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Abstract: Sericin is a by-product of the silk industry. Its recycling contributes to environmental
protection and the sustainable development of the cocoon silk industry. In this paper, on the basis of
realizing sericin enrichment in solution, the Cu(Il) adsorption capacities of sericin-derived carbon
(SC), prepared at different pyrolysis temperatures, were studied. SC was characterized using scanning
electron microscopy (SEM) and the zeta potential. The effects of the initial concentration of Cu(II),
pH, adsorption temperature, and contact time on the adsorption process were evaluated, followed
by an investigation of the mechanism of Cu(Il) adsorption by SC. The results showed that SC has
a porous structure that provides sites for Cu(Il) adsorption. The maximum adsorption capacity of
Cu(II) onto SC1050, 17.97 mg/g, was obtained at an adsorption temperature of 35 °C and a pH of
5.5. In addition, the pseudo-second-order kinetic model and Langmuir isotherm model correctly
described the adsorption process of Cu(Il) onto SC1050. Therefore, SC can act as a potential adsorbent
for removing Cu(Il) from water. This study helps promote the effective use of cocoon silk resources.

Keywords: silk sericin; sericin-derived carbon; copper(Il); adsorption

1. Introduction

Industries such as the electronics, brass manufacturing, fertilizer, pesticide, and tex-
tile industries are major sources of copper pollution in water [1-3]. Due to the non-
biodegradability, persistence, extreme toxicity, and accumulation effect of Cu(Il) [4], drainage
of wastewaters without effective treatment can cause not only serious contamination of
water resources, but also severe damage to the health of aquatic life, and from there to
human beings. Relevant studies show that Cu(Il) accumulation limits the growth and
development of plants and causes a reduction in the fecundity of aquatic life [5,6]. More-
over, an enrichment of trace copper(ll) in organisms can be achieved through the food
web, leading to excessive intake of copper by people, which can evoke diarrhea, hepatic
and renal dysfunctions, and severe mental and neurological illnesses [5,7-9]. Numerous
approaches and techniques, including adsorption [10], membrane separation [11], electro-
coagulation [12], chemical precipitation [13], and microbial treatment [14], have been used
to remove copper ions from water. Compared with other technologies, adsorption has the
advantages of simple operation, high efficiency, and relatively low cost, with a wide range
of adsorbents [2,15-19].

Silk sericin (SS) is a highly hydrophilic macromolecular protein ranging from
20 and 400 kDa in molecular weight and composed of 18 amino acids [20]. It is a glue-like
protein that coats silk fibroin fibers in raw silk offering protective and adhesive effects
to the silk fibroin, and constituting 25-30% of the cocoon silk fibers [21]. To improve the
luster, softness, and dyeability of silk fabrics, SS is traditionally discarded by a degumming
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process, resulting in much protein loss, which can further cause water contamination and
eutrophication [22].

Several studies have worked on using discarded SS to remove heavy metal ions
from water. Dusi et al. [23] reported the use of sericin—alginate particles to remove Cu(II)
ions from aqueous solutions, and their maximum adsorption capacity was 87.27 mg/g.
Singh et al. [24] showed that prepared chitosan—sericin conjugates could effectively remove
Cr(VI) ions from water, with a maximum adsorption capacity of 139 mg/g. However, the
above works did not discuss enriching SS from the aqueous environment. Furthermore,
because of its hydrophilicity, SS from prepared composites can re-enter the water during
the adsorption process.

Our previous work [25] reported that SS can be cross-linked with carboxymethyl
chitosan (CMCS) through hydrogen bonding and then electrodeposited with CMCS on an
anode to form composite hydrogel under low voltage. We proved that SS was the main
component of SS/CMCS hydrogel, accounting for 77.12% of the hydrogel total mass.

Here, a prepared SS/CMCS hydrogel was pyrolyzed at 450 °C, 650 °C, 850 °C, and
1050 °C. Then, the fabricated hydrogel was applied to Cu(ll) adsorption in water. The
pyrolysis process effectively avoided the re-entry of SS into water during the adsorption.

