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Abstract: In the current technological era, energy-efficient buildings have a significant research body
due to increasing concerns about energy consumption and its environmental impact. Designing an
appropriate energy-efficient building depends on its layout, such as relative compactness, overall area,
height, orientation, and distribution of the glazing area. These factors directly influence the cooling
load (CL) and heating load (HL) of residential buildings. An accurate prediction of these load facilitates
a better management of energy consumption and enhances the living standards of inhabitants. Most of
the traditional machine learning (ML)-based approaches are designed for single-output (SO) prediction,
which is a tedious task due to separate training processes for each output with low performance.
In addition, these approaches have a high level of nonlinearity between input and output, which need
more enhancement in terms of robustness, predictability, and generalization. To tackle these issues,
we propose a novel framework based on gated recurrent unit (GRU) that reliably predicts the CL
and HL concurrently. To the best of our knowledge, we are the first to propose a multi-output
(MO) sequential learning model followed by utility preprocessing under the umbrella of a unified
framework. A comprehensive set of ablation studies on ML and deep learning (DL) techniques is
done over an energy efficiency dataset, where the proposed model reveals an incredible performance
as compared to other existing models.

Keywords: cooling load; energy consumption; energy efficient building; GRU; heating load

1. Introduction to Residential Building Energy

Due to the rapid growth in economy and population during last few decades, the consumption
of electrical energy has been rapidly increasing day by day [1]. In 2018, the International Energy
Agency (IEA) reported that most of the electrical energy is spent in residential buildings, and the
demand for energy is rising every year due to excess usage of energy appliances as shown in Figure 1.
Existing studies reveal that residential buildings consumed more energy in summer and winter seasons,
which totally depends on the building architecture and occupied area [2].

Internal and external environment temperatures also have an effect on the total energy consumption
inabuilding [3]. Therefore, precise prediction of HL and CL is important in order to provide a luxurious
life for occupants [4,5]. HL is described as the total amount of required heat energy to keep the room
temperature normal, while CL is the sum of thermal energy necessary to be eliminated from a cooling
area in order to keep the temperature at an appropriate level [2].
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Energy consumption in a residential building
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Figure 1. Massive amount of energy is consumed in the residential sector because various electrical
appliances are installed.

Before evaluating the thermal load, it is important to know the infrastructure of buildings,
because energy consumption is reliant on their physical attributes. Basically, four tools are employed to
predict the CL and HL of buildings: simulation modeling, engineering calculations, statistical models,
and ML models [6]. The simulation model is commonly used to simulate energy efficiency based
on prior information, but it is a very difficult and time-consuming model because it requires more
skill to operate. For instance, Bagheri et al. [7] considered the simulation methods in terms of its
applications and limitations in the domain of energy performance. The second tool utilized complicated
mathematical formulas according to its principles to efficiently predict energy load. Next, a statistical
tool is used to evaluate linear regression models for residential energy consumption prediction,
and later, the performance of the model is enhanced by modifying different parameters. The final tool
is ML, which is a subset of statistical techniques, but it has the potential to learn from real data and
predict the desired outputs. Further, it assists civil engineers in evaluating the ingredients used in
the building design. For instance, support vector regression (SVR), clustering, and Gaussian-based
regression are active ML approaches in energy predictions [6].

ML algorithms can be broadly categorized into two main groups (i.e., supervised and unsupervised)
based on diverse learning style. The predicted output variables are available in the case of supervised
learning, while the unique labeled output does not occur in an unsupervised learning strategy.
The current study focuses on a supervised learning approach because an energy efficiency dataset has
labeled data. Artificial neural networks (ANNs) have gained attention among supervised learning
techniques due to nonlinear relationships within the data. Moreover, the activation function of ANN
can predicted the desired outputs, which indicate the nonlinearity with various input attributes [6].
Numerous ANN architectures, including recurrent networks, radial basis function, and feedforward,
are used for energy prediction. Besides ANN, researchers have mostly implemented the multilayer
perceptron (MLP) model, where information flows in a single direction with multiple layers. The MLP
model comprises three basic layers (input, hidden, output) consisting of neurons with weighted
functions. In case of complex data processing, the existing model is altered by increasing the number
of neurons and hidden layers.

Managing huge and complicated energy consumption data is formidable for ANN,
while researchers have criticized this network due to low transparency in the model [8].
Sensitivity analysis (SA) is broadly applied to analyze the relationship between variables.
For precise energy forecasting, ANN shows better performance if irrelevant inputs are removed [9].
Sensitivity analysis about the mean (SAAM) is one of the conventional strategies, where changes
of dependent variables are recorded while independent variables are kept in a specified range by
computing the mean [10]. The key benefits of SAAM are simple interpretation, easy implementation,
and application, along with statistical analysis [11]. In addition, state-based sensitivity analysis is a
global SA method in which separate variables are varied independently and the rest of the variables
are changed concurrently to obtain the reliant attributes [8].
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In residential buildings, there are various factors that influence energy consumption, such as
consumer’s behavior and building architecture. Therefore, building-structure-related data play a
key role in developing an efficient energy model. Moreover, the height of buildings, construction
materials, and areas such as wall, roof, and glazing are the main attributes in the current research.
The simulated method in [12] performs a pivotal part in improving building constructions, and it can
also accurately depict real assessments of different building designs to predict HL and CL [13]. On the
other hand, most of the researchers get full advantages by applying DL models on different domains,
such as movie and video summarization [14,15], energy forecasting [16], biological data analysis [17],
violence detection [18,19], and action recognition [20]. In this study, we explored numerous ML and DL
models for the prediction of HL and CL using an energy efficiency dataset. The potential of sequential
models for this dataset has not been thoroughly explored till date. Therefore, GRU has an optimal
preference to predict HL and CL as there exists an intensely independent relationship between data.
We conduct two types of experiments. First, we enhance the existing performance in which HL and CL
are predicted separately. Second, a multi-output prediction is performed through the same architecture.
The relevance of this work can enable engineers to solve major structural issues when designing an
energy-efficient building.

