
fmicb-11-01590 July 18, 2020 Time: 19:29 # 1

ORIGINAL RESEARCH
published: 21 July 2020

doi: 10.3389/fmicb.2020.01590

Edited by:
Wade H. Jeffrey,

University of West Florida,
United States

Reviewed by:
Fabien Joux,

Sorbonne Universités, France
Peter Croot,

National University of Ireland Galway,
Ireland

*Correspondence:
Mireia Mestre

mireia@icm.csic.es
Josep M. Gasol

pepgasol@icm.csic.es

Specialty section:
This article was submitted to

Aquatic Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 05 April 2020
Accepted: 17 June 2020
Published: 21 July 2020

Citation:
Mestre M, Höfer J, Sala MM and

Gasol JM (2020) Seasonal Variation
of Bacterial Diversity Along the Marine

Particulate Matter Continuum.
Front. Microbiol. 11:1590.

doi: 10.3389/fmicb.2020.01590

Seasonal Variation of Bacterial
Diversity Along the Marine
Particulate Matter Continuum
Mireia Mestre1,2,3* , Juan Höfer4, M. Montserrat Sala1 and Josep M. Gasol1,5*

1 Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain, 2 Centro de
Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción,
Chile, 3 Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad
Austral de Chile, Valdivia, Chile, 4 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso,
Chile, 5 Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia

Seasonal dynamics of ocean prokaryotic communities in the free-living fraction have
been widely described, but less is known about the seasonality of prokaryotes inhabiting
marine particles. We describe the seasonality of bacterial communities in the particulate
matter continuum by sampling monthly over two years in a temperate oligotrophic
coastal ecosystem and using a serial filtration (including six size-fractions spanning
from 0.2 to 200 µm). We observed that bacterial communities in the particulate matter
continuum had annual changes following harmonic seasonal oscillations, where alpha,
beta, and gamma diversity increased during the warm period and decreased during
the cold period. Communities in each size-fraction changed gradually over time, being
the communities in larger size-fractions the ones with stronger annual changes. Annual
community changes were driven mainly by day length and sea surface temperature,
and each size-fraction was additionally affected by other variables (e.g., smaller size-
fractions by dissolved PO4 and larger size-fractions by turbidity). While some taxonomic
groups mantained their preference for a given size fraction during most of the year,
others varied their distribution into different size fractions over time, as e.g., SAR11,
which increased its presence in particles during the cold period. Our results indicate that
the size-fractionation scheme provides novel seasonal patterns that are not possible
to unveil by analyzing only free-living bacteria, and that help to better understand the
temporal dynamics of prokaryotes.

Keywords: bacterial diversity, seasonal dynamics, marine particles, temperate sea, oligotrophic, coastal

INTRODUCTION

Ecological communities are dynamic (e.g., Magurran et al., 2010) and, in particular, aquatic
microbial communities are known to vary over different temporal scales (e.g., Fuhrman et al.,
2006; Kara and Shade, 2009; Gilbert et al., 2012; Jones et al., 2012; Hatosy et al., 2013). Annual
surveys demonstrate that the structure of marine free-living (FL) bacterial communities can be
predicted from ocean conditions (Fuhrman et al., 2006), and the annual succession of FL ocean
surface bacterioplankton communities has been well described in temporal surveys performed in
tropical, temperate, and polar regions (reviewed in Bunse and Pinhassi, 2017). In temperate seas, the
most studied ones, the dynamics of FL bacteria is governed by changes in day length, temperature,
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nutrients, and chlorophyll a (Pinhassi et al., 2006; Gilbert et al.,
2009; Andersson et al., 2010). In these waters, typical summer
water column stratification is associated with communities
dominated by Cyanobacteria, Roseobacter, SAR86, and SAR11
(Schauer et al., 2003; Alonso-Sáez et al., 2007; Lindh et al.,
2015). During winter and spring the mixing of the water column
promotes bacterial communities dominated by Flavobacteria,
Roseobacter, and some Gammaproteobacteria (Teeling et al.,
2012; Buchan et al., 2014; Taylor et al., 2014). However, all these
studies have described only the temporal changes of FL bacteria,
and much less is known on the annual variability of the bacterial
communities attached to particles.

Free-living and particle-attached (ATT) marine bacteria are
known to be taxonomically different (e.g., DeLong et al., 1993;
Grossart et al., 2005; Ortega-Retuerta et al., 2013) and represent
two distinct lifestyle strategies: FL microorganisms tend to
be adapted to low substrate concentrations (Satinsky et al.,
2014), to have smaller genomes (Smith et al., 2013) and exhibit
higher motility (Mitchell et al., 1995; Fenchel, 2001; Grossart
et al., 2001). In contrast, ATT bacteria are often larger than
FL bacteria (Alldredge et al., 1986; Simon et al., 2002), form
denser communities of cells (Simon et al., 2002), and have higher
production (Kirchman and Mitchell, 1982) and respiration rates
(Grossart et al., 2007). ATT bacteria also have higher extracellular
enzyme activities (Karner and Herndl, 1992; Smith et al., 1992),
and are able to hydrolyze more recalcitrant substrates (Grossart
and Simon, 1998; Kiørboe and Jackson, 2001; Kiørboe et al.,
2002). Phytoplankton and zooplankton are the main source of
pelagic particles where marine bacteria attach (reviewed in Simon
et al., 2002) and both functional groups display a clear seasonal
cycle in temperate seas (e.g., Siokou-Frangou, 1996; Calbet et al.,
2001; d’Alcalà et al., 2004; Cabrini et al., 2012; Nunes et al., 2018).
We would hypothesize thus, that bacterial communities attached
to particles should exhibit a seasonal cycle, whose temporal
dynamics may probably be different to that of FL bacteria.