2. Results and Discussion
2.1. Porous Structure Characterization

Figure 1 shows the SEM images of freeze-dried hydrogel and the derived carbon
pyrolyzed at different temperatures. As shown in Figure 1a, the SS/CMCS hydrogel surface
exhibited an irregular, reticular, and porous structure, possibly due to intermolecular
crosslinking among the CMCS and SS molecules [25]. Figure 1b—e shows that a higher
pyrolysis temperature could lead to a more developed pore structure. As the pyrolysis
temperature increased from 450 °C to 1050 °C, the pore size on the surface of SC450, SC650,
SC850, and SC1050 gradually shrank and the pore structure became densely arranged,
which was consistent with a previous report that the carbon framework continued to shrink
as the temperature of heat treatment gradually increased in [26]. Table 1 shows that the
BET surface area of each sample gradually increased with the carbonization temperature,
providing a larger contact area and more adsorption sites, thus improving the adsorption
capacity of SC [27].
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Figure 1. Representative SEM images of (a) SS/CMCS hydrogel, (b) SC450, (c) SC650, (d) SC850, and
(e) SC1050.
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Table 1. BET surface area of the samples.

Sample BET Surface Area (m?/g)
5C450 146.27

5C650 632.30

SC850 1036.87

SC1050 1340.45

2.2. Batch Adsorption Experiments
2.2.1. Effect of Initial Concentration

The influence of Cu(ll) initial concentration on the adsorption capacity is shown
in Figure 2. Increasing Cu(ll) initial concentration enhanced the adsorption capacity of
Cu(Il) on all SC samples. With the Cu(ll) initial concentration increasing from 5 mg/L to
40 mg/L, the adsorption capacity of Cu(II) on SC450, SC650, SC850, and SC1050 increased
gradually. This result was due to the increase in Cu(Il) initial concentration enhancing the
driving force of adsorption processes, thus enhancing the removal of Cu(II) ions from the
solution [28,29].
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Figure 2. Influence of Cu(Il) initial concentration on the adsorption capacity (pH = 5.0, adsorption
temperature = 25 °C, contact time = 24 h).

On the other hand, SC had a higher absorption capacity when pyrolyzed at 1050 °C
instead of 450 °C, 650 °C, and 850 °C. At a Cu(ll) solution concentration of 40 mg/L, the
equilibrium adsorption amount of SC450, SC650, and SC850 for Cu(Il) was 11.71 mg/g,
13.80 mg/g, and 15.06 mg/g, respectively. Increasing the pyrolysis temperature to 1050 °C
increased the adsorption amount of Cu(Il) on SC1050 to 20.08 mg/g. SEM and BET
results showed that the SC prepared at 1050 °C had a denser pore structure, which led
to a larger SC1050 surface area, provided more adsorption sites, and thus increased the
adsorption capacity of Cu(Il) on SC1050 [30]. Therefore, SC1050 was used as the adsorbent
in subsequent experiments.

2.2.2. Effect of pH

The initial solution pH is crucial for the metal ion adsorption capacity of an adsorbent
because it can affect not only the surface charge and ionization degree of the adsorbent
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but also the aqueous solution chemistry of metal ions [31]. Since turbidity (suspensions
of copper hydroxide) could be clearly observed in Cu(Il) solution when the solution pH
was adjusted to 6 [32], a pH range of 4.5-5.5 was selected to explore the influence of pH on
Cu(II) adsorption. Figure 3 shows that SC1050 exhibited the lowest Cu(II) ion adsorption
capacities when the solution pH was 4.5. This result could be attributed to a large amount
of H* ions in the solution competing with Cu?* ions for the active adsorption sites, resulting
in low adsorption capacity of Cu(Il) ions [33].
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Figure 3. Effect of solution pH on the Cu(Il) adsorption capacity of SC1050 and the zeta potential of
SC1050 at three pH values (Cu(II) initial concentration = 15 mg/L, adsorption temperature = 25 °C,
contact time =24 h).

In addition, the zeta potential of SC1050 at pH values of 4.5, 5.0, and 5.5 was measured
to explore its adsorption mechanism. Figure 3 shows that a solution pH of 5.5 made the
surface charge of SC1050 more negative, increasing the ionic strength between SC1050 and
the positively charged Cu(II) ions, which made the adsorption more effective. Therefore, a
pH of 5.5 was selected for subsequent adsorption experiments.

2.2.3. Effect of Temperature on the Sorption of Cu(Il) Ions and a Thermodynamic Study

The influence of temperature on the sorption of Cu(Il) is shown in Figure 4. An
increase in temperature was found to enhance the sorption of Cu(II) onto SC1050. This
enhancement might have been due to the higher temperature providing sufficient energy
for copper ions to bind to the surface and interior of SC1050 [2].