There is no existing work that utilized GRU for this dataset till date. Therefore, in the current
study, we utilize the sequence learning model GRU for non-sequential data by examining various
parameters. The second limitation is the unavailability of preprocessing methods, including polynomial
and min-max normalization for HL and CL. In this study, the simulation data first pass through
a preprocessing step where outliers are removed, scattered data is normalized in a specific range,
and increase the number of features. Next, the refined data are fed into the GRU network to extract silent
hidden patterns. Finally, we evaluate the error in different metrics, such as mean absolute error (MAE),
relative mean absolute error (tMAE), mean square error (MSE), relative mean square error (rMSE),
root mean square error (RMSE), relative root mean square error (rRMSE), mean average percentage
error (MAPE), and relative mean average percentage error ({MAPE). The major contributions of this
study are summarized below:

e Itisa common fact that the performance of a deep model is directly depends on the input data.
In this study, energy efficiency dataset is used that contains a limited number of attributes with
values in a different range, which cause overfitting and take extra time to converge. To address
these issues, first, we pass the input data through a preprocessing layer where the number of
features increased using a polynomial equation and min-max normalization process is applied to
remove outliers and normalize the data in a particular range.

e  Existing models in the literature are trained separately for HL and CL prediction, which requires a
tedious and time-consuming job. In contrast, the proposed framework has a generalized ability in
which the same architecture can be used for both SO and MO that predict HL and CL concurrently.

e DL models always reveal a convincing performance compared with traditional ML models.
Therefore, we propose a sequence learning model GRU, which learns discriminative features and
efficiently predicts the HL and CL. We also conduct a comparative study between ML and DL
techniques to show the superiority of DL models.

e We verify experimentally that the proposed framework outperforms state-of-the-art techniques
using the hold-out and 10-fold methods. To check the effectiveness of the proposed framework,
we evaluateit on various metrics, such as MAE, rMAE, MSE, rMSE, RMSE, and rRMSE.

The rest of the paper is categorized into four main sections. Section 2 briefly discusses the
literature study about HL and CL prediction. Section 3 explains the proposed methodology, followed by
comprehensive experiments in Section 4. Section 5 concludes this study with future research direction.
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2. Literature Review of HL and CL Prediction

The literature study for HL and CL prediction in buildings is mainly divided into four major
classes: residential, educational, commercial, and mixed. According to statistics in [21], 30% of the
literature is based on residential building energy. Through Ecotect software, Tsanas and Xifara [12]
simulated 12 distinct building structures to predict HL and CL. After considering all the various
permutations of input variables, 768 building designs were generated. During the simulation of building
designs, heating, ventilation, and air-conditioning HVAC rules were pursued. Through numerous
ML techniques, various researchers analyze these data for precise prediction. Based on the prominent
contribution of Tsanas and Xifara [12], the existing literature is summarized in Table 1. Although the
dataset has been prepared via a simulated tool, but there is lack of data related to building infrastructure
and materials. The dataset used in this study is publicly accessible and extensively used for research
study by exploring its applications related to energy. Simulated data play a significant role when
designing the architectures of a building. The terms used in the existing studies are listed in Table 1.

Table 1. Existing approaches for the prediction of HL and CL using energy efficiency dataset.

Reference Learning Strategy Feature Selection Evaluation Metrics

Mutual information,
Spearman rank
correlation coefficient,
and p-value

RF, iteratively reweighted last

Tsanas and Xifara [12] squares (IRLS)

MSE, MAE, MRE

Chou and Bui [22] Fusion method (SVR + ANN), RF, SVR, )

CART, GLR, CHAID RMSE, MAE, MAPE, R, SI

Evolutionary multivariate adaptive

Cheng and Cao [23] regression splines (EMARS) MARS RMSE, MAPE, MAE, R?
Ahmed et al. [24] ANN and k-means cluster - Silhouette score
Sonmez et al. [25] KNN and ANN (ABC, GA) - MAE, standard deviation