Particulate matter is present in aquatic environments in a
continuum of sizes (Azam et al., 1993; Verdugo et al., 2004). Thus,
the use of a multiple size-fractionation approach which separates
the continuum of sizes of the plankton particulate matter into
a defined number of discrete size-fractions will provide a more
exhaustive description of the bacterial diversity and community
structure than separating bacteria simply using the dichotomy
FL vs. ATT (Mestre et al., 2017a). For example, multiple
size-fractionations revealed that particles of different size (i.e.,
in this case six size-fractions, ranging from 0.2 to 200 µm)
harbor different bacterial communities, richness can be six times
higher in the larger size-fractions than in the smaller ones, and
taxonomic groups can be better described by their preference for
a given size-fraction, instead of classifying them simply as FL vs.
ATT bacteria (Mestre et al., 2017a). Recent studies have described
the spatial variability of the communities in different size-
fractions from the coast to the open ocean and from the surface
to the deep ocean (Mestre et al., 2017b, 2018), but we still know
very little about how bacterial diversity and community structure
in the continuum of particulate matter vary temporally. Up to
date, only three studies, all in temperate areas, have explored the
temporal dynamics of FL vs. ATT communities, and those studies

were performed in a coastal lagoon (Mohit et al., 2014), an estuary
(Selje and Simon, 2003), and an eutrophic coastal site (Yung et al.,
2016). In two of the cases (Selje and Simon, 2003; Mohit et al.,
2014), the authors used only one filter to separate the FL from the
attached bacterial communities, thus, overlooking the possible
differences in communities associated to particles of distinct size
ranges. In a more comprehensive sampling, Yung et al. (2016)
analyzed the bacterial communities present in four different size-
fractions but approached the community as a whole and did
not describe the variations over time of the more abundant
taxonomic groups associated with particles. These studies showed
differences in the composition of FL and ATT communities and
clear temporal trends, but the seasonality and the interannual
recurrence were not unveiled because their sampling lasted for
one year or less. Therefore, we still do not know: (1) whether
the bacterial communities and individual taxonomic groups
associated to different size-fractions have seasonality; (2) whether
the seasonal patterns described are repeatable and extendable to
a longer period (i.e., if there is interannual recurrence also in
the larger size fractions); and (3) which environmental factors
drive these patterns.

We characterized monthly the diversity of bacteria in six
different size-fractions (ranging from 0.2 to 200 µm), in the
Blanes Bay Microbial Observatory (BBMO), over two years,
to determine whether bacteria in the different size-fractions
display repeatable changes throughout the year at both individual
taxonomic groups and community levels, and to identify the key
drivers influencing FL and ATT bacteria seasonality. The BBMO
is an oligotrophic coastal system in the NW Mediterranean
sea with seasonal dynamics typical of a temperate region and
relatively unaffected by human influence (Gasol et al., 2012).
Bacterial richness at the BBMO is higher for the larger size-
fractions (Mestre et al., 2017a) and given the seasonal changes
in phytoplankton (Gasol et al., 2016; Nunes et al., 2018), pico-
and nano-plankton (Giner et al., 2019), and zooplankton (Calbet
et al., 2001) in the area, we hypothesize that the dynamics of
bacterial diversity will be strongly structured by size-fraction, and
that we will be able to detect clear and different seasonal patterns
for each size-fraction.

MATERIALS AND METHODS

Study Area, Sampling, and
Environmental Conditions
Samples were taken monthly between June 2011 and June 2013
at the BBMO, an oligotrophic coastal station (20 m depth) placed
0.5 miles offshore (41◦40’N, 002◦48’E) in the NW Mediterranean
Sea, which has regularly been sampled for microbial ecology
studies during the last decades (Gasol et al., 2012, 2016). Surface
water (0.5 m depth) was taken and pre-filtered through a 200-
µm mesh net and transported to the laboratory in darkness. For
bacterial diversity analyses, a total of 10 L was filtered using a
peristaltic pump at very low speed and pressure, and sequentially
through 10, 5, 3, 0.8 and 0.2 µm pore-size polycarbonate filters
of 47 mm diameter (Millipore, Billerica, MA, United States).
The first year the system incorporated a mesh net of 20 µm,
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whereas the second year a 20 µm pore-size polycarbonate
filter of 47 mm diameter (GE Water and Process Technologies.
Trevose, United States) was added, increasing by one the number
of size-fractions. We minimized clogging and disaggregation
processes by prefiltering all the samples through 200 µm, using
very low vacuum pressure, and changing the filters when the
flow slowed down (usually the 0.2 and 0.8 µm pore-size filters
were replaced at least once per filtration). All the filters of the
same pore-size were pooled to be processed together as one
single sample. All filters were stored immediately at −80◦C
until extraction. The size-fractions were defined as: 0.2–0.8; 0.8–
3.0; 3.0–5.0; 5.0–10; 10–20 and 20–200 µm. In parallel, a set
of environmental conditions [day length, temperature, salinity,
secchi disk depth, chlorophyll a, inorganic nutrients, total organic
carbon (TOC), particulate organic carbon (POC), bacterial
activity, and bacterial abundance] were measured. Methods for
determination of these environmental parameters can be found
in Supplementary Methods S1.

DNA Extraction, Sequencing, and
Sequence Processing
The DNA was extracted as described in Massana et al. (1997) and
hypervariable regions V1-V3 16S DNA tags were PCR amplified
with the primers 28F/519R (specific for bacteria, and not for
archaea). It has been recently reported (Dadon-Pilosof et al.,
2017) that this primer pair can overestimate or underestimate
relative abundances of some taxonomic groups when compared
to primers 515F-926R (Parada et al., 2016). Still, in our study
the biases would apply equally to all samples and a general
overestimation or underestimation of relative abundances of
certain groups would not interfere with their variability along
the size fractions or over time and thus with the temporal
patterns we describe. The PCR products were 454 GS FLX+
pyrosequenced by Research and Testing Laboratory (Lubbock,
TX, United States)1. Reads from 150 to 600 bp were quality
checked (Phred quality average > 25) by using a 50 bp sliding
window in QIIME (Caporaso et al., 2010). Pyrosequencing errors
were reduced with Denoiser and the reads were clustered into
OTUs with a 97% similarity threshold with UCLUST within
QIIME. Chimeras were detected with ChimeraSlayer (Haas
et al., 2011) and SILVA108 was used as a reference database, in
MOTHUR (Schloss et al., 2009). Taxonomy assignment was done
using SILVA Incremental Aligner (SINA v1.2.11). Unwanted
OTUs (eukaryotes, chloroplast, mitochondria or OTUs with less
than 5 sequences in total) were removed. The samples were
randomly subsampled to the number of reads present in the
sample with the lowest number of reads (n = 1,000).

Data Analysis
Statistical analyses and graphs were done in R2 using the packages
vegan (Oksanen et al., 2017), simba (Jurasinski and Retzer, 2015),
and minpack.lm (Elzhov et al., 2016). The OTUs were grouped at
phylum, class and genera level.

1www.researchandtesting.com
2www.r-project.org

To elucidate how community assembly within each size-
fraction varies along time, Bray–Curtis distances were calculated
between a given size-fraction in January 2013 and the same
size-fraction at other sampling dates. January 2013 was selected
as a reference because it was the sample with higher diversity.
The disimilarities of community assembly among all samples
were also calculated with Bray–Curtis distances, and distances
were visualized by non-metric multidimensional scaling (nMDS)
analysis. Finally, statistical differences between size-fraction,
month and year were explored with a permutational multivariate
analysis of variance test (PERMANOVA), with the adonis
function (R vegan package). The environmental variables that
most influenced community composition were determined with
the function bioenv (R package vegan) using the OTUs table and
the environmental matrix combined. The environmental matrix
included: day length, sea surface temperature, salinity, secchi disk
depth, chlorophyll a, nutrients, POC, TOC, bacterial activity, and
bacterial abundance. The influence of environmental variables
on community assembly was visualized with a distance-based
redundancy analysis (dbRDA), performed with function capscale
(R package vegan).

To describe how bacterial diversity varied in the context
of the six size-fractions over time, the true alpha (the average
richness among the six size-fractions), the true gamma (the total
richness of the six size-fractions) and the true beta diversity (the
taxonomic differentiation between the six size-fractions) were
calculated for each month with the R package simba following
Tuomisto (2010).

The annual components of the variables day length,
sea surface temperature, average alpha-, beta-, and gamma-
diversity were analyzed by a harmonic analysis performed
with the Levenberg-Marquardt algorithm for solving nonlinear
least-squares problems, using the function nls.lm of the R
package minpack.lm (Elzhov et al., 2016), and where the
error for the estimated unkown variables was determined
by the Hessian matrix. Data was adjusted to the following
trigonometric equation:

Y = b1+ b2 · cos
(

2π

365
· t + b3

)
Where Y is the variable analyzed, b1 is the annual mean, b2 the
amplitude, b3 the diphase (ordinal date of the annual maximum),
365 the period, and t the ordinal date, ranging from 1 to 365.

We selected the most abundant taxonomic groups, i.e., those
that represented >1% of the total abundance, at least once, in
at least one size-fraction (17 taxonomic groups in total). The
remaining taxonomic groups were considered “rare” and pooled
together as “other bacteria”. To evaluate whether these taxonomic
groups maintained or shifted their preferences for a given size-
fraction throughout the year, we determined an “Heterogeneous
Distribution Index” (HDI), which was calculated as follows:
for each taxonomic group, the relative abundances of all size-
fractions and months were averaged (named as “annual average”
of a particular taxonomic groups). Taking the annual averages
of a given taxonomic group as a reference, we calculated the
deviations that occurred every month and in each size-fraction
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from that annual average (the absolute difference between a
given value and the annual average). Then, the sum of the
absolute deviations of all size-fractions in each month for a
given taxonomic group was calculated. This relative value, which
we named HDI, has no units and is a relative measure, being
low when all distributions are similar, high when they are very
distinct, and equal to 1 if all distributions are identical. This value
could then be averaged across all months for a given taxonomic
group (annual HDI for a given taxonomic group), or across all
taxonomic groups for a given month (monthly HDI for the whole
community). For more details, see Supplementary Methods S2.

RESULTS

This study was performed at the BBMO, an oligotrophic
temperate coastal site, characterized by a strong seasonal
forcing, with warm summers and relatively cold winters. This
seasonal variability was well represented during this 2-year
study (Supplementary Figure S1): Day length and sea surface
temperature presented a continuous and harmonic variation
along the year, with an annual maximum of day length in
June (average 15.2 h) and an annual minimum in December
(average 9.2 h), and an annual maximum of sea surface
temperature in August (24.1◦C) and an annual minimum in
February-March (12.5◦C). These values were not distinct from
previous descriptions including more than 10 years of data (e.g.,
Gasol et al., 2016).

Temporal Variability of the Bacterial
Communities
The bacterial communities were structured in a gradient along
the size-fractions and over time, according to a nonmetric
multidimensional scaling plot (Figure 1). Further, the nMDS
showed that communities were separated into two main groups,
corresponding to two main periods: from November to April

(colder months), and from May to October (warmer months).
A PERMANOVA test confirmed that the observed differences
were statistically significant: communities were different
according to the factors “size-fraction” (communities differed
from one size-fraction to the other, PERMANOVAbySize−fraction
R2 = 0.279, p < 0.001, n = 120), “month” (communities
differed from one month to the other, PERMANOVAbyMonth
R2 = 0.275, p < 0.001, n = 120), and among two major
clusters (communities from colder months were different from
those of warmer months, PERMANOVAbyCluster R2 = 0.095,
p < 0.001, n = 120).

The communities varied temporally, and this variation was
gradual through the year (Figure 2A). Still, the magnitude
of this gradual variation was distinct in each size-fraction,
being the smaller size-fractions the ones with less variation
of community composition through the year (Figure 2B). In
general, the magnitude of this variability increased from the
smallest towards the larger size-fractions, and the size-fraction
with higher seasonal variability was the 10–20 µm size-fraction.
However, a decrease in the magnitude of this variability was
observed in the largest size-fraction (20–200 µm, Figure 2B).

The variables that best predicted the temporal changes
in community composition of the overall dataset were sea
surface temperature (r = −0.92) and day length (r = −0.82)
(Supplementary Table S1). In addition, temperature and
day length separated samples mainly into two main groups,
determined by the axis dbRDA1 (Supplementary Figure S2). The
dbRDA performed with each size-fraction separately showed that
bacterial community composition of a particular size-fraction
was driven by sea surface temperature and day length, but also
by a particular combination of environmental factors (Figure 3).
As a general trend, we observed that turbidity (i.e., Secchi depth)
played an important role in the larger size-fractions (i.e., 5.0–
10, 10–20, and 20–200 µm), whereas PO4 concentration was
more relevant in the smaller size-fractions (i.e., 0.2–0.8 and
0.8–3.0 µm) (Supplementary Table S2).

FIGURE 1 | nMDS ordinations representing the Bray–Curtis distances between bacterial communities. Distances were calculated from the rarefied OTU table.
Samples are color-coded depending on the month (left panel) and size-fraction (right panel).
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FIGURE 2 | Bray-Curtis distances measured between January 2013 and the other months, and for each size-fraction separately. (A) Representation of Bray-Curtis
values along time, from January to December. The dots are colored by size-fraction as they are in panel (B). (B) Representation of Bray-Curtis values of each
size-fraction. The upper and lower lines of each box-plot correspond to the 1st and 3rd quartile of the distribution of values. The median values are shown with
horizontal black wide lines.

FIGURE 3 | Distance-based redundancy analysis (dbRDA) representing samples over the year (square dots) and the environmental parameters that best explain the
distribution of the communities (black arrows). Each panel corresponds to the different size-fractions. See section “Materials and Methods” for details.

Considering the clustering configuration of the bacterial
communities observed in the nMDS and the dbRDA analyses,
we defined 2 major assemblies of communities, corresponding to
the warm-period communities and the cold-period communities.

Both periods presented in general the same dominant taxa, but
different community assembly (Figure 4). Synechococcus sp.,
SAR11 and Flavobacteria dominated both periods, where SAR11
and Synechococcus sp. had preference for smaller size-fractions
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FIGURE 4 | Average taxonomic composition of the cold (November–April) and warm (May–October) periods, and in each size-fraction. Community composition is
expressed as percentage of the total number of sequences in each size-fraction (for more details see section “Materials and Methods”). Only taxonomic groups with
>1% in abundance are represented, and the remaining taxonomic groups are pooled together as “Other bacteria”.

(0.2–0.8 µm and 0.8–3.0 µm, respectively), and Flavobacteria
had preference for larger size-fractions. Synechoccoccus and
Flavobacteria were more abundant during the warm period,
and SAR11 during the cold period. The warm period was
also characterized by the higher presence of Rhizobiales,
Rhodobacterales, and Sphingobacteriia (with preference for larger
size-fractions), whereas Planctomycetes was more abundant
during the cold period (with preference for larger size-fractions).

Modeling Diversity and Environmental
Variables Over Time
We observed a large variability in richness (number of
OTUs) between size-fractions and over time (Supplementary
Figure S3). As a general pattern, we observed that richness
increased with increasing size-fraction (Supplementary
Figure S4). In addition, we observed an increase of diversity
(alpha, beta and gamma diversity) during the warm period, and
a decrease of diversity (alpha, beta, and gamma diversity) during
the cold period (i.e., the average number of species, the total
number of species and the global community differentiation
among the size-fractions of a given month increased during
the warm period, and decreased during the cold period)
(Supplementary Figure S5).

The temporal dynamics of water temperature, day length,
average alpha, beta, and gamma diversity were studied using a
harmonic analysis of each time series. The harmonic analysis
shows that the seasonal cycle of each variable was different
(Supplementary Table S3) with day length peaking earlier in the
year (June) and being followed by water temperature in August,

beta diversity in September (i.e., larger differences between
particles), gamma diversity in October (i.e., higher diversity
within each size fraction), and alpha diversity in November (i.e.,
higher total diversity) (Figure 5). The sequence shown by these
similar seasonal cycles suggests the possibility of a mechanistic
relationship linking these variables.

Temporal Variability of the Bacterial
Dominant Taxa
Seventeen taxonomic groups had abundances >1% and
dominated the community assembly during the two years,
but their relative abundances were highly variable among
size-fractions and over time (Supplementary Figure S6).
We classified these taxonomic groups into four categories,
considering their preference for small or large size-fractions
(structure across size-fractions) following Mestre et al. (2017a):
(a) taxonomic groups enriched in the small size-fractions
(for example SAR11); (b) taxonomic groups enriched in the
smaller size-fractions, but depleted or absent in the smallest one
(0.2–0.8 µm, such as Synechococcus); (c) taxonomic groups that
did not present enrichment in relation with size-fraction (e.g.,
Deltaproteobacteria); and (d) taxonomic groups enriched in the
larger size-fractions (e.g., Flavobacteria).

The relative abundances of each of these taxonomic groups
over time (Supplementary Figure S7) revealed that, while
some maintained their structure across size-fractions, others
did not. We devised a way of quantifying, for each taxonomic
group, the degree of variation over time of their distribution
across size-fractions, named as Heterogeneous Distribution
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FIGURE 5 | Seasonal cycle of day length, sea surface temperature, average
alpha-, beta-, and gamma diversity. Black dots represent the data registered
at Blanes Bay from June 2011 to June 2013. The solid black lines correspond
to model-based values obtained after applying the results from the harmonic
analysis, while the dotted black lines represent the 95% confidence interval of
the predicted values. Vertical gray lines portray the ordinal date of the annual
maximum of each seasonal cycle (b3) according to the harmonic analysis.
Details about the fitted parameters of the harmonic analyses and their errors
can be found in Supplementary Table S3.

Index, or HDI (Table 1). Calculated for the various taxonomic
groups considered, it varied from a value of ca. 2 for those
groups that changed little their enrichment over time (i.e.,
maintained preferences for a given size-fraction), such as
Flavobacteria, Synechococcus, Rhodobacterales, Oceanospirillales,
or Verrucomicrobia; to a value of ca. 6 for those groups that
presented very different enrichments in each size-fraction at
different times of the year, such as SAR11, Planctomycetes or
SAR116 (Figure 6). Finally, the “monthly HDI for the whole

community,” which represents the average HDI of all taxonomic
groups, was in general higher during the warmer months and
lower during the colder months, indicating that during periods of
higher temperatures, the community as a whole presented larger
variability in their distribution across the size classes.

DISCUSSION

Bacterial diversity and community assembly in the particulate
matter continuum vary spatially, as has been shown before in
the Mediterranean (Mestre et al., 2017b) or elsewhere (Mestre
et al., 2018). Yet, we know little about how diversity and the
communities present in the particulate matter continuum vary
temporally. Recently (Yung et al., 2016), reported on general
temporal variations using a multiple size-fractionation scheme.
Now, we use a larger data-set, and we focused on examining
the seasonal changes. We specifically test whether bacteria
(at individual taxonomic groups and at the community level)
inhabiting the different size-fractions display repeatable changes
over the year and what environmental key drivers influence their
recurrent seasonal patterns.

Seasonal Variability of Bacterial
Communities in the Particulate Matter
Continuum
Previous studies have described that, in temperate sites, the intra-
annual variability of community composition of FL bacteria can
have two distinct dynamics: either gradual changes throughout
the year (Schauer et al., 2003) or non-continuous and rapid
transitions between warm and cold months (Ward et al., 2017).
Studies analyzing the temporal variability of ATT bacteria are
scarce and while supporting the idea of different FL and ATT
prokaryotic communities, reached contrasting conclusions with
regard to which of both communities exhibit larger changes over
time (Selje and Simon, 2003; Mohit et al., 2014; Yung et al.,
2016). Here, we observed that the community assembly of both
the FL and the various ATT size-fractions were different, varied
over time, and this variation was gradual throughout the year
for all size-fractions. In our integrative effort in sampling and
data analysis, we observed that community assembly presented
two main configurations, corresponding to colder and warmer
months. We also observed a systematic oscillation between the
two main configurations (i.e., winter and summer) and this
gradual oscillation has also been detected in the same area using
a 10 years’ time series of unicellular pico- and nano- eukaryotes
(Giner et al., 2019). In addition, we observed that the fraction
that showed less variability in community composition over the
year was the smallest, whereas the larger the size-fraction was
the more variable community over time. This result suggests
that FL communities have a more homogeneous niche along
the year than their ATT counterparts. Variability in community
composition in larger size-fractions may be linked to the annual
variability of particle composition, that may be chemically and
ecologically more variable than the dissolved phase. Yet, we know
little of the intra-annual variability of particle characteristics in
Blanes Bay, nor from elsewhere.
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TABLE 1 | Heterogeneous Distribution Index (HDI) values for each taxonomic group and for each month.

Months

Category Taxonomy January February March April May June July August September October November December Average

A SAR116 clade (Alphaproteobacteria) 12.38 4.35 9.59 7.69 7.23 6.07 4.83 4.17 7.8 6.15 5.47 5.12 6.7

SAR11 clade (Alphaproteobacteria) 5.56 7.17 9.41 1.34 7.15 6.2 3.13 9.34 16.31 5.08 7.55 3.9 6.8

B Synechococcus (Cyanobacteria) 2.1 3.43 2.26 1.79 3.73 1.35 2.22 1.8 2.78 1.64 2.32 1.42 2.2

C Actinobacteria 5.27 2.35 1.76 7.17 3.07 2.6 3.24 2.61 1.8 3.39 3.23 1.4 3.2

Deferribacteres 6.27 1.63 4.78 3.75 9.13 8.37 8.46 5.21 4.47 3.44 4.79 2.69 5.3

Oceanospirillales (Gammaproteobacteria) 2.01 1.03 2.03 3 8.74 1.14 2.34 3.54 1.14 1.79 1.52 1.3 2.5

D Rhodobacterales (Alphaproteobacteria) 6.18 2.01 1.15 3.37 1.81 3.49 3.15 1 2.61 2.25 2.84 1.89 2.6

Alteromonadales (Gammaproteobacteria) 2.57 2.39 3.19 2.62 3.12 3.46 3.45 3.92 1.92 2 5.63 3.23 3.1

Cytophagia (Bacteroidetes) 7.23 1.72 4.03 5.77 3.83 4.75 7.02 8.85 3.03 2.51 5.15 4.04 4.8

Vibrionales (Gammaproteobacteria) 6.75 8.6 2.09 4.21 4.57 3.38 13.47 6.5 3.68 2.03 5.21 4.78 5.4

Sphingobacteriia (Bacteroidetes) 2.18 2.24 4.46 9.59 2.89 3.38 4.96 7.24 2.55 1.37 3.38 2.72 3.9

Firmicutes 1.28 1.71 5.11 5.93 2.14 5.02 4.68 3.92 2.24 1.65 3.5 1.9 3.3

Planctomycetes 3.67 3.37 7.17 1.84 5.66 17.97 17.44 2.76 4.02 4.18 3.93 2.16 6.2

Verrucomicrobia 1.99 1.96 3.85 4.54 1.82 1.37 2.79 1.02 1.73 1.02 4.17 1.04 2.3

Rhizobiales (Alphaproteobacteria) 1.11 3.09 4.05 2.52 2.53 2.94 3.55 1.8 2.01 3.99 2.01 1.37 2.6

Deltaproteobacteria 1.6 4.9 1.77 2.03 5.61 4.21 8.92 2.46 2.86 3.1 6.47 4.49 4

Flavobacteria (Bacteroidetes) 1.05 1.4 1.71 4.37 1.43 1.62 3.06 2.09 0.93 0.7 2.65 1 1.8

Average all groups together 3.96 3.04 3.89 4.14 4.23 4.48 5.54 3.87 3.55 2.71 4.28 2.54 3.9

Annual averages of HDI values are also included (see section “Materials and Methods” for details related to the calculation of HDI). Taxonomic groups are classified in 4 categories that correspond to their preference for
small or large size-fractions (see section “Results” for details of this classification).
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FIGURE 6 | Examples of taxonomic groups with low (Synechococcus and Rhodobacterales) and high (SAR11, Planctomycetes) Heterogeneous Distribution Index
(HDI) values. The spider chart represents the relative abundances (average values of the two years) of each taxonomic group, in each month (colors) and in each
size-fraction (cardinal points in the sphere). Synechococcus and Rhodobacterales have contributions to community composition in the different size classes that are
relatively stable throughout the year, whereas SAR11 and Planctomycetes vary significantly their distributions through the year (see section “Materials and Methods”
and Table 1 for details).

Particles are heterogeneous and can be originated in-situ
[e.g., plankton cells and derived particles such as transparent
exopolymeric particles (TEPs) and fecal pellets] or arrive
from allochthonous sources such as sediment resuspension,
atmospheric deposition and terrestrial runoff (e.g., Guerzoni
et al., 1999; Ferré et al., 2005; Lucea et al., 2005). In Blanes Bay,
the water column is completely mixed during most of the year
except summer (Vila-Costa et al., 2007), and this mixing may
contribute to sediment resuspension, especially during periods of
windstorms and waves (Guadayol et al., 2009). In summer, the
water is in general stratified, preventing sediment resuspension,
but dust atmospheric deposition has the annual maximum values
in this area (Querol et al., 2009). How this input of allochthonous
particles affect specifically attached bacterial communities in
Blanes Bay is unknown, but there are studies in the same
area analyzing their effect over FL bacteria, and these studies
show that dust addition experiments contribute little to changes
in FL microbial community composition (Lekunberri et al.,
2010; Laghdass et al., 2011; Pulido-Villena et al., 2014; Marín-
Beltrán et al., 2019). In Blanes, zooplankton, phytoplankton, and
unicellular nanoeukaryotes display clear changes of abundance
and diversity throughout the year (Calbet et al., 2001; Gasol et al.,
2016; Nunes et al., 2018; Giner et al., 2019) and particles produced

by phytoplankton such as TEPs (Passow, 2002) also exhibit a
seasonal cycle (Ortega-Retuerta et al., 2018). Some bacteria are
physically linked to planktonic communities (e.g., Grossart et al.,
2005; Tang et al., 2010; DeCorte et al., 2014; Seymour et al., 2017)
or their derived particles such as fecal pellets (Hansen et al., 1996)
or TEPs (Zäncker et al., 2019). Consequently, it is very likely
that annual variations in particle-associated bacterial community
structure might in part be related to the seasonal changes in
phytoplankton, zooplankton, and other unicellular eukaryotes to
which bacteria can attach and in some other cases they might
be associated to the input of allochthonous particles such as
those that are resuspended from the sediment or that arrive by
atmospheric deposition.

The key drivers of bacterial community structure in all size-
fractions were sea surface temperature and day length, and
the same was observed in previous studies analyzing only the
FL bacteria in temperate sites (Pinhassi and Hagström, 2000;
Pinhassi et al., 2006; Andersson et al., 2010), and elsewhere
(Gilbert et al., 2012; Chow et al., 2013; Ward et al., 2017).
Remarkably, together with temperature and day length, other
measured variables played a role in determining bacterial
community structure in different size-fractions. For example,
small size-fractions were highly influenced by dissolved PO4
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concentration, which is a limiting nutrient for bacterial growth
in the NW Mediterranean (Sala et al., 2002; Pinhassi et al., 2006),
while chlorophyll and turbidity (i.e., proxies of the quality and
quantity of particles in the water column) were important drivers
for the attached community, something that has been suggested
before (Simon et al., 2002). Conversely, Yung et al. (2016)
observed no relationship between any of their environmental
variables (bulk-water) and bacterial composition in larger size-
fractions, but they did not measure the same variables as we
did. Yung et al. (2016) argued that FL bacteria are likely
more responsive to bulk-water properties than particle-attached
bacteria, and that bacteria on particles may be protected
from environmental conditions or could respond to factors
that they had not measured. Our data indicates that ATT
bacterial communities are not completely isolated from bulk-
water properties (as they were driven e.g., by chlorophyll and
turbidity) and thus we can conclude that ATT bacteria are
influenced by both the properties of the waters surrounding
the particles and by the specific niches occurring in different
size-fractions (Mestre et al., 2017a).

A Harmonic Seasonal Oscillation of
Bacterial Diversity in the Particulate
Matter Continuum
Another detected seasonal pattern is that bacterial diversity in all
size-fractions increased during the warmer months (from May to
October), showing a maximum between October and November,
and decreased during the cold months (from November to
April). A higher diversity towards colder months had already
been reported in temperate sites for the FL fraction (García
et al., 2015; Rieck et al., 2015), aerobic anoxygenic phototrophic
bacteria (AAPs) (Ferrera et al., 2013), Archaea (Galand et al.,
2010) and unicellular pico- and nano-eukaryotes (Giner et al.,
2019). Although the highest values in the diversity of FL
bacteria, archaea, AAPs, unicellular eukaryotes, and bacteria in
all size-fractions were very close in time, they were not exactly
coincident, evidence that different environmental conditions
drive the phenology of each planktonic group.

Interestingly, when we fit a harmonic model to the temporal
variability of the various diversity measures (alpha, beta, and
gamma bacterial diversity), we observed that the model presented
an annual pattern similar to that of day length and temperature.
We, moreover, observed that all these variables had their annual
maximum during the warmer months, and their minimum
during the colder months. Different maximum peaks were
separated by a small time lag. Annual harmonic oscillations
with maxima during the warmer months were also observed
at the same area for various components of the dissolved
organic matter pool, with dissolved organic carbon (DOC)
accumulating and becoming more refractory in late summer
(Romera-Castillo et al., 2013). Also in the same sampling
site, TEPs peaked during early summer, indicating that TEP-
enriched particles accumulate in surface waters during the
stratified periods (Ortega-Retuerta et al., 2018). Thus, we could
hypothesize that the progressive accumulation of dissolved
and particulate complex organic molecules during the warmer

months may likely promote the increase in bacterial diversity
within each size-fraction by creating new niches within the
particulate matter continuum. Furthermore, the sequence of
harmonic events reveals that all oscillations may be linked: day
length directly affects seawater temperature, which produces
summer water column stratification, preventing the flux of new
inorganic nutrients into the bay. This stratification would favor
the accumulation of DOC and TEPs during summer that would
in turn influence the composition of the particles, increasing
the diversity of bacteria present in the different size-fractions
during the warmer months. Still, we lack studies describing the
annual variation in the composition of the particulate matter, as
well as studies describing the mechanistic processes modifying
the POC and DOC pools. We will need this information to
better disentangle the links among the harmonic oscillations
occurring along the year.

Some Taxonomic Groups Can Change
Seasonally Their Preference for a
Particular Size-Fraction
Most abundant bacterial taxa can colonize several size-ranges
of the particulate matter continuum (e.g., from 0.2 to 200 µm)
and, depending on their distribution along this spectrum,
bacterial taxa can be classified into two major groups: those with
preference for small size-fractions, and those with preference
for larger size-fractions (see details in Mestre et al., 2017a).
Still, a detailed analysis of how taxa inhabiting the particulate
matter continuum vary through time was lacking. First, we
evaluated if all taxa preference for certain size-fractions was
consistent throughout the year or, in contrast, whether they
varied their preference to some extent. For this, we devised
a way of quantifying this variability: the HDI (Heterogeneous
Distribution Index). The HDI tells us, for each taxonomic group,
the degree of consistency over time of their enrichment across
size-fractions. Most of the taxonomic groups presented low
values of HDI, indicating that the preference for a given size-
fraction is constant over time for most taxa, but three of them
(Planctomycetes, SAR11 and SAR116) presented elevated values,
revealing that these taxa were more abundant in a size fraction at
some parts of the year and in another size fraction during other
parts of the year.

Our results reveal that the size-fractionation scheme together
with the HDI are useful to describe the temporal variability
of a given taxonomic group. For example, in the case of
Synecchococcus sp. we found that their relative abundances
were quite high all over the year with increases during
the warmer months (as previously reported in Alonso-Sáez
et al., 2007; Gasol et al., 2016; Nunes et al., 2018) and that
Synecchococcus sp. had higher abundances in smaller size-
fractions (0.8–3.0 µm) but was depleted or absent in the smallest
size-fraction (0.2–0.8 µm) (as previously reported in Mestre
et al., 2017a). We can add that Synechococcus sp. had low
HDI values, i.e., this preference for small sizes (0.8–3.0 µm) is
consistent through the whole seasonal cycle. Other groups that
maintained their structure along the size-fractions over time (i.e.,
with low HDI values) were Flavobacteria and Rhodobacterales.
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Both taxonomic groups were abundant along the year (5–
20% of total community abundance), especially in the warmer
months, and appeared especially in larger size-fractions. We
observed that Flavobacteria and Rhodobacterales presented
strong variations in abundances from one month to the other,
probably responding to monthly changes in the composition
of the particles, as it is known that both groups can respond
rapidly to algal blooms (Buchan et al., 2014; Needham and
Fuhrman, 2016). Still, despite their rapid monthly changes in
abundances, both taxa always maintained their preference for
larger size-fractions.

Conversely, SAR11 is an example of a taxonomic group
that eventually varies its enrichment in small size-fractions
over time (i.e., high HDI): as a general trend, we observed
that SAR11 was more dominant in the smallest size-fraction.
This general rule changed during the cold period, when the
presence of SAR11 in particles increased. Moreover, the diversity
of SAR11 (number of OTUs) increased during the cold period
(Supplementary Figures S8, S9), in agreement with previous
observations (Salter et al., 2014). This reveals that during winter
there is a high diversification of SAR11, when some of the
clades/ecotypes are strongly adapted to the attached lifestyle. In
agreement with our data, SAR11 has been described mostly as FL
bacteria (Giovannoni and Vergin, 2012), but with some ecotypes
adapted to particles (Allen et al., 2012). Here we observed that
SAR11 attached to particles concurred with the typical late-
winter phytoplankton bloom of the NW Mediterranean Sea
(Duarte et al., 1999; Gasol et al., 2016), which suggests that
the SAR11-attached populations might respond to pulses of
particulate matter derived from phytoplankton. Hunt et al. (2008)
demonstrated that closely related strains coexisting in the same
site can inhabit different size-fractions, thus, showing resource
partitioning and sympatric differentiation among closely related
bacteria. We hypothesize that the same ecological differentiation
may occur within the SAR11 clade, a group that presents high
microdiversity (García-Martínez and Rodríguez-Valera, 2000;
Brown and Fuhrman, 2005).

CONCLUSIONS

Our multiple size-fractionation approach applied to a temporal
time series indicates that the bacterial communities present in
each size-fraction changed monthly, and that communities in
larger size-fractions are the more variable over time. These
temporal changes were gradual throghout the year and were
closely related to the variation in day-length and sea surface
temperature. Further, specific environmental factors influenced
certain size-fractions, as e.g., smaller size-fractions were more
influenced by PO4, whereas attached communities were more
driven by turbidity. Diversity (including all fractions) was higher
at the end of summer along with a higher differentiation of
the communities present on different particles. As a general
rule, most abundant taxonomic groups retained their preference
for certain size-fractions along the year. Yet, certain taxa may
change their preferences over time. For example, SAR11 ecotypes

preferred smaller size-fractions in summer and larger size-
fractions in winter. Summarizing, the study of bacteria in several
size-fractions in a time series generates a broad vision of the
seasonal dynamics of bacterial communities, and reinforces the
importance of taking the particulate matter continuum into
account to describe and unveil in a more comprehensive way the
ecology of aquatic microorganisms in their complex planktonic
microbial habitats.
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