The thermodynamic fitting curve is shown in Figure 4b, and the thermodynamic
parameters are reported in Table 2. According to Table 2, the negative AG value increased
with increasing temperature, showing that the adsorption process was more favorable at
higher temperatures and implying that the adsorption process was chemisorption [9]. In
addition, the positive AH value indicated that adsorption was endothermic. Moreover, as
the value of AS was positive, the probability of a successful collision between Cu(Il) and
5C1050 might increase, which could strengthen the Cu(Il) adsorption [33].
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Figure 4. (a) Effect of temperature on Cu(Il) adsorption onto SC1050 and (b) a van’t Hoff plot
for adsorption of Cu(Il) onto SC1050 (Cu(Il) initial concentration = 15 mg/L, pH = 5.5, contact
time =24 h).
Table 2. Thermodynamic parameters for adsorption of Cu(II) onto SC1050.
T (K) AG (kJ/mol) AH (KJ/mol) AS (J/mol-K)
288.15 -1.02
298.15 -1.27 6.16 2491
308.15 -1.52
2.2.4. Effect of Contact Time on the Adsorption Process and the Adsorption Kinetics
As shown in Figure 5, the adsorption amount of Cu(Il) on SC1050 varied with contact
time and could be divided into three stages: the adsorption rate was fast within the
initial 30 min, it gradually slowed down from 30 min to 6 h, and the adsorption reached
equilibrium at 6 h. The explanation was that in the early stage of the adsorption process,
many adsorption sites on the SC1050 surface were rapidly occupied by Cu(Il) ions, resulting
in a fast adsorption rate [34]. However, the adsorption sites progressively became saturated
over time and reached equilibrium.
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Figure 5. (a) Effect of contact time on the Cu(Il) adsorption capacity of SC1050 and
(b) pseudo-first-order and pseudo-second-order plots of Cu(Il) sorption onto SC1050 (Cu(II) ini-
tial concentration = 15 mg/L, pH = 5.5, adsorption temperature = 35 °C).

To explore the adsorption process kinetics, pseudo-first-order and pseudo-second-
order kinetic models were used to fit the experimental results. The fitting curve and the
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calculated parameters are reported in Figure 5 and Table 3, respectively. The adsorption
appeared to fit better to a pseudo-second-order kinetic model, indicating that the adsorption
process of SC1050 was mainly controlled by chemisorption, which involved the sharing or
exchange of electrons between Cu(II) and SC1050 [35].

Table 3. Pseudo-first-order, pseudo-second-order, and IPD models of Cu(Il) adsorption onto SC1050.

Pseudo-First-Order Pseudo-Second-Order
Sample Je,exp (mg/g)
Qecal (Mg/g) kg x 10~3 (min—1) R? Qe,cal (mg/g) ko x 103 (g/mg-min)  R2
SC1050 17.98 17.17 0.11 0.87 18.02 0.01 0.97

Furthermore, the kinetics and rate-limiting step of the adsorption were elucidated
using the intra-particle diffusion (IPD) model. The IPD fitting curve of Cu(II) adsorption
and the values of the rate constant are reported in Figure 6 and Table 4, respectively.
Figure 6 shows that the plot exhibited a multi-linearity, in accordance with two stages: the
first linear portion was due to the diffusion of Cu(II) through the solution to the external
surface of SC1050 and the second linear portion described intra-particle diffusion [36].
The rate constant of the first stage was greater than that of the second stage (Table 4),
indicating the initial adsorption was rapid surface adsorption controlled by film diffusion,
and intra-particle diffusion controlled the adsorption process [35]. Additionally, the fitting
plot did not intersect the origin, indicating that intra-particle diffusion was not the only
rate-limiting step [33].
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Figure 6. The IPD model for Cu(II) adsorption.

Table 4. Intra-particle diffusion rate constant for the adsorption of Cu(Il) onto SC1050.

IPD

Sample

1/2) 1/2)

kij; (mg/g-min
SC1050 1.85 0.15

kj» (mg/g-min

2.2.5. Adsorption Isotherm

Adsorption isotherms are used to describe the relationship between the adsorbate and
adsorbent at equilibrium [37]. The fitting plots and fitting parameters of Cu(Il) adsorption
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onto SC1050 are shown in Figure 7 and Table 5, respectively, which reveal that the Lang-
muir model could better describe the process of Cu(Il) adsorption onto SC1050 at 35 °C,
indicating monolayer adsorption of Cu(II) ions onto SC1050. Furthermore, Figure 7d shows
that the Ry, values calculated by the Langmuir model were greater than 0 but less than 1
for all initial concentrations, meaning that the adsorption process of Cu(Il) onto SC1050
was favorable [1].
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Figure 7. (a) Adsorption equilibrium isotherm of Cu(II) on SC1050, (b) the fitting plot of the Langmuir
isotherm, (c) the fitting plot of the Freundlich isotherm, and (d) a plot of the separation factor versus

initial Cu(Il) concentration (pH = 5.5, adsorption temperature = 35 °C, contact time = 24 h).