Alam et al. [26] ANN ANOVA RMSE
Fei et al. [27] ANN - MSE
Regina and Capriles [28] DT, MLP, RF, SVR - MAE, RMSE, MRE, R?
Naji et al. [29] ANFIS - RMSE, R, R?
Naji et al. [30] ELM - RMSE, R, R?
Nilashi et al. [31] EM and ANFIS PCA MAE, MAPE, RMSE
Nwulu [32] ANN - RMSE, RRSE, MAE, RAE, R?
Duarte et al. [33] DT, MLP, RE, SVM - MAE, RMSE, MAPE, R?
Royetal [ splines, ELM a hybr modl of MARS AR RMSE, MATE MAE, K’
and ELM
Kavaklioglu [34] OLS, PLS - RMSE, R?,
Kumar et al. [35] ELM'&EE‘;‘S t?gngEE;}I ELM, ; MAE, RMSE

Al-Rakhami et al. [36]

Ensemble learning applying XGBoost

RMSE, R2, MAE, MAPE

Sekhar et al. [4]

DNN, GRP, MPMR

VAF, RAAE, RMAE, R?,
MAPE, NS, RMSE, WMAPE

Tsanas and Xifara [12] conducted a detailed statistical study of density and scatterplots.
The performance outcomes of the statistical analysis approach are mainly used for nonlinear problems.
From Table 1, it can be observed that few studies have applied ANN on energy efficiency dataset [24,32],
although others follow the ensemble strategy by integrating different methods [22,25,29,31]. To the
best of our knowledge, only one article exists that applied a deep neural network (DNN) to predict
HL and CL, presented by Sekha et al. [4]. The efficiency of DNN is better as compared with other
traditional algorithms, such as Minimax Probability Machine Regression (MPMR) and Gaussian
Process Regression (GPR). Moreover, the traditional approaches did not mention the model parameters,



Sensors 2020, 20, 6419 50f 19

such as processing elements, activation functions, and numbers of layers. To achieve a remarkable
performance on any models, analysis of data is essential to identify the significant and insignificant
inputs. In this regard, Roy et al. [2] proposed a nonparametric regression model known as Multivariate
Adaptive Regression Splines (MARS) that splits the data and fit each interval into a basis function.
Principal component analysis (PCA) is also applied for ideal features selection and dimensionality
reduction, which eradicates the multilinearity problem. Nilashi et al. [31] reported that PCA targets
four main aspects: retrieving essential information, reducing the dimension of data, simplifying the
information, and analyzing architecture-related observations. Most of the articles did not utilize the
SA approach for the prediction of HL and CL as shown in Table 1.

The techniques for quantitative SA are classified into local and global [37]. For instance, the input
instances were impartial with each other; therefore, Ardjmand et al. [8] defined a regression-based
strategy in which conventional SA techniques, such as sampling, regression-based, and variance-based,
are expanded to state-based sensitivity analysis (SBSA). This means that modifying one variable value
would influence the others; therefore, it is not realistic for fixed values for certain inputs in local SAs.
On the other hand, the global SA adjusts the ideal input value, while in the case of multidimensionality,
it takes the average number of variable inputs [38].

The efficiency of a mathematical model is also influenced by many assumptions in order to
predict energy HL and CL separately. In majority of the works, the HL and CL are predicted in an SO
fashion; however, we develop such a model that can be utilized for both SO and MO. Another primary
consideration for enhancing the efficiency of a predictive model is preprocessing of data. Therefore,
Kumar et al. [35] followed the ensemble technique with a proper attribute selection and preprocessing
method to efficiently predict energy in real time. To boost the model efficiency, it is necessary to pass
the data through the preprocessing stage. Notably, MSE, MAE, RMSE, and MAPE were common
evaluation metrics used by researchers for model assessment, but in this research, we also use extra
metrics for evaluation, including rMAE, rMSE, rRMSE, rtMAPE.

3. Methodology for HL and CL Prediction

The primary goal of the proposed framework is to efficiently predict the HL and CL that will assist
engineers in building energy-efficient buildings. A comprehensive set of experiments are conducted
on ML and DL using hold-out and cross-validation methods. The proposed framework is mainly
categorized into three steps, as shown in Figure 2. In the first step, we perform the preprocessing on
raw data related to the building. In the second step, the polished data are redirected to GRU, where they
learn hidden patterns in both forward and backward fashion. In the third step, the softmax layer
generates the desired output and evaluates the performance of the model through various evaluation
metrics. All the acronyms used throughout the paper are defined in Table 2.

Table 2. Parameters and their abbreviations.

Acronyms Description Acronyms Description

CL Cooling load MAE Mean absolute error

HL Heating load RMSE Root mean square error
GRU Gated recurrent unit SA Sensitivity analysis
SVR Support vector regression SVM Support vector machine
ANN Artificial neural network PCA Principal component analysis
MLP Multilayer perceptron DNN Deep neural network

ML Machine learning SO Single-output

DL Deep learning MO Multi-output

RF Random forest GPR Gaussian process regression
MSE Mean square error GBR Gradient boost regressor
SVM Support vector machine DMTs Decision-making trees

rMSE Relative mean square error rRMSE Relative root mean square error
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Figure 2. The proposed framework for precise prediction of HL and CL through energy efficiency data
using sequential learning model.

3.1. Data Acquisition and Preprocessing

Existing simulated data comprise various attributes related to building structure, such as relative
compactness, overall area, height, orientation, and distribution of the glazing area. The performance of
deep models depends on the characteristics of the data for training. For instance, if the input data are
well organized, then they assist in efficient performance. In this study, we employ two techniques
in the preprocessing step to refine the simulation because each of the attribute data in the dataset is
scattered with each other that trigger the outlier issue. Therefore, we apply min—-max normalization
to remove outliers and arrange all the values in the range of 0 and 1. The alteration effect on data
before and after normalization is visualized in Figure 3. Similarly, samples of the dataset are very few,
and prior researchers always tried to tune a model for enhancing the performance of the model over
limited data. From various computer vision problems, it has been proved that the DL model depicts a
remarkable performance on a massive number of data [39]. However, in our case the total samples in
the dataset are fewer; therefore, we apply a polynomial equation to increase the number of features.
In this perspective, we also check the generalized capability of the model and decrease the overfitting
probabilities during training. In addition, such model can be applicable for new data predictions in
the future.

Before applying the polynomial equation, first, we made four sets of couples from the given eight
attributes, where each couple is expanding up to the sixth power with various possible combinations
of pairs. Equation (1) presents a polynomial process applied to a single pair of attributes.

Fo=(x, y, xz,xy, yz, =S xy5, y6). (1)

where Fv represents the polynomial feature vector and x, i denotes two different attributes, where from
each pair, 27 diverse feature vectors are produced, while in our case, we have 8 pairs, so the total
possible feature vectors become (27 X 8 = 108), which is our desired output.
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Figure 3. (a) Visual representation of actual HL and CL data where x-axis shows the number of samples
and y-axis illustrates the range of samples; (b) overall attributes in the dataset; (c) normalized sample
value of HL and CL; (d) normalized value of 4 attributes.

3.2. Multi-Output (MO) Regression Model

Various traditional approaches have been developed to efficiently predict HL and CL in an
SO manner, where a model is trained two times for each prediction. The energy efficiency dataset
contains a total of eight features (relative compactness, surface area, wall area, roof area, overall height,
orientation, glazing area, and glazing area distribution) and two labels (HL and CL). Hence, there are
no separate attributes and samples for HL and CL prediction; therefore, these models were first utilized
for CL data prediction and then trained again for HL, which is a laborious and headache job.

In this paper, we propose an efficient model for both SO and MO with static parameters. First,
we improve the performance of the model in SO, and then extra experiments are performed to evaluate
the error rates of HL and CL in an MO fashion to save time. To the best of our knowledge, there is
no existing model that can generate MO through a sequential learning approach. We performed
comprehensive experiments on both SO and MO using various ML and DL techniques to find the
optimal model that predicts the HL and CL in an efficient way (Figure 4).

50

GRU Heating Load
Model ::> Prediction
GRU Cooling Load
Model :> Prediction

|

Heating and
Cooling
Data

MO
GRU Heating and
Model |:> Cooling Load
Prediction

Figure 4. Difference between SO and MO in the prediction of HL and CL using the GRU model.
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3.3. Machine Learning (ML)

3.3.1. Support Vector Regression (SVR)

Support vector machine (SVM) is a supervised ML approach mainly used for classification
and regression problems. It has been proved from earlier studies that SVM shows incredibly better
performance than other supervised learning algorithms because its formulation is based on structural
risk minimization instead of empirical. In this paper, we deal with CL and HL prediction as a regression
problem; therefore, we use SVR. The main goal of SVR is convex means that global optimum is always
converge in this approach, first, the input data x is mapped via nonlinear mapping into n-dimensional
feature space. In the consequent feature space, we build a linear model for the prediction of CL and
HL. The mathematical background of the linear model is presented in Equation (2).

M) = (Zfqmi hi (x) + b). @)

where nonlinear transformations are denoted by 4 (i) (x), i = (1, ... ... n) as most of the time the bias “b”
term is considered zero; therefore, it is ignored. The SVR model is totally dependent on the training
data; therefore, it always tries to minimize the error rate and model complexity by reducing ||u|?,
which is the main objective.

m
min1 /2wl +C )" &+ & ©)
j=1

Such that Z;=My, m) < € + &
My, ) —zi <€+ &
& &z 0, j= (1, ..., m)

In Equation (3), ¢ denotes the loss function, while cfj and cf; are the slack non-negative variables
that determine the training sample deviation. The parameter C > 0 is used to measure the fitting of
the samples, and wrillustrates the regression weights of the SVR model. Generally, the optimization
task can be easily handled if converted into a dual problem by applying the dualization and Lagrange
multipliers techniques. These methods are mathematically elaborated in Equation (4).

Hlml? + CEL (& + &) - Ly o (e + & -2+ M, un) =
Z'Jnlaj(e—l—cf —Z+wa) ]: (A€—|—/\}‘§;)

4)

In the Lagrange L equation, o, o;, Aj, A% = 0 refer to Lagrange multipliers. According to the
consideration saddle point situation, the partial derivatives of the Lagrange variable (uz, b, éj, &)
will disappear during optimality. Finally, in Equation (5) is the dual optimization along with the
preceding steps.

s = Y (o - i ) ®

In the dual optimization procedure, K depicts the number of vectors in feature space and kernel
function. The dot product of two vectors with kernel is represented in Equation (6).

K(xxj) = Z; gi(x) gi(x)) ©)

In this study, we use a Gaussian radial basis function (RBF) with its kernel parameters "Y”in order
to manage the nonlinearities between the input data and their perceptive class.
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3.3.2. Random Forest (RF)

Random forest (RF) is a supervised learning algorithm and ensemble approach of randomized
decision-making trees (DMTs). A DMT is a non-parametric ML algorithm that establishes a model in
the form of a tree structure and divides the given records into smaller chunks until only one record
remains in the subgroup. The final and internal sets are referred to as leaf and root nodes, respectively.
The particular DMT is utilized for an unstable system that is totally dependent on data, so limited data
affect the entire structure. To tackle this problem, a collection of DMTs is utilized to select target values
based on average predicted values for all individual trees. Typically, RF follows the bags and boosts
strategy in which they integrate different models sharing common information in order to produce
several individual trees [40]. Multiple hyper parameters are required to tune the RF, but the number
key parameter is the number of independent trees in the forest. To find an efficient model in terms of
accuracy and time complexity, it is necessary to tune the model on different parameters.

3.3.3. XGBoost

XGBoost is a supervised learning approach that is applicable to both regression and classification
problems. Here, we use multiple features X; for training data to predict the target variable Y;.
XGBoost stands for “Extreme Gradient Boosting”, which follows an ensemble learning strategy,
including regression tree and classification mechanism. Let us assume {T7 ... ... . Ty (x;, y;) where,
i=1,...,n}, where x; and y; represent the training samples and the appropriate class labels. To get the
final predicted score, all the individual scores are combined via additive function A as depicted in
Equation (7).

vi= Y R, fek. %

where f, is the number of gradient boosting trees and functional spaces for all trees. The two additional
functions (i.e., training and regularization term) are illustrated in Equation (8):

Oo=Y "1y )+ Y w(f). ®)

where the measurement of the loss function between target and predicted class is illustrated as 1 and ¢
is represent the regularization term used for handling the overfitting issue.

In XGBoost for each level ‘t’, the additive training approach is followed for the prediction of each
class label y;. Mathematically, it can be shown in Equation (9).

vit= Y0 ) =y A, ©)

After applying the tree boosting method, Equation (8) becomes

Oa' = X" Uity + filxi)) +9( f). (10)

Equation (10) is obtained by dividing the leaf node to get the final score after a series of evaluations.
3.4. Deep Learning (DL)

3.4.1. Multilayer Perceptron (MLP)

Inspired by the human brain, McCulloch and Pitts proposed the concept of ANN [41], which has
been widely used in various research domains [42]. One of its fundamental potentials is generating the
nonlinear relation map between the input and the output. In the current study, we choose MLP among
various types of ANNs because it is one of the trustworthy methods designed for prediction problems.
Our MLP architecture comprises three layers along with computational units called neurons, as shown
in Figure 5. To achieve the actual and predicted outputs precisely, it is necessary to design an efficient
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model. Moreover, let us assume the input vectors are denoted by I; then the final output for the n-th
neuron is formulated by Equation (11):

Op= A . (11)

j
Z I Wi + by
=1

where [ illustrate the input samples, and W, b, and A represent the weights, bias, and activation
function, respectively.

Figure 5. Backpropagation of MLP architecture with one hidden layer.

3.4.2. Gated Recurrent Unit (GRU)

GRU is the most common sequence learning model of Recurrent Neural Network (RNN), which is
basically used to overcome the vanishing gradient issue [43]. GRU contains two main gates (i.e., update
and reset gate), that determine which information is to be transferred to the output layer as shown in
Figure 6. The unique capability of these two gates is that they can store information for the long term
and they do not remove irrelevant information related to the prediction. They can be considered as a
subset of Long Shot-Term Memory (LSTM) due to similarity in architecture and performance. In the
current study, we use GRU because it gives a remarkable performance on smaller numbers of sample
data as well as on more samples. Furthermore, it trains faster due to a smaller number of parameters.
The mathematics behind this network is shown in Equations (12)—(15).

Zy = O(W(p) Xt + Uz hg-1y). (12)

f

Output Layer

Hidden Layet‘

\
|

Input Layer ‘

Figure 6. The GRU architecture for HL and CL prediction.
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In the update gate, as the input X; is tied to the network node, it is multiplied by its weights
W(,). Similarly, h;_1) retains the information of the earlier cell units and is multiplied by its particular
weights U(,). The outcomes of both are integrated and flatten the result between the range of 0 and 1
through sigmoid activation function.

e = @(W(r) X + U(r) h(t—l))- (13)

The reset gate is almost similar to the update gate, but the difference is only in weights and
functionality. This gate is basically used to decide how much previous information is to be forgotten.
As h_1y and X; are multiplied with their subsequent weights. After that, the sigmoid function is
applied to the merged results.

hy = tanh( Wxy + rp e Uhy_q). (14)

The reset of the gate memory content is used to hold the relevant pattern information from the
earlier cell gate. Here, two operations are performed: first, the input sequence X; is multiplied with its
corresponding weights W, and second, an element-wise operation is performed between r; and Uh;_1),
which will take a decision in removing the information from the earlier time steps. Furthermore,
it sums up both the generated output and the employed nonlinear tan/ activation function.

hy = (Zt o1+ (1 - Zt) Oﬁt). (15)

Finally, the network calculates the h; vector, and the last memory of the current time step holds the
current unit information and forwards it to the next layer of the network in order to update the gate.
Furthermore, it contains information about the current and previous steps. In this unit cell, three basis
operations are performed, first, to update the gate element-wise product operated between z; and h;_).
Second, again element-by-element multiplication is done between (1 — zt) and it. In the last operation,
both operations 1 and 2 are incorporated, and the final output is produced.

