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ABSTRACT Next-generation sequencing (NGS)-based genotyping methods can generate numerous ge-
netic markers in a single experiment and have contributed to plant genetic mapping. However, for high
precision genetic analysis, the complicated genetic segregation mode in polyploid organisms requires high-
coverage NGS data and elaborate analytical algorithms. In the present study, we propose a simple strategy
for the genetic mapping of polyploids using low-coverage NGS data. The validity of the strategy was
investigated using simulated data. Previous studies indicated that accurate allele dosage estimation from
low-coverage NGS data (read depth , 40) is difficult. Therefore, we used allele dosage probabilities
calculated from read counts in association analyses to detect loci associated with phenotypic variations. The
allele dosage probabilities showed significant detection power, although higher allele dosage estimation
accuracy resulted in higher detection power. On the contrary, differences in the segregation patterns
between themarker and causal genes resulted in a drastic decrease in detection power even if themarker and
casual genes were in complete linkage and the allele dosage estimation was accurate. These results indicated
that the use of a larger number of markers is advantageous, even if the accuracy of allele dosage estimation is
low. Finally, we applied the strategy for the genetic mapping of autohexaploid sweet potato (Ipomoea
batatas) populations to detect loci associated with agronomic traits. Our strategy could constitute a cost-
effective approach for preliminary experiments done performed to large-scale studies.
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Recent advances in next-generation sequencing (NGS) technology
have revolutionized genomics-assisted breeding. NGS-based geno-
typing by sequencing (GBS; Elshire et al. 2011) and restriction site-
associated DNA sequencing (RAD-seq; Baird et al. 2008) have
enabled the development of numerous genetic markers in a single
experiment (Kumar et al. 2012). They have been used to construct
high-density genetic linkage maps (Poland and Rife 2012) and
genetic maps of agronomically important traits. These technologies
are highly effective with diploid species; however, they present

numerous application challenges with autopolyploid species (Bourke
et al. 2018).

Polyploidy is the presence of multiple sets of chromosomes in a
single organism and is a common occurrence in the plant kingdom.
Polyploid plant species are often valuable as crops, as their genome
multiplication results in comparatively higher yields (Comai 2005). In
addition, polyploidy often leads to heterosis, gene redundancy, loss of
self-incompatibility, and gains in asexual reproduction (Comai 2005).
In allopolyploid species, such as cotton and wheat, preferential
pairing dictates meiotic chromosome behavior similar to diploids.
As this mechanism resembles that seen in diploids, currently available
genetic approaches can be readily applied to allopolyploids. By
contrast, autopolyploids have multiple heterozygous genotypes. Con-
sequently, the existing approaches designed for diploids are not
applicable to autopolyploids (Bourke et al. 2018). A possible solution
for this problem is the use of Mendelian markers such as Simplex ·
Nullplex (SN) and Simplex · Simplex (SS). The mode of inheritance
of Mendelian markers resembles that for the genetic markers in
diploid species. Thus, they apply to the theories and/or tools
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developed for diploids (Shirasawa et al. 2017; Tennessen et al. 2014;
Vukosavljev et al. 2016). To detect genetic loci with a simple in-
heritance and/or a high proportion of the variance explained, the use
of Mendelian markers alone may suffice. However, genetic mapping
based on allele dosage informationmay be required for more complex
phenotypes (Rosyara et al. 2016).

To use multiple-dose markers, the allele dosage must be de-
termined. Several techniques can be used to estimate allele dosage
in polyploids (Clark et al. 2019; Gerard et al. 2018; Gerard and Ferrão
2020; Serang et al. 2012; Wadl et al. 2018). These techniques have
enabled the development of genetic mapping methods for polyploids
(da Silva Pereira et al. 2019; Rosyara et al. 2016). Even with the
available tools, accurate allele dosage estimation demands an ade-
quate amount of high-quality data. To meet this requirement, the first
allele dosage estimation method was developed for SNP-chip data
(Serang et al. 2012). For NGS-based genotyping, abundant sequence
data are needed for species at higher ploidy levels and with larger
genome sizes. Gerard et al. (2018) recommended read depths .
25 and. 90 to obtain accurate allele dosages for autotetraploids and
autohexaploids, respectively. Wadl et al. (2018) developed a GBS
pipeline for polyploid study. They reported that . 100 reads were
necessary to achieve 95% accuracy for allele dosage estimation in
autohexaploid species.

The main objective of this study was to perform genetic mapping
in polyploids in a cost-effective manner (i.e., with low-coverage NGS-
based genotyping data). We propose a simple genetic mapping
strategy for autopolyploids using low-coverage NGS data, and eval-
uate its validity using simulated and real data from two genetic
mapping populations in sweet potato (Ipomoea batatas (L.) Lam).
Sweet potato is a hexaploid species with 90 chromosomes (2n = 6x =
90). In our proposed method, the allele dosage probability for each
single-nucleotide polymorphism (SNP) marker site is calculated on
the basis of read depth information from low-coverage double digest
(dd) RAD-seq genotyping data. We did not attempt to determine
allele dosage where the read depths were too small. Alternatively,
allele dosage probabilities can be used in subsequent genetic map-
pings. This idea is similar to a previous study that used continuous
genotype values from the signal intensities of the SNP-chips for
genetic mapping (Grandke et al. 2016). In the present study, we
applied this idea to low-coverage NGS-based genotyping data. In this
manner, the maximum use of the available genetic marker informa-
tion can be made.

MATERIALS AND METHODS

Plant materials and phenotypes
Two populations of autohexaploid sweet potato (2n = 6x = 90) were
used. One was the F1 derived from reciprocal crosses between the
major Chinese variety Xushu 18 and the wild sweet potato (Ipomoea
trifida) (K123–11); hereafter, this population is referred to as KX-F1.
The other population originated from self-pollinated (S1) Xushu

18 (n = 248) used in a previous study (Shirasawa et al. 2017);
hereafter, this population is called X18-S1. These materials were
developed by the Kyushu Okinawa Agricultural Research Center of
the National Agriculture and Food Research Organization (KARC/
NARO). KX-F1 was phenotyped for color and internode length,
and X18-S1 was phenotyped only for color (Table 1, Figure 1). KX-F1
was planted in a field at Okayama University from June through to
November 2016. X18-S1was planted in afield at theMiyakonojoResearch
Station of KARC/NARO, from June through to November 2016.

ddRAD-seq and variant calling
Genomic DNA was extracted from the KX-F1 leaves with a DNeasy
Plant Mini Kit (Qiagen, Hilden, Germany). The ddRAD-seq analyses
were performed as described in Shirasawa et al. (2016), and ddRAD-
Seq libraries were constructed using the restriction enzymes PstI and
MspI. DNA fragments of 300–900 bp in length were fractionated
using BluePippin (Sage Science, Beverly, MA, USA). The nucleotide
sequences of the libraries were determined on the HiSeq 2000 and
HiSeq 4000 platforms (Illumina, San Diego, CA, USA) in paired-end
mode (93 base or 101 base). The ddRAD-seq reads for the X18-S1
populations were obtained from the DNAData Bank of Japan (DDBJ)
sequence archive, under the accession numbers DRA004836,
DRA004837, and DRA004838. Data were processed as described
in Shirasawa et al. (2017). Low-quality sequences were removed and
adapters were trimmed with PRINSEQ v. 0.20.4 (Schmieder and
Edwards 2011) and fastx_clipper in the FASTX-Toolkit v. 0.0.13
(http://hannonlab.cshl.edu/fastx_toolkit). The filtered reads were
mapped onto the I. trifida “Mx23Hm” (ITR_r1.0) genome sequence
(Hirakawa et al. 2015) using Bowtie 2 v. 2.2.3 (Langmead and
Salzberg 2012). The parameters were set as the maximum fragment
size length (I) = 1000 and the ‘–sensitive’ preset of the ‘–end-to-end’
mode. The sequence alignment/map (SAM) files were converted into
binary sequence alignment/map (BAM) files and subjected to SNP
calling, using the mpileup option in SAMtools v. 0.1.19 (Li et al. 2009)
and the mpileup2snp option of VarScan 2 v. 2.3 (Koboldt et al. 2012).

n■ Table 1 Populations and traits analyzed in the present study

Population Trait Details

KX-F1 (n = 99) Color Skin color: 0 and 1 for white
and purple, respectively.

Internode length Average internode
length (cm).

X18-S1 (n = 248) Color Skin color: 0 and 1 for white
and purple, respectively.

Figure 1 Distribution of phenotypic values. (A) Color of X18-S1. (B)
Color of KX-F1. (C) Internode length of KX-F1.
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The output was a VCF file with SNP data. The information in the
VCF files was loaded into the R platform via ‘read.vcfR’ in vcfR
(Knaus and Grünwald 2017). Markers with missing values. 0.5 were
filtered out using an in-house R script (R Core Team 2018).

Allele dosage estimation
In the present study, the allele dosage was the dosage of the reference
genome type allele for each SNP locus. Results of allele dosage
estimation were represented by a matrix consisting of probability
values (Figure 2). For allele dosage estimation, information on the
depths of the total (DP) and the reference type (RD) reads were
extracted from the VCF files using ‘extract.gt’ in vcfR of R (Knaus and
Grünwald 2017). Individual genotypes with DP , 10 and DP .
300 were filtered out from further analyses. The SNP markers
included potential monomorphic markers. These were identified
using a major genotype frequency, namely, the ratio of individuals
with a specific allele dosage at a given SNP marker. The major
genotype frequency (MGF) was estimated by aggregating the column
elements of the allele dosage matrix (Figure 2). MGF . 0.95 were
filtered out. Gerard et al. (2018) reported noise factors that disturb
allele dosage estimation from the NGS data. Allelic bias represents the
differences in the detectability between alleles due to experimental
constraints, such as difficulties in the detection of certain sequences.
Overdispersion is an additional variability from the expected data
appearance patterns in the observations. This phenomenon is
explained by the differences in the experimental noises between
samples. In the present study for allele dosage estimation we used
the ‘multidog’ function in the R package updog, which considers those
noise factors (Gerard et al. 2018; Gerard and Ferrão 2020). The ‘S1’
and ‘F1’ options were used for the S1 and F1 populations, respectively.

The ‘Norm’ option, which is the recommendation of the function,
was also used for the simulation experiments.

This method is powerful and accurate, its only drawback being the
computational time. As an alternative, we used the following naïve
method. For N-ploid species, the possible allele dosage states are d 2
{0/N, 1/N, . . ., N/N}. For real data, errors in the experimental
procedure introduce bias relative to the theoretical probabilities.
Therefore, the expected value of the allele dosage d in the real data
were determined as r 2 {0/N+e, 1/N, . . ., N/N-e}, where e is the
unknown error probability. We used an ad hoc error probability of
0.001, because this value resulted in a shorter computational time. For
a given DP and RD, the probability (Pr) of dosage di was calculated
using the binomial distribution function:

PrðDosage ¼ diÞ ¼ DPCRD · rRDi · ð12riÞDP2RD (1)

Thus, N + 1 probability values were calculated for each individual at
each SNP site. The relative probability (RPr) for the allele dosage di
was calculated as follows:

RPrðDosage ¼ diÞ ¼ PrðDosage ¼ diÞ=
X

i

PrðDosage ¼ diÞ (2)

In this way, a matrix M was obtained for each SNP marker, with
individuals as row elements. The column elements were the relative
probabilities of the reference type allele dosages calculated by equa-
tion (2). Calculation with the binomial distribution function was
performed in ‘dbinom’ in R (R Core Team 2018). We revisit the
validity of this naïve method in the results and discussion.

Association analyses
The association between marker genotype and phenotype was tested
with a generalized linear model (GLM) using

ŷ ¼ b0 þ b1x (3)

for continuous traits, and

p̂ ¼ 1=f1þ expð2ðb0 þ b1xÞÞg (4)

The term ŷ is a vector of estimated phenotypic values from GLM. p̂ is
equal to Pr{Binary trait value = 1} (where 1 denotes purple, and
0 denotes white in the present study). b0 is the intercept, b1 is a vector
for the effects of each allele dosage state, and x is the estimated allele
dosage information on each SNP marker. To test the statistical
significance of each SNP marker, we performed the likelihood ratio
test of whether b1 = 0 or not. GLM fitting was performed using ‘glm’
in R (R Core Team 2018). The augment family functions ‘binomial’

Figure 2 Example of allele dosage estimation. Part of the result at SNP
Itr_sc000001.1_24872 in X18-S1. ID = the name of individuals. DP and
RD in the read depth column mean the total and reference genome
type read depths, respectively. Values in the colored cells indicate the
relative allele dosage probabilities. The estimation was performed
using the “S1” method in updog.

n■ Table 2 Estimated genome-wide significance thresholds. The values are 2log10(p) obtained from 1,000
permutation tests

Population Trait Association analysis method

Alpha-level

10% 5% 1%

X18-S1 Simulated phenotype Continuous 5.54 5.86 6.62
X18-S1 Simulated phenotype Dogmat 5.42 5.76 6.46
X18-S1 Color Continuous 6.36 6.71 7.52
X18-S1 Color Dogmat 7.00 7.33 8.30
KX-F1 Color Continuous 6.03 6.37 7.14
KX-F1 Color Dogmat 7.74 8.35 9.73
KX-F1 Internode length Continuous 5.76 6.21 6.65
KX-F1 Internode length Dogmat 6.71 7.05 7.82
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and ‘gaussian’ were used for binary and continuous traits, respec-
tively. The likelihood ratio test was performed using ‘pchisq’ in R (R
Core Team 2018) with deviance and degrees of freedom from each
GLM as the arguments. For the estimated allele dosage information (x
in equation 3 and 4), we used two methods. The first method was the
continuous allele dosage that was the product of a matrix of RPr allele
dosage and a vector of possible allele dosage (v = {0, 1, 2, 3, 4, 5, 6})
(Continuous). This method was analogous to the one used in
Grandke et al. (2016). In the second method, the matrix of allele
dosage information was directly used as x in the equations (3) and (4)
(Dogmat). This approach was analogous to the ‘general’ option, from
a feature of the R package GWASpoly (Rosyara et al. 2016), but the
method from our study did not use the kinship matrix for the
covariate of the test.

The genome-wide significant threshold was determined using a
permutation test with 1000 replications. A low number of replications
often results in the underestimation of the significance thresholds,
and it has been suggested that estimating thresholds by using a
generalized extreme-value model is more efficient than taking empir-
ical quantiles. Therefore, we fit a generalized extreme value by means of
the maximum-likelihood method to the values obtained from the
simulations using R package evd (Stephenson 2002) (Table 2).

To build Manhattan plots of the association analyses, the SNP
markers were allocated to 15 homologous linkage groups identified in
a previous study (Shirasawa et al. 2017). Note that the order of the
SNP markers in a homologous linkage group did not correspond to a
genetic or physical map position, because the genetic map of
Shirasawa et al. (2017) did not include SNP marker information,
except for the SS markers, and the physical map of the reference
genome (Hirakawa et al. 2015) used in the present study was
fragmented. The Manhattan plot was created with ‘manhattan’ in
R package qqman (Turner 2014).

Simulation conditions
To investigate the validity and the power of the proposed strategy, we
performed simulation experiments. In these simulations we assumed
the genetic analyses of the S1 population in an autohexaploid species.
The genetic segregation pattern of a locus in the simulated population
was Simplex · Simplex (SS), Duplex · Duplex (DD) or Triplex ·
Triplex (TT). The simulated genotype and NGS data were generated
using the ‘rgeno’ and ‘rflexdog’ functions from the R package updog,
respectively (Gerard et al. 2018). We prepared two conditions; one
with no allelic bias and overdispersion in the NGS data (option od =
0 and bias = 1, in ‘rflexdog’), and another with allelic bias and
overdispersion in the NGS data (option od = 0.05 and bias = 0.5, in
‘rflexdog’).

To evaluate the accuracy of allele dosage estimation, we used a
proportion of individuals with correctly determined allele dosage.
Since these estimations consisted of probabilistic values (Figure 2), we
determined allele dosage as the dosage that showed the highest
probability. For example, in the case of X18-S1-003 the allele dosage
was ‘59 (Figure 2).

For the simplicity of the experimental design and for the un-
derstandability of the results we assumed that the segregation of a
single locus was associated with the simulated phenotype. In general it
is difficult to generalize the power needed to detect an association
between a marker and a phenotypic variation, as this depends on the
population size and the set of markers used in the analysis. In the
simulation experiment we used two settings to bring the condition
closer to reality, and to make the results easier to understand. First, in
the present study the markers and genes that affect phenotypic
variation were created by simulation and not selected from real
genetic markers. This was necessary to determine the genetic effect
of the simulated phenotype, because the true allele dosage was not
available in the low coverage NGS data. Second, all real genetic

Figure 3 Schematic representation of genetic effect
models used for simulations in the present study.

Figure 4 Distribution of read depths for each individu-
al on an SNP marker site. (A) Read depths of X18-S1.
(B) Read depths of KX-F1.
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markers in the X18-S1 population were used as background genetic
markers that were not associated with the simulated phenotype. This
setting was used to determine the significant threshold for the
association study.

The complicated genetic segregation mode in polyploid species
results in various possible genetic effect models (Rosyara et al. 2016).
In the present study, we simulated three genetic effect models that
were analogous to models from a previous study (Rosyara et al. 2016)
(Figure 3). In the additive model, the genetic effect was proportional
to the allele dosage. In the simplex dominant model, all heterozygotes
were equivalent to one of the homozygotes. In the diploidized
additive model, all heterozygotes were equivalent, and exactly halfway
between the two homozygotes.

The proportion of the phenotypic variance explained by a gene
(PVE) strongly affected the power to detect the gene. In the present

study, we simulated genes with PVE values of 0.1, 0.2, and 0.3. We
used the ‘optimize’ function of R to adjust the phenotypes to the PVE.

To investigate the relationship between the power to detect and the
genetic distance between the marker and the target gene, the number of
crossovers between the marker and the gene was determined using a
random variable drawn from a Poisson distribution. The lambda
parameter of the Poisson distribution (i.e., the expected value of the
random variable) was set as the length of the genetic map distance (in
cM) between the marker and the gene. The number of crossovers for
each simulation experiment was drawn from the ‘rpois’ function in R.

Data availability
The phenotype and genotype data, the R scripts, and the R package
developed for the present study are available at https://github.com/yame-
repos/ngsAssocPoly and archived at DOI: 10.5281/zenodo.3861960.

Figure 5 Accuracy of allele dosage estimation using
low-coverage NGS data. Accuracy is indicated by the
proportion of individuals with correctly estimated allele
dosage. The values are based on 100 random simula-
tions. DP indicates read depths. SS, DD and TT indicate
Simplex · Simplex, Duplex · Duplex and Triplex · Tri-
plex markers, respectively. Results obtained without (A)
and with (B) allelic bias and overdispersion in the NGS
data.
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The sequence data from the ddRAD-seq libraries are available in the
DDBJ sequence read archive under accession numbers DRA004836–
DRA004838 and DRA008654–DRA008655 for X18-S1 and KX-F1,
respectively.

RESULTS

Allele dosage estimation in low-coverage NGS data
The ddRAD-seq data from autohexaploid sweet potato populations
was obtained with a standard protocol used for diploid populations
(Shirasawa et al. 2017). Figure 4 shows the distribution of the read
depths. In both X18-S1 and KX-F1, the mode was about 20, and the
medians were 37 and 44, respectively. In previous studies, for the
accurate estimation of allele dosage read depth of over 100 was
recommended (Gerard et al. 2018; Wadl et al. 2018). Therefore, to
investigate the accuracy of allele dosage estimation in low-coverage
data (DP = 20 and 40) we performed simulation experiments, and
compared the results with the recommended read depth (DP = 100).
As expected, higher read depths resulted in higher accuracy (Figure
5). For the allele dosage estimation methods, the inclusion of prior

information on the population type (“S1” in Figure 5) and/or
consideration of noises in the NGS data (“S1” and “Norm” in Figure
5) resulted in higher accuracy than the Naïve method (Naïve in Figure
5) when the NGS data included noises (Figure 5B). However, the
accuracy of allele dosage estimation in markers with complicated
segregation mode (i.e., DD and TT in Figure 5) was less than 0.75 in
the 20 read depth data, even if the estimation method considered
noises in the NGS data (Figure 5). These results confirmed the
conclusions of previous studies, namely that for an accurate allele
dosage estimation high-coverage NGS data are necessary, and thus it
is difficult to use low-coverage NGS data for some standard genetics
approaches, such as the construction of linkage map and QTL interval
mapping (da Silva Pereira et al. 2019; Mollinari and Garcia 2019,
2020).

Potential assessment of genetic mapping using low-
coverage NGS data
Although the determination of allele dosage from low-coverage NGS
data were difficult (Figure 5), a previous study reported that un-
specified continuous allele dosage values were applicable to genetic

Figure 6 Investigation of the power to detect associa-
tions between genetic markers and phenotypic varia-
tion. Power indicates the proportion of experiments that
achieved higher 2log10(p) value than the significant
threshold value determined by permutation test. Results
were obtained from 100 random simulations. Read
depths in the simulated markers were 20 and 40. SS,
DD, and TT indicate Simplex · Simplex, Duplex · Du-
plex, and Triplex · Triplex markers, respectively. Add,
SimDom, and DipAdd indicate additive, simplex dom-
inant, and diploidized additive, respectively. “Continu-
ous” and “Dogmat” indicate continuous allele dosage
values and matrix of allele dosage, respectively. S1 and
Naïve indicate methods to estimate allele dosage. (A)
Relationships between the power and proportion of
variance are explained by the target gene (PVE). Genetic
distance from marker to target gene was 5 cM. (B)
Relationships between the power and genetic distance
from marker to target gene. PVE of the simulated gene
was 0.2.
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mapping (Grandke et al. 2016). Using simulation experiments, we
investigated whether the probability information could be useful for
genetic mapping (Figure 2). Power increased as the PVE of the gene
increased (Figure 6A), and it decreased when the distance between the
marker and target genes became larger (Figure 6B). Next, we in-
vestigated the relationship between the genetic effect models (Figure
3) and read depths (Figure 7A). The estimated allele dosage from the
low-coverage NGS data (DP = 20 and 40) showed power to detect
association, although the use of the true allele dosage had a higher power
(Figure 7A). For an additive genetic effect, the continuous allele dosage
(Continuous in Figure 7) showed higher power, while the matrix of allele
dosage (Dogmat in Figure 7) showed a higher power for the simplex
dominant and the diploidized additive. This feature was prominent when
the marker had a complicated segregation pattern (DD and TT in Figure
7A). Interestingly, the power to detect an association between the dosage
matrix from updog and the naïvemethod were not different (S1-Dogmat
and Naïve-Dogmat in Figure 7A), despite the significantly higher
accuracy of allele dosage estimation in updog (Figure 5).

Differences in the segregation patterns between the marker and
the target gene can prevent the detection of a gene even if the marker

is on the same genetic region. We investigated the situation where the
marker and the target gene were in complete linkage, but their
segregation patterns were different (e.g., the gene was SS, but the
marker was DD). This difference in the segregation pattern between
the marker and the target gene resulted in a drastic decrease in
detection power (Figure 7B), indicating that the use of a larger
number of markers is more advantageous to detect associations,
even if the accuracy of allele dosage estimation is low.

Genetic mapping of sweet potato agronomic traits
We performed association analyses for the real phenotypes in X18-S1
and KX-F1 using the genotype information called by the naïve
method (Table 1, Figure 1). Color is a qualitative, binary phenotype,
while internode length was a quantitative phenotype. For color,
strong significant peaks (Itr_sc000236.1_59664 and Itr_
sc000723.1_30361 for KX-F1 and X18-S1, respectively) were detected
on homologous group 6 (Figure 8A-D). Comparisons of the pheno-
typic values and the estimated allele dosages at the significant SNPs
indicated that the phenotype inheritance mode was simplex domi-
nant (Figure 8G and H).

Figure 7 Investigation of the power to detect associa-
tions between genetic markers and phenotypic variation
under the conditions specific to polyploids. Power indi-
cates the proportion of experiments that achieved
higher 2log10(p) value than the significant threshold
value determined by permutation test. The values are
based on 100 random simulations. PVE of the simulated
gene was 0.2. SS, DD, and TT indicate Simplex · Sim-
plex, Duplex · Duplex, and Triplex · Triplex markers,
respectively. Add, SimDom, and DipAdd indicate addi-
tive, simplex dominant, and diploidized additive, re-
spectively. “Continuous” and “Dogmat” indicate
continuous allele dosage values and matrix of allele
dosage, respectively. S1 and Naïve indicate methods
to estimate allele dosage. (A) Relationship between the
power and read depths (DP). True indicates the cases
where true allele dosage information was available.
Genetic distance from marker to target gene was
5 cM. (B) Relationships between the power and the
genetic segregation patterns of the markers and the
target gene. SS, DD or TT on the title of each panel
indicate the segregation patterns of the target gene.
Marker type on the x-axes indicates the segregation
pattern of markers. Read depths in the simulated
markers were 20 and 40. Genetic distance from marker
to target gene was 0 cM.
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For the internode length of KX-F1, a significant peak was detected on
homologous group 12 (Figure 8E and F). A comparison between the
estimated allele dosage at the highest signal (Itr_sc002801.1_4640) and
the internode length phenotype suggested a proportional relationship
between the phenotypic value and the allele dosage (Figure 8I), indicating
that the genetic effect model was additive (Figure 3). In the simulation
experiment, the association analysis with the continuous genotype
showed a higher power than the dosage matrix genotype for the gene
with the additive genetic effect model (Figure 7A). In fact, the highest
signal on internode length showed a higher 2log10(P) value in the
continuous genotype than in the dosage matrix genotype (Figure 8E, F).

DISCUSSION
We genotyped populations using ddRAD-seq. In general, polyploid
species have large genomes and multiple allele dosages. Therefore,

numerous markers must be developed to capture genetic variation in
the entire genomic region. NGS-based genotyping, such as RAD-seq
and GBS, are powerful because they generate hundreds of thousands
of markers per experiment. High read counts per marker are nec-
essary for the accurate allele dosage estimation (Gerard et al. 2018;
Wadl et al. 2018). The NGS data used in the present study were
obtained through a standard protocol that is used for diploid pop-
ulations (Shirasawa et al. 2017). Therefore, the filtration of markers
with 100 read depths purged most markers (Figure 4). Hence, we
focused on the allele dosage probability, rather than determination,
and we used a comparatively larger number of markers as genotype
data in our association analyses.

In order to evaluate the accuracy of allele dosage estimation in
low-coverage NGS data, we performed simulation experiments,
however, the determination of allele dosage with low-coverage data,

Figure 8 Genetic mapping using real
genotype and phenotype data from
autohexaploid populations. (A-F) Man-
hattan plots of the association analyses
for agronomic traits. The red lines in the
Manhattan plots indicate a 5%genome-
wide significance threshold based on
1000 replicates of the permutation test.
(A) Color of the X18-S1 using the Con-
tinuousmethod. (B) Color of the X18-S1
using the Dogmat method. (C) Color
of the KX-F1 using the Continuous
method. (D) Color of the KX-F1, us-
ing the Dogmat method. (E) Internode
length of KX-F1, using the Continuous
method. (F) Internode length of KX-F1
using the Dogmat method. (G-I) Com-
parisons between the phenotypic val-
ues and the allele dosage probabilities
for the SNP markers. Boxes in each
panel indicate allele dosage probabili-
ties. Rows indicate individuals, and blue
cells in the columns indicate individual
allele dosage probabilities. The gradi-
ent from white to blue indicates values
ranging from 0 to 1. Plots on the right
side of each panel indicate the pheno-
type. (G) SNP Itr_sc000723.1_30361 in
X18-S1. (H) SNP Itr_sc000236.1_59664
inKX-F1. (I) SNP Itr_sc002801.1_4640 in
KX-F1.
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especially in markers with complicated segregation patterns (DD and
TT in Figure 5), was difficult. It has been reported that polyRAD
could achieve a higher allele dosage estimation accuracy in low-
coverage NGS data by using information on parental genotype and
linkage disequilibrium (Clark et al. 2019). In the present study, we did
not use polyRAD because parental genotype information was not
available, and the reference genome was not enough to determine the
physical order of markers identified in the present study. Since the
genetic mapping of polyploid species is still a developing area in
genetics, the use of the latest methods and the surrounding in-
formation (such as reference genomes), will improve the accuracy
of allele dosage estimation.

Interval mapping that uses estimated genotype information be-
tween markers is a powerful approach to detect genetic loci associated
with phenotypic variation (da Silva Pereira et al. 2019). In the present
study, we did not perform an interval mapping approach because the
markers identified here were not enough to construct a genetic
linkage map. Besides, the objective of our study was to determine
if the genetic mapping of a polyploid species could be possible when
accurate allele dosage information is not available. We performed a
simple marker-phenotype association analysis to detect the genetic
loci associated with phenotypic variations. In the simulation exper-
iments, the estimated allele dosage showed enough power to detect an
association, although accurate allele dosage information showed
higher power (Figure 7A). Interestingly, there was little difference
in the power to detect an association between S1 and Naïve (Figure 7),
despite the accuracy of allele dosage estimation being apparently
higher in S1 than in Naïve (Figure 5). This is probably because of the
effect of allelic bias on the estimation of allele dosage, as it has been
reported that the allelic bias representing the difference in the
observed allele frequency and the true allele frequency had problem
in the determination of allele dosage (Gerard et al. 2018). On the
other hand, the impact of allelic bias on the association analysis will
be smaller because in most cases allelic bias results in a proportional
shift of the allele dosage values. For this reason, there will be little
change in the information content as an explanatory variable of the
association analysis. Since the allele dosage estimation methods
accounting for noises in the NGS data require a longer computational
time than the naïve method, the latter can be used as a good
alternative approach when the number of markers are extremely
large. Perhaps the most important result of this study is that the
difference in the segregation patterns between the marker and the
target gene resulted in a drastic decrease in detection power (Figure
7B). This indicates that the use of a larger number of markers is more
advantageous to detect associations, even if the accuracy of the allele
dosage estimation is low. This conclusion is different from those that
used elaborate methods requiring accurate allele dosage information
(da Silva Pereira et al. 2019; Mollinari et al. 2020).

Finally, we confirmed the applicability of the proposed strategy on
real genotype and phenotype data from autohexaploid sweet potato
(Figure 8). Unlike other tools and methods, the only prerequisite
condition in the strategy was that the genotype data must be obtained
by NGS-based methods. For this reason, the approach used in the
present study was easy to use. Nevertheless, a drawback of this
characteristic is that it ignores certain information, such as the precise
chromosomal locations of the genes, because it is difficult to construct
genetic linkage map with low-coverage NGS data. Elaborate methods
that specifically determine allele dosage, are necessary to precisely
map the genetic loci (Bourke et al. 2018; da Silva Pereira et al. 2019;
Mollinari and Garcia 2019; Rosyara et al. 2016). To use them,
however, an abundance of high-quality genotype data are necessary.

Therefore, we recommend the following genetic mapping strategy for
autopolyploid crop species: (1) Perform NGS-based genotyping using
a reasonable data volume. (2) If positive results are obtained, increase
the volume of sequencing data for genotyping and apply the output
toward the complex methods. In this way, the agronomic traits can be
genetically mapped in a cost- and labor-effective manner.
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