >
2σ(I)] reflections

30,494, 7196, 2955 8248, 3960, 3295

no. of reflections, restraints,
parameters

7196, 0, 396 3960, 0, 244

R(int) 0.0462 0.0393
R, wR, S 0.0541, 0.1311, 0.890 0.0539, 0.1383, 1.108
(Δρ)max, (Δρ)min (e/Å3) 0.290, −0.194 0.386, −0.356
aw = [σ2(Fo2) + (0.0902P)2]−1, where P = (Fo2 + 2Fc2)/3 for DDD; w
= [σ2(Fo2) + (0.0821P)2 + 0.1051P]−1, where P = (Fo2 + 2Fc2)/3 for
MDD.

Figure 1. ORTEP drawings of DDD and MDD with 30% probability
thermal ellipsoids.

Table 2. Main Bond Lengths (Å) and Bond Angles (°) by X-
ray and DFT Calculations for DDD and MDD

DDD MDD

Å Å

bond exp. calc. bond exp. calc.

C7−C8 1.384(3) 1.405 C7−C8 1.398(2) 1.399
C3−C7 1.374(3) 1.385 C6−C7 1.380(2) 1.383
O5−C9 1.214(3) 1.204 O7−C4 1.2096 (19) 1.202
O6−C11 1.222(3) 1.237 O8−C5 1.2211 (17) 1.223
O8−C11 1.350(3) 1.367 O6−C5 1.3559(19) 1.361
O8−C10 1.425(4) 1.446 O6−C3 1.4450(17) 1.448
O7−C9 1.367(3) 1.391 O5−C4 1.3634(2) 1.384
O7−C10 1.432(3) 1.418 O5−C3 1.433(2) 1.422
N (1)−C (14) 1.339(3) 1.324 N1−C14 1.374(3) 1.381
N (1)−C (15) 1.377(3) 1.389 N1−C16 1.330(2) 1.332

DDD MDD

angle (°) angle (°)
C3−C7−
C8

128.81(19) 132.18 C7−C8−
C10

117.72(12) 117.71

C7−C8−
C9

120.20(2) 116.72 C7−C8−
C9

122.06(13) 123.13

C7−C8−
C11

120.70(2) 124.30 C10−
C8−C9

119.07(12) 118.31

C9−C8−
C11

118.00(2) 118.29 C6−C7−
C8

130.91(13) 132.88

C7−C3−
C4

119.43(17) 116.12 C7−C6−
C5

117.84(12) 116.39

C7−C3−
C2

121.33(18) 124.57 C7−C6−
C4

123.61(13) 123.99

Table 3. Intra- and Intermolecular Interactions and π···π
Stacking Interactions of DDD and MDDa

D−H···A symmetry D···A (Å)
∠D−H···A
(°)

MDD
N1−H1···O2 1 − x, −y, 1 − z 2.723(5) 167
N2−H2···O7 1 − x, −y, −z 2.953 (6) 115
N2−H2···O8 −2 + x, y, −1 + z 2.833 (6) 157
Cg3···Cg3 −x, −y, −z 4.678(9)
DDD
N4−H4···O4 1 − x + 2, y + 1/2, −z + 3/2 2.754(2) 157.6
N1−H1···O6 intra 2.743(3) 171.3
N3−H3···N2 intra 2.685(2) 174.2

aC3 ring denotes ring N1, N2, and C14−C16.
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(3) Å, respectively. However, the (C9H11N2)+ cation and
C9H10N2 molecule are linked by N−H···N intramolecular
interactions, and the distances of N3···N2 are 2.685 (2) Å. The
bond angle of N3−H3···N2 is 174.2°. The 1D-chained
structure of DDD was connected by N−H···O intermolecular
interactions (Figure 2). The 1D chain further constitutes the
3D-net structure (Figure 3).

In the crystal lattice of MDD, there are three kinds of weak
N−H···O intermolecular interactions and one kind of π···π
stack interaction (Table 3). As shown in Figure 2, 2-methyl-
1H-imidazol-3-ium links 5-((2,2-dimethyl-4,6-dioxo-1,3-diox-
an-5-ylidene) methyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxin-5-ide
by N−H···O molecular interactions, and the distances of N
(1)···O (2), N (2)···O (8), and N (2)···O (7) are 2.723 (5),
2.833 (6), and 2.953 (6) Å, respectively. The distances of π···π
stack interactions are 4.678 (9) Å. The 1D-chained structure of
MDD was bridged by N−H···O intermolecular interactions
(Figure 2). The 3D-net network structure of MDD was also
formed by the above 1D chain (Figure 3).

3.2. Optimization of Molecular Geometry for MDD
and DDD. The optimized geometric structures of the two
compounds are carried out using DFT at the B3LYP/6-
311G(d,p) level, and the values are also listed in Table 2.
As shown in Table 2, most of the predicted bond lengths

and angles are slightly larger than the ones measured in the
experiments. It is likely because the experimental parameters of
the two compounds are described in the solid state; however,
the predicted values are obtained in the gas phase. Comparing
the predicted values with the experimental ones, it can be
found that the maximum differences in bond lengths and bond
angles are 0.025 Å and 3.60° (DDD) and 0.011 Å and 1.97°
(MDD), respectively, indicating that the predicted results are
satisfactory and the B3LYP/6-311G(d,p) level is suitable to
simulate the two crystal structures.
3.3. Thermodynamic Properties. Three main thermody-

namic properties (capacity (C0p,m), entropy (S0m), and
enthalpy (H0

m)) of MDD and DDD are listed in Table 4.
As shown in Table 4, all the values of thermodynamic
parameters increase with the temperature rising from 100.0 to
1000.0 K,39 which is mainly due to the enhancement of the
two molecular vibrations when the temperature rises.
The correlation equations of C0p,m, S0m, H0

m, and temper-
ature T are as follows:
MDD:

C T T R44.478 1.459 6.163 10 (

0.99975)

p m
0

,
4 2 2= + ×

=

Figure 2. 1D chain of DDD and MDD.

Figure 3. Packing diagrams of DDD and MDD with 30% probability
thermal ellipsoids.

Table 4. Thermodynamic Parameters of MDD and DDD

C0p,m (J/(mol K)) H0
m (kJ/mol) S0m (J/(mol K))

T (K) MDD DDD MDD DDD MDD DDD

100.0 186.78 286.25 11.08 17.16 438.20 609.60
200.0 308.42 482.93 35.97 55.80 605.89 869.59
298.1 422.22 669.05 71.84 112.34 750.32 1097.15
300.0 424.33 672.52 72.63 113.58 752.94 1101.29
400.0 532.50 852.01 120.57 189.96 890.13 1319.80
500.0 624.93 1006.90 178.59 283.14 1019.20 1527.07
600.0 700.64 1134.50 244.99 390.42 1140.06 1722.31
700.0 762.34 1238.87 318.24 509.26 1252.85 1905.29
800.0 813.14 1324.96 397.09 637.59 1358.07 2076.52
900.0 855.46 1396.75 480.58 773.77 1456.36 2236.85
1000.0 891.08 1457.19 567.96 916.55 1548.38 2387.22
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S T T R279.222 1.695 4.304 10 (

0.99989)
m

0 4 2 2= + ×

=

H T T R19.263 0.202 3.904 10 (

0.99944)
m

0 4 2 2= + + ×

=

DDD:

C T T R49.99478 2.391 9.882 10 (

0.99972)

p m
0

,
4 2 2= + ×

=

S T T R358.254 2.654 6.289 10 (

0.99994)
m

0 4 2 2= + ×

=

H T T R29.449 0.302 6.531 10 (

0.99944)
m

0 4 2 2= + + ×

=

3.4. Electronic Analysis. The experimentally obtained
absorption spectra of the two compounds in EtOH and the
calculated spectra in the gas state using the TD-DFT method
at the PBEPBE/6-311G(d,p) level are shown in Figure 4.
The two compounds both present two absorption bands at

245 and 379 nm (DDD) and at 241 and 377 nm (MDD): the
first absorption band is owing to the π → π* transition of the
(C9H11N2)+ cation or (C4H7N2)+ cation and the second band
is due to the n → π* transition of the (C13H13O8)− anion. The
results resemble those of the literature reported (243 and
384).31 The calculated spectra of the two compounds were
also found to exhibit two bands at 268 and 352 nm (DDD)
and at 265 and 342 nm (MDD), which illustrates that the
PBEPBE/6-311G(d,p) method can simulate the experimental
electronic spectra. The charge densities of four frontier
molecular orbitals of the two compounds are listed in Figure
5. The HOMO-1 and HOMO electrons are mostly localized
on both the 1,3-dioxane ring and C6−C7�C8 bonds of the
(C13H13O8)− anion in the two compounds; however, the
LUMO and LUMO+1 electrons are localized on the

Figure 4. Experimental and calculated UV−Vis spectra of DDD and MDD.

Figure 5. Charge densities of four frontier molecular orbitals for DDD and MDD.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01761
ACS Omega 2022, 7, 25132−25139

25136

https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01761?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


benzo[d]imidazole ring (DDD) and imidazole ring and C6−
C7�C8 bonds (MDD), which are in accord with the π → π*
and n → π* transitions of the experimental values.
Furthermore, EHOMO and ELUMO of the two compounds are
−0.160 and −0.086 eV for DDD and −0.170 and −0.076 eV
for MDD at the PBEPBE/6-311G(d,p) levels, respectively.
The energy HOMO−LUMO gap of 0.074 eV (DDD) is
slightly smaller than that of 0.094 eV (MDD), which implies
that the molecular structure of MDD is more stable.
3.5. Fluorescence Spectra. Figure 6 shows the emission

and excitation spectra of the two salts and the CIE color
chromaticity in EtOH solution. DDD’s emission band appears
at 570 nm when the excitation peak is 310 nm, while the
compound MDD shows strong emission intensity at 454 nm
when the excitation peak is 316 nm. The emission band is
related to the phenyl ring structure and the substituents. The
emission band of DDD is 116 nm redshifted from the emission
band of MDD, which is due to more phenyl rings and methyl
groups. In addition, the yellowish-green region of DDD and
the purplish-blue region of MDD are decided and their color
coordinates (0.3075, 0.6035) and (0.2026, 0.1693) are
calculated by means of CIE1931. The relation of emission
spectra and the structures of DDD and MDD can provide a
new idea for the design of potential fluorescent materials.

4. CONCLUSIONS
Two new salt cocrystals, C31H34N4O8 (DDD) and
C17H20N2O8 (MDD), were synthesized and characterized by
elemental analysis, infrared, UV−Vis, and NMR (1H and 13C)
spectroscopy and single-crystal X-ray diffraction. Their crystal
structures show that DDD belongs to the monoclinic, P21/c
space group, and MDD belongs to the triclinic, P-1 space
group. In DDD, the (C13H13O8)− anion, (C9H11N2)+ cation,
and C9H10N2 molecule were linked by N−H···O and N−H···N
molecular interactions. However, in MDD, the (C13H13O8)−

anion and (C4H7N2)+ cation were bridged by N−H···O
intermolecular interactions. The optimized geometric structure
using DFT at the B3LYP/6-311G(d,p) level is suitable to
simulate the molecular structures of DDD and MDD. The
calculated results of the two compounds with the TD-DFT

method at the PBEPBE/6-311G(d,p) level are in accordance
with experimental values.
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