Table 5. Langmuir and Freundlich isotherm parameters for Cu(Il) adsorption onto SC1050.

Freundlich Isotherm Model
ki (L/mg) R? n kr (L/mg) R?
0.11 0.87 18.02 0.01 0.97

Langmuir Isotherm Model

Sample
qmax,cal (mg/ g)

27.14

SC1050

2.3. Determination of Cu on SC Using ICP-OES
SC1050 was placed in 15 mg/L of Cu(Il) solution for 24 h (experimental group). Then,
ICP-OES was used to determine the Cu on SC1050. According to Table 6, an enrich-

ment of Cu on SC1050 was observed, compared with the control group (no immersion in
Cu solution).
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Table 6. Cu content in SC1050.

Group Cu Content (mg/L)
Control 0.012 + 0.017
Experimental 0.212 4+ 0.007

3. Materials and Methods
3.1. Chemicals

CMCS was purchased from Shanghai Ryon Biological Technology Co., Ltd. (Shanghai,
China). Sodium chloride was purchased from Aladdin Biotech Co., Ltd. (Shanghai, China).
Copper nitrate hydrate and hydroxylammonium chloride were purchased from Shanghai
Macklin Biochemical Co., Ltd. (Shanghai, China). Trisodium citrate dihydrate and sodium
acetate trihydrate were purchased from Chengdu Chron Chemicals Co., Ltd. (Chengdu,
China). Acetic acid was purchased from Sangon Biotech Co., Ltd. (Shanghai, China).
The 2,9-Dimethyl-1,10-phenanthroline hemihydrate was purchased from Tianjin Heowns
Biochemical Technology Co., Ltd. (Tianjin, China). Nitric acid, hydrofluoric acid, hydrochlo-
ric acid, and hydrogen peroxide were purchased from the Beijing Institute of Chemical
Reagents (Beijing, China). Deionized water was from a Milli-Q Direct-8 purification system
(resistivity >18 MQ)-cm, Millipore Corp., Boston, MA, USA).

3.2. Sample Preparation
3.2.1. Fabrication of the SS/CMCS Hydrogel

A CMCS solution with a concentration of 1% (w/v) was prepared and adjusted to
pH =12 with 5 M NaOH to ensure that the CMCS could be completely dissolved [38]. Then,
SS powder was dissolved in deionized water to prepare an SS solution with a concentration
of 8% (w/v). The SS and CMCS solutions were mixed in equal volumes at room temperature,
and the resulting solution was adjusted to pH = 7.5 with 0.1 M NaOH. After magnetic
stirring for 4 h, the SS/CMCS solution was stored at 4 °C overnight for later use.

A three-electrode assembly was immersed in 20 mL of the SS/CMCS mixture contain-
ing 5 mg of NaCl as the electrolyte, and the SS/CMCS hydrogel was fabricated using an
electrochemical workstation (CHI760E, Shanghai Chenhua Instruments Co., Ltd., Shanghai,
China), according to the method described in our previous work [25]. The hydrogel gener-
ated on the working electrode was transferred to deionized water and rinsed for 15 min to
remove any residue. This rinsing process was repeated three times.

3.2.2. Preparation of Sericin-Based Carbon

The prepared SS/CMCS hydrogel was placed in a —20 °C refrigerator for 4 h and
then transferred to a —80 °C refrigerator for preservation. After 8 h, the frozen SS/CMCS
hydrogel was freeze-dried using a lyophilizer (LGJ-10, YuMing Instrument Co., Ltd., Shang-
hai, China), and then the freeze-dried hydrogel was pyrolyzed. Adopting a carbonization
procedure, similar to that of our previously reported work [25], we placed the sample in a
tube furnace (OTF-1200X-S, Hefei KeJing Materials Technology Co., Ltd., Hefei, China) and
maintained it for 120 min after the temperature reached 450 °C, 650 °C, 850 °C, and 1050 °C,
then cooled it to ambient temperature. Subsequently, the sample was rinsed with deionized
water at 60 °C every 30 min until the pH of the rinse water was neutral, and, then, the
sample was freeze-dried to remove water. Finally, the SC was obtained. For simplicity,
SCs obtained at different pyrolysis temperatures were labeled as SC450, SC650, SC850, and
5C1050, respectively, and stored in desiccators for later use.

3.3. SC Characterization

The relationships between the mass and temperature change in the freeze-dried SS
solution, CMCS hydrogel, and SS/CMCS hydrