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A B S T R A C T

This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), empha-
sizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 
relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment 
planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural 
times, personalizing treatments, and improving treatment outcomes for oncological patients. However, chal-
lenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a trans-
formative opportunity to optimize IRT and meet evolving patient needs.

Introduction

Artificial Intelligence (AI) is a rapidly advancing field within com-
puter science, striving to develop machines capable of performing tasks 
typically associated with human intelligence. This encompasses a range 
of techniques, including machine learning (ML), deep learning (DL), and 
natural language processing (NLP), which are literally revolutionizing 
the healthcare systems [1]. AI is exerting a burgeoning influence across 
all scientific domains, and it has already made inroads into clinical 
oncology practice, yet ongoing and intensified efforts are essential to 
fully unleash its potential [2]. AI holds potential in at least four distinct 
areas within the workflow of radiotherapy such as clinical decision 
support, “multi-omics” data integration, streamlining repetitive tasks to 
optimize time efficiency and overall treatment quality, and modeling 
behaviors in diverse contexts [3]. Despite advancements in technology, 

a significant portion of the radiotherapy workflow still relies on labor- 
intensive, manual tasks performed by a team of diverse and scarce 
healthcare professionals, including radiation oncologists, medical 
physicists, radiologists, medical dosimetrists, nurses, and radiation 
therapists [4].

Unlike external beam radiotherapy (EBRT) which has faced 
tremendous technological advancements, including the preliminary 
integration of AI applications, interventional radiotherapy (brachy-
therapy − IRT) continues to rely heavily on the expertise and technique 
of the physician rather than technological innovations [5–7]. In fact, 
when dealing with IRT, it is fundamental to consider at least three 
different areas of possible issues namely the need to perform time 
consuming tasks, the need to consider a learning curve and the scanti-
ness of highly trained personnel [8].

Moreover, automation holds the potential for substantial reductions 
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in healthcare costs and increase in generalizability and reproducibility 
of IRT. These attributes are applicable across all stages of the IRT 
workflow: first patient consultation, implant, delineation, planning and 
treatment delivery [9]. The aim of this review is to highlight how AI 
could bridge the gap between technical innovations and patient- 
centered care, ensuring that AI advancements address the specific 
needs and improve the overall experience of patients undergoing IRT.

Materials and methods

We performed a systematic literature search including a combina-
tions of the terms “artificial intelligence”, “machine learning”, “deep 
learning”, “brachytherapy” and “interventional radiotherapy” trough 
titles and abstracts indexed on PubMed from its inception until March 
2024. The abstracts that were obtained were manually sorted to ensure 
relevance. Additionally, cross-references from pertinent articles were 
gathered from sources outside of PubMed, with duplicates removed. The 
inclusion criteria encompassed original research papers focusing on AI 
and brachytherapy. We opted to exclude reviews, letters to the Editor, 
papers not written in English, or contributions not primarily addressing 
AI and IRT. The complete texts of all chosen publications underwent 
screening for inclusion.

Two researchers, each with a minimum of 10 years of clinical 
expertise in IRT, independently conducted the search (BF, EP). If there 
were multiple publications related to a topic, we selected the most 
recent ones or those with the largest subject pool for discussion. Another 
dedicated team composed by an interventional radiation oncologist 
expert in large databases and AI, a medical physicist expert in AI and a 
physicist expert in real world data analysis (MdR, LS, SP) extracted the 
data presented in this review with articles grouped into clusters based on 
the major areas of interest examined. The team pinpointed three distinct 
topics to explore from the patients’ viewpoint, where AI could effec-
tively aid in supporting both patients and physicians in fostering a 
therapeutic alliance.

Firstly, we examined the importance of patient empowerment. Sec-
ondly, we delved into the requirement for treatment personalization. 
Lastly, we addressed the necessity for quality assurance (QA) throughout 
the whole treatment process.

Finally, a third team, composed of experts in physics, IRT, EBRT and 
radiology (KT, JMHL, FAS, LB, MAG, MDS, ES, LT), supervised and 
reviewed the entire process and validated the final version of the 
manuscript.

Results

We identified 129 papers from 2002 to 2024 and we did not consider 
reviews (14 articles) or papers not focusing specifically on IRT and AI as 
primary topic (37 contributions).

There were only a handful of papers released prior to 2017, but the 
number of papers published per year has been steadily increasing since 
then, as depicted in Fig. 1.

The countries which contributed most were the US, China and 
Canada. Fig. 2 presents a detailed list of all nations involved.

The most common treatment sites were gynecological and prostate 
cancers, with other tumor sites reported in Fig. 3.

We categorized the 78 papers into four main categories: contouring 
(24 articles), treatment planning (38 articles), treatment outcome pre-
diction (11 articles) and QA (5 articles). More specifically, referring to 
the treatment planning, authors referred to high-dose rate (HDR) in 75 
% of the papers, whereas to low-dose rate (LDR) in 25 %, with no paper 
specifically dealing with pulsed dose rate (PDR).

When analyzing such groups with a focus on the potential advantage 
within the clinical workflow we came to the conclusion that AI has a 
major impact in terms of time-saving for repetitive tasks such as con-
touring and all the phases of the treatment planning (especially for 
catheter reconstruction where some author report up to 75 % of time 

saving compared to manual task).
Regarding the articles about treatment outcome prediction, aimed at 

both predicting local control or toxicity, the most relevant contribution 
is to provide clinicians with a useful tool which could be used in the 
decision-making process.

Lastly, the relevance of papers addressing the issue of QA are articles 
of paramount relevance because in IRT literature such topic is unfor-
tunately underrepresented even though is crucial for the accurate 
treatment delivery.

At this stage, our patient-centered approach allowed us to connect 
the primary issues identified in the current IRT clinical setting with the 
potential benefits linked to AI usage and the ultimate advantage from 
the patients’ perspective, as outlined in Fig. 4.

Fig. 1. Number of papers published per year.

Fig. 2. Number of papers published per country.

Fig. 3. Number of papers published per topic.
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For the first point we focused on time-consuming tasks, such as 
catheter reconstruction and dose distribution, which could definitively 
benefit from AI. In fact, in the clinical scenario of IRT patients typically 
wait for the treatment delivery with the applicator/needles placed 
within the site to treat, therefore the time saving has multiple potential 
benefits for the patients. In fact, in case of procedures not requiring 
anesthesia this shall allow for a better compliance of the interventional 
procedure itself. In cases where general anesthesia is required the 
benefit is of course a shorter duration and therefore reduced peri-inter-
ventional anesthesiologic complications. The great addition would 
however still be with the possibility to have more time available to foster 
the relationship with the patient, adequately informing and supporting 
his/her choices.

Regarding the second issue, namely the need for dedicated training 
in IRT and, therefore, the inevitable presence of a learning curve, the aid 
provided by AI could support the radiation oncologist by predicting the 
expected oncological outcomes and possible side effects. This point is of 
paramount relevance because the possibility to discuss with the patient 
the risk of relapse and/or of specific toxicities could actually lead to 
pursue a real treatment personalization which adequately takes into 
account the therapeutic choices shared with the patients.

The third aspect to consider is the relative lack of adequately trained 
specialists in IRT to ensure a proper independent check of another 
specialist on all the interventional procedures; with this regard, the role 
of AI is crucial because it could intercept potential deviations from the 
standard clinical practice warranting the need for patient Quality 
Assurance.

Furthermore a detailed list of the potential benefits for patients 
deriving from the use of AI in IRT and corresponding with the clinical 
workflow phase and the specific sub-topic is presented in Table 1.

Regarding contouring, the identified papers focused on image 
registration across various imaging modalities such as US, CT, and MRI. 
Several authors explored AI’s role in identifying clinical target volumes, 
while most articles focused on contouring organs at risk.

In treatment planning, AI made contributions in both applicator se-
lection and reconstruction. Needle positioning and reconstruction were 
also widely investigated. For HDR IRT, significant attention was given to 

source activation and dwelling times; conversely, LDR analysis focused 
on seed number and placement.

Regarding treatment outcomes, some authors focused on factors 
associated with recurrence after treatment, including dosimetric, his-
topathological, and clinical features. Others concentrated on predicting 
toxicity, suggesting AI could offer valuable contributions for personal-
ized follow-up, particularly regarding timing.

Finally, a few articles addressed quality assurance, offering insights 
into detecting inconsistencies among parameters and deviations from 
expected values.

Discussion

Cancer patients encounter various obstacles throughout their treat-
ment journey, including: physical hurdles (including pain, fatigue, 
stress, toxicity, hair loss, symptom management, and more), psychoso-
cial challenges (involving existential crises, anxiety, depression, ques-
tioning of faith/hope, coping with social stigma, changes in social 
dynamics, diminished self-esteem, disruption of personal life plans) and 
organizational difficulties (including fragmented care, financial bur-
dens, lifestyle changes) [88,89].

Patient empowerment encompasses three elements that are pertinent 
to the formulation of specific strategies: first, the intrapersonal compo-
nent, which is concerned with self-perception; second, the interaction 
aspect pertains to individuals’ resources available to achieve their ob-
jectives; finally, the interaction component bridges perceived control 
with actual behavior, constituting the behavioral dimension of PE, 
which includes active coping behaviors and participation [90]. 
Empowerment and awareness play a vital role as patients must grasp 
and assimilate disease-related information and medical instructions to 
make informed decisions about their treatment options and effectively 
navigate through the oncological care system [91].

It is crucial to establish a multi-dimensional approach where patients 
can explore various aspects of their health, such as physiological, psy-
chological, social, and spiritual dimensions. In pursuit of this goal, 
participatory medicine should align with value-based healthcare prin-
ciples, wherein patient engagement occurs through clinicians under-
standing, involving, and providing a coherent narrative of care that is 

Fig. 4. AI contribution in bridging the gap between IRT and patients’ needs 
(from the patients’ perspective).

Table 1 
Main categories and topics in the articles included.

Benefit for 
patients

Workflow 
phase

Specific subtopic Articles

More time to 
dedicate to 
patients

Contouring − Image registration/fusion 
(US, CT, MRI) 
− Clinical target volume 
identification 
− Organs at risk contouring

[10–33]

Treatment 
planning

− Applicator choice and 
reconstruction 
− Needles number and 
reconstruction 
− Source activation and 
dwelling times 
− Seeds number and positions

[34–71]

Decision 
supporting tool

Recurrence 
prediction

− Factors associated with 
recurrence (dosimetric, 
histopathological and clinical) 
− Follow-up personalization 
(timing)

[72–78]

Toxicity 
prediction

− Factors associated with 
toxicity (dosimetric and 
clinical) 
− Follow-up personalization 
(timing)

[79–82]

Quality assurance 
check

Quality 
assurance

− Deviation from standard 
values 
− Inconsistencies among the 
parameters

[83–87]

B. Fionda et al.                                                                                                                                                                                                                                  Clinical and Translational Radiation Oncology 49 (2024) 100865 

3 



validated within the professional relationship and through the care 
experience [92]. Several tools are available to oncology teams to address 
these challenges, including art therapy [93] and AI-driven technologies 
[94]. These tools serve as adjuncts to standard care, offering additional 
support while enhancing the patient’s care experience with empathy 
and upliftment [95].

As we showed in Table 1 it is possible to categorize the different steps 
of the IRT workflow into contouring, treatment planning, recurrence 
prediction, toxicity prediction and quality assurance.

With regard to contouring and treatment planning they are by far the 
most time-consuming phases of the IRT workflow; during these phases 
patients are regularly supervised by the nursing staff while radiotherapy 
technologists, medical physicists and radiation oncologists perform the 
several steps. First of all, the radiation oncologist delineates the organs 
at risk (OARs) and target volumes. Another radiation oncologist should 
verify these delineations. Shortly after the radiotherapy technologist (or 
medical physicist) reconstructs the applicator and catheters, indepen-
dently checked by another operator.

Upon approval of delineations and reconstructions, a treatment plan 
is proposed by the technologist (or medical physicist) and subsequently 
reviewed or optimized by the radiation oncologist. Ideally before final 
approval the plan should be independently checked by another radiation 
oncologist. In a recent article focusing on 56 cervical cancer IRT pro-
cedures these steps accounted for an average of 3 h [96].

Additionally, the gap in radiation therapy knowledge and difference 
in experience between well-equipped and under-resourced healthcare 
systems represents one of the most significant global disparities in 
cancer care. Several experiences have specifically emphasized the exis-
tence of a learning curve in IRT procedures [97]. As an illustration, in a 
study encompassing 42 patients undergoing IRT for prostate cancer, the 
duration of operating room procedures decreased from 3.6 to 2.4 h, and 
the time required for treatment planning reduced from 2.0 to 1.3 h as the 
operators gained experience [98].

Moreover, the increasing complexity of these interactions between 
physicians’ skills and modern technology, coupled with the rising 
prevalence of cancer, has resulted in shortages of radiation oncology 
personnel worldwide and a rise in the variability of care quality. 
Importantly, discrepancies in the radiotherapy treatment planning 
process have been demonstrated to have adverse effects on overall 
survival, even within clinical trials where efforts are made to stan-
dardize approaches [99].

Applicator digitization errors significantly affect treatment planning 
dosimetry. DL reliably automates applicator reconstruction in about 20 
s, cutting observer errors and planning time.

As mentioned before about the time consumption for repetitive tasks, 
a recent study aimed at assessing the viability of employing a deep- 
learning algorithm for the semi-automatic reconstruction of interstitial 
catheters within an MR-only workflow. In about 20 gynecological pa-
tients, the mean reconstruction time for the AI approach turned out to be 
about 11 min, compared with 46 min for the expert planners [50].

Another important aspect to consider is the prediction of recurrence 
and toxicity, where clinical experience plays a critically important role. 
Regarding the learning curve, the support coming from the use of AI has 
been proven to be useful in several aspects. A first possible application 
could be to guide the clinicians in the choice of the best applicator for 
the treatment volumes [54]; another possible support could come from 
providing radiation oncologists with indications related to the prognosis 
of the disease after the IRT treatment [77]; it is noteworthy that crucial 
information could also be related to the possible presence of side effects 
based on the dose received by the OARs [79]. All these use cases would 
benefit from building a retrospective digitized collection of IRT pro-
cedures, that would then be used ’digital avatar’ for various educational 
purposes.

When dealing with precision medicine, it’s crucial to consider both 
patient health outcomes and overall health status. Creating and 
executing this approach hinges on cooperation among patients, patient 

organizations and healthcare professionals. Patient health outcomes 
should be evaluated based on the aspects that hold the greatest signifi-
cance to patients, including recovery, functional enhancement, physical 
well-being, emotional health, and the capacity to carry out daily activ-
ities [100].

The last category to consider, which could significantly benefit from 
artificial intelligence, is quality assurance—an essential area that stands 
to gain further optimization in everyday clinical practice. With regard to 
the contribution of AI in QA there are several experiences in literature 
fostering the introduction of automated programs supporting the clini-
cians in the workflow assessment. In one report, among about 4729 
fractions delivered 7 events potentially associated with patient safety 
were identified and the authors conclude that 57 % of such events could 
have been detected by using additional programs supporting the clini-
cians check [101]. Also in this case there is evidence that AI could 
reduce the time of the independent check with an average reduction 
time of 16 min in one recent report [102].

Some authors have underlines that even though deep learning ap-
plications for radiotherapy have undergone great development they are 
yet to be validated from a clinical point of view in the light of some 
uncertainties and therefore strict QA protocols and close human super-
vision will still be needed in the near future [103].

With regard to QA programs, they are aimed at facilitating treatment 
standardization and equipping clinicians with data regarding optimal 
equipment and human resource utilization. Additionally, it aids in 
establishing uniform procedures for the effective management of the 
radiotherapy workflow, aiming to enhance local control and survival 
rates on a broader scale, while mitigating the severity of treatment- 
related complications and optimizing the access to the therapies [104].

Summarizing both possible potential advantages and possible 
drawback emerge in the current scientific literature for IRT. With regard 
to the benefits treatment planning could be significantly enhanced, 
leading to more precise and personalized radiation dose distributions. AI 
algorithms can analyze complex patient data to optimize the placement 
of radioactive sources, minimizing exposure to healthy tissues while 
maximizing the dose to the tumor. This could result in improved treat-
ment outcomes and reduced side effects. Furthermore, AI can streamline 
workflow, reduce planning time, and assist in real-time decision-making 
during procedures, ultimately increasing the efficiency and accuracy of 
IRT treatments [105].

On the other hand, at the moment, the clinical implementation of AI 
in IRT still needs to be validated by expert clinicians to ensure clinical 
safety and efficacy. In fact AI systems, though capable of processing vast 
amounts of data and identifying patterns that may elude human anal-
ysis, are not infallible. They can be subject to biases inherent in their 
training datasets, potentially leading to skewed or suboptimal treatment 
recommendations. Furthermore, AI lacks the ability to understand and 
incorporate the full spectrum of clinical subtleties, such as a patient’s 
comorbidities, preferences, and real-time physiological responses. 
Expert radiation oncologists bring a depth of experience and critical 
thinking that AI currently cannot match. They can interpret AI outputs 
within the broader context of each patient’s unique medical situation, 
ensuring that treatment plans are not only technically sound but also 
holistically appropriate. Additionally, the ethical considerations and 
responsibilities inherent in oncology care necessitate human oversight 
to maintain accountability, patient trust, and adherence to established 
medical standards. Thus, the collaborative integration of AI and expert 
human judgment is essential to harness the full potential of AI while 
safeguarding patient health and upholding the integrity of clinical 
practice [106,107].

Conclusion

Artificial intelligence tools have the potential to offer significant 
support to modern interventional radiation therapy (brachytherapy). 
They can streamline time-consuming tasks, provide decision support 
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tools, and aid clinicians in ensuring QA. These advantages directly align 
with the needs of oncological patients who are seeking empowerment in 
their treatment journey, are interested in personalized therapeutic ap-
proaches, and prioritize treatment quality. By integrating AI into the 
workflow, the ultimate goal is to enhance the patient experience, 
ensuring that treatments are not only more efficient but also tailored to 
individual patient needs and preferences, thereby improving overall 
care and outcomes.
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