4. Experimental Results

4.1. System Configuration

We substantiate the effectiveness of the proposed GRU model using an energy efficiency dataset
that is publicly available on the University of California Irvine (UCI) repository. The model is trained
over TITAN X (Pascal)/PCLe/SSE2 GPU with Intel Core i5-6600 processor, 64 GB RAM, and Windows
10 operating system. The implementation is performed in Python with Keras DL framework with
TensorFlow at the backend and Adam optimizer with 100 epochs, 0.0001 learning rate, 0.9 momentum,
16 batch size, and 20 units in GRU. Two types of experiments are conducted, including hold-out and
cross-validation on the energy efficiency dataset, which are further categorized into SO and MO with
and without preprocessing. Furthermore, in the hold-out method, the data are divided into training
set 80% and testing 20%, and from the training set, we select 10% data as a validation set. On the
other hand, in the cross-validation process, the entire data are divided into 10 equal parts. After that,
one chunk is used for the testing set, and the remaining ten chunks are considered as training set.
This process is repeated until each chunk is tested.

4.2. Dataset Description

The dataset used for this study is proposed by [12] with no additional characteristics. Through an
elementary cubes process, 12 residential building shapes were simulated, each comprising 18 elements,
and the total volume of the buildings was 771.75 m3. The building relative compactness is computed by
evaluating the total areas of the building structure and position structure when the total volume of the
building is equal to the position structure. The selection was made by the newest and most common
materials used during constructing building industry and by the lowest U-value. Building structure
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features and their related (U-values appear in parenthesis): walls (1.780), floors (0.860), roofs (0.500),
and windows (2.260). The simulated data is assumes that the actual buildings are located in Athens,
Greece. The interior layout was set as clothing: 0.6 clo; room temperature: 21 °C; thermal insulation
that is suitable for a particular weather condition; humidity rate: 60%; air velocity: 0.3 m/s; and a
total of 300 lux lights. The heating properties have shown 95% efficiency with a thermostat range of
19-24 °C that is working 15-20 h on weekdays and 10-20 h on weekends. Three different percentages
were utilized for the glazing area of a building: 10%, 25%, and 40%. Furthermore, the glazing area was
categorized into five various scenarios: uniform, 25%; north, 55%; east, 55%; south, 55%; and west, 55%.
In addition, four directions were indicated by 2, 3, 4, and 5, which represent north facing, south facing,
east facing, and west facing, respectively.

The energy efficiency dataset contains 12 shapes of a building along with 3 glazing areas, 5 different
distribution scenarios for each glazing areas, and 4 directions, which are associated with 720 samples.
However, if we enter the structure of the 12 buildings, which have no glazing area along 4 orientations,
then the total becomes 768 buildings with respective values of HL and CL. The key characteristics of
inputs and outputs are given in Table 3.

Table 3. Detailed description of energy efficiency dataset.

Variable Building Information Attribute Total Values Data Type Units
Relative compactness X1 12 Real None
Surface area Xy 12 Real m?
Wall area X3 07 Real m?
Input Roof area Xq 04 Real m?
Overall height X5 02 Real M
Orientation Xe 04 Integer None
Glazing area Xz 04 Real None
Glazing area distribution Xg 6 Integer None
: 2
Output Heat.mg load Y 586 Real kWh/m2
Cooling load Y, 636 Real kWh/m

4.3. Evaluation Metrics

To assess the variation between the actual and predicted heating and cooling load, it is necessary
to evaluate the effectiveness of the regression model via various evaluation metrics, such as MSE,
RMSE, MAE, and MAPE. Basically, MSE calculates the average square value of the difference between
the target and predicted values via the regression model. RMSE is commonly used for a regression
problem, which is the root squared difference between the actual and predicted values, and MAE is the
linear score in which the individual weighted differences are considered equally. Finally, the MAPE
metric computes the prediction accuracy in percentage. The mathematical representation of all these
metrics is depicted in Equations (16)—(19).

MSE = ~ Y (y-9) (16)

n

1
MAE= -3 ly-9 (17)

1 n R
RMSE = /= 3" (v~ 9)° (18)

100% s |y = 9
MAPE = — 21 ; (19)
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4.4. Performance of ML and DL Methods for SO

In this study, we performed various experiments on ML and DL methods to select the optimal
model for SO. The experiments were performed with and without preprocessing followed by two
strategies: hold-out and cross-validation. In the ML models, XGBoost beat all other ML algorithms
in both cases because it utilized the ensemble learning strategy. In HL and CL prediction, it showed
remarkable performance as depicted in Table 4. Further, we checked the prediction error in various
kernels in SVR as shown in Figure 7.

Table 4. Experimental results of various ML and DL models for SO prediction using the hold-out method.

Hold-Out without Preprocessing

Method HL CL
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
SVR 1.9532 1.5241 1.2345 1.3913 22143 1.6241 1.2744 1.7471
RF 24310 1.8701 1.3675 1.6714 2.4197 1.9875 1.4097 1.9032
XGBoost 1.8236 1.4797 1.2164 1.5941 2.1027 1.5579 1.2481 1.6179
GBR 2.3142 1.6091 1.2685 1.6721 2.3471 1.7928 1.3389 1.8932
MLP 1.7613 0.9781 0.9889 1.1741 1.9897 1.0899 1.0439 1.4869
GRU 1.3691 0.7215 0.8494 0.9315 1.4027 0.9791 0.9894 1.0132

Hold-Out with Preprocessing

Method HL CL
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
SVR 0.2855 0.1658 0.4072 0.5833 0.5662 0.6851 0.8277 0.9428
RF 0.3225 0.1924 0.4386 0.5312 1.0212 2.3355 3.7084 3.8192
XGBoost 0.2130 0.0911 0.3018 0.4120 0.4167 0.3566 0.5971 0.6580
GBR 0.3048 0.1467 0.3830 0.5269 0.9311 0.5971 2.7084 2.8149
MLP 0.0853 0.0075 0.0867 0.0988 0.0838 0.0074 0.0858 0.0897
GRU 0.0102 0.0003 0.0166 0.0284 0.0167 0.0006 0.0247 0.0368

Various Kernel Performance in SVR

1.4
12

0.8
0.6
0.4
0.2

Linear Precomputed  Sigmoid RBF

o MAE ® MSE

Figure 7. Numerous kernel performances of SVR in the prediction of HL and CL.

In contrast to ML algorithms, GRU significantly predicted the HL and CL in both processed and
unprocessed data in DL algorithms. In refined data, GRU achieved 0.0102, 0.0003, 0.0166, and 0.0284,
for MAE, MSE, RMSE, and MAPE in HL prediction and 0.0167, 0.0006, 0.0247, and 0.0368 for MAE,
MSE, RMSE, and MAPE in CL prediction, respectively. The rest of the algorithm’s performance are
illustrated in Table 4.
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It is clear from Table 4 that our preprocessing strategy significantly reduced the error rate in
all methods. Besides hold-out, we also did the cross-validation for the prediction of HL and CL,
where again XGBoost showed better performance than other ML methods, while GRU dominated
all methods, including XGBoost and MLP, because it learns more from data in an efficient way.
The comprehensive experiments are shown in Table 5.

Table 5. Experimental results of various ML and DL models for SO prediction using the 10-fold method.

Cross-Validation without Preprocessing

Method HL CL
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
SVR 2.0978 1.6463 1.2830 1.4192 2.2089 1.7574 1.3256 1.5303
RF 2.5421 1.9943 1.4121 1.6971 2.6532 2.0215 1.4217 1.7082
XGBoost 1.9347 1.5998 1.2648 1.4023 2.0458 1.7110 1.3080 1.5134
GBR 2.4235 1.7497 1.3227 1.5932 2.5346 1.8608 1.3641 1.7043
MLP 1.8724 1.4996 1.2245 1.4932 1.9835 1.6107 1.2691 1.6043
GRU 1.4802 0.9871 0.9935 1.0210 1.5913 0.8920 0.9444 1.1031

Cross-Validation with Preprocessing

Method HL CL
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
SVR 0.1941 0.0431 0.2076 0.3712 0.1830 0.0320 0.1788 0.2823
RF 0.2916 0.0981 0.3132 0.4312 0.2805 0.0870 0.2949 0.5024
XGBoost 0.1813 0.0334 0.1827 0.2715 0.1701 0.0231 0.1519 0.2529
GBR 0.2712 0.0849 0.2913 0.3108 0.2601 0.0738 0.2716 0.3914
MLP 0.0191 0.0091 0.0953 0.1076 0.0189 0.0080 0.0894 0.1289
GRU 0.0092 0.0001 0.0100 0.0391 0.0021 0.0001 0.0100 0.0282

4.5. Performance of ML and DL Methods for MO

In this section, we conducted numerous experiments on ML and DL models in order to pick
the optimal model on the basis of their performance. State-of-the-art models generated output in a
SO fashion that required more time for the prediction of HL and CL. There is no existing work that
employed a sequence learning model to generate the desired output in MO style. The same set of
experiments for hold-out and 10-fold cross-validation with and without refining data are conducted
for MO model assessment. In the ML category, XGBoost showed a convincing performance, while the
proposed model (GRU) showed overall dominancy in both hold-out and 10-fold cross-validation
because it only keeps and learns the most prominent information to make HL and CL predictions and
eliminates irrelevant information. Detailed results are given in Table 6.

Table 6. Experimental results of various ML and DL models for MO prediction using the
hold-out method.

Hold-Out with Preprocessing Hold-Out without Preprocessing

Method HL and CL HL and CL
MAE MSE RMSE MAPE MAE MSE RMSE MAPE
SVR 0.7831 0.5479 0.7402 0.8922 3.5347 2.3701 1.5395 2.6368
RF 0.9867 0.7863 0.8867 0.9647 3.9375 2.5561 1.5987 2.8059
XGBoost 0.5182 0.4841 0.6957 0.7328 3.2439 2.1253 1.4578 2.5278
GBR 0.6798 0.6531 0.8081 0.9781 3.7294 2.4321 1.5595 2.7053
MLP 0.0953 0.0189 0.1374 0.2579 2.9124 1.9760 1.4057 1.9979
GRU 0.0368 0.0015 0.0387 0.1134 1.7519 1.0217 1.0107 1.0901

Cross-Validation with Preprocessing Cross-Validation without Preprocessing

SVR 0.6975 0.4043 0.6358 0.7098 3.4438 2.2903 1.5133 2.8186
RF 0.8790 0.6901 0.8307 0.9767 3.8466 2.4650 1.5700 3.0077
XGBoost 0.4791 0.3765 0.6135 0.7452 3.1529 2.0344 1.4263 2.7096
GBR 0.5170 0.5536 0.7440 0.8062 3.6385 2.3412 1.5300 2.9071
MLP 0.3732 0.1932 0.4395 0.5690 2.8215 1.8851 1.3729 2.0707

GRU 0.0062 0.0021 0.0458 0.1574 1.6608 1.0308 1.0152 1.0724
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Figure 8. Experimental results of the proposed model (GRU) for SO and MO prediction using the

hold-out and 10-fold methods.

For more satisfaction of the proposed model, we also visualized actual and predicted load on

both SO and MO as illustrated in Figure 9.
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- Actual Cooling Load - Actual Heating Load ,

-@- Predicted Cooling Load
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Figure 9. Visualization of prediction results obtained via the proposed model (GRU), where x-axis
indicates the number of samples while y-axis represents the actual and predicted load; (a) the actual
and predicted outputs of CL using the SO strategy; (b) the actual and predicted outputs of HL and CL
using the MO strategy.

4.6. Comparison with State-Of-The-Art Models

In this section, we compared the results achieved through the proposed model (GRU) with existing

approaches over energy efficiency dataset. The proposed model showed a remarkable performance
on both hold-out and 10-fold cross-validation as compared to state-of-the-art models. Most of the
researchers developed ML and ANN methods to evaluate HL and CL without utilizing a preprocessing
technique, which sometimes generated false prediction. Furthermore, they repeated the training
process to obtain the HL and CL values individually, which is a very tedious and time consuming
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job. In a such way, most of time the performance of the HL improved, but, the accuracy of the
CL prediction decrease. In contrast, our proposed model is better than the others existing baseline
models because, we employed a sequential learning model for nonsequential data which improved
the SO and MO performances on both hold-out and 10-fold. Table 7 presents the SO results based
on the hold-out technique with recent state-of the-art models [2,4,12,22,23,25,26,28,31-36,44]. For HL
prediction, the proposed model (GRU) achieved the least error rates for MAE (0.0102), MSE (0.0003),
and RMSE (0.0166). Similarly, the proposed model (GRU) achieved an incredible performance and
attained the best results for CL (i.e., 0.0167, 0.0006, and 0.0247 for MAE, MSE, and RMSE, respectively).

Table 7. Comparison of the proposed model (GRU) for HL and CL prediction with state-of-
the-art models.

Method HL cL
MAE MSE RMSE MAE MSE RMSE
Tsanas and Xifara [12] 0.51 - - 1.42 - -
Chou and Bui [22] 0.236 - 0.346 0.89 - 1.566
Cheng and Cao [23] 0.35 - 0.47 0.71 - 1
Sonmez et al. [25] 0.61 - - 1.25 - -
Alam et al. [26] - - 0.19 - - 142
Regina and Capriles [28] 0.246 - 1.094 0.39 - 1.284
Nilashi et al. [31] 0.16 - 0.26 0.52 - 0.81
Nwulu [32] 0.977 - 1.228 1.654 - 2.111
Duarte et al. [33] 0.315 - 0.223 0.565 - 0.837
Roy et al. [2] 0.037 - 0.053 0.127 - 0.195
Kavaklioglu [34] - - 3.16 - - 3.122
Kumar et al. [35] 0.138 0.321 0.134 - 0.646
Al-Rakhami et al. [36] 0.175 - 0.265 0.307 - 0.47
Sekhar et al. [4] - - 0.059 - 0.079
Sadeghi et al. [44] 0.2 - 0.263 0.485 - 0.69
Proposed (hold-out) 0.0102 0.0003 0.0166 0.0167  0.0006 0.0247
Proposed (10-fold) 0.0092 0.0001 0.0100 0.0021 0.0001 0.0100

5. Conclusions and Future Research Direction

In this study, we proposed an intelligent framework for HL and CL prediction via a sequential
learning model (GRU). First, we applied min-max normalization and polynomial equation in order to
remove outliers, normalize all the sample values in specific range, and increase the number of features,
respectively. Next, we conducted comprehensive set of experiments over ML and DL methods using
hold-out and 10-fold cross-validation to choose the most favorable model in terms of accuracy. Finally,
to validate the performance of the proposed model we evaluated it on numerous metrics such as
MAE, rMAE, MSE, rMSE, RMSE, rRMSE. In the future, we aim to utilize evolutionary algorithms on
different datasets and improve the existing performance of the model by utilizing some advanced
preprocessing strategies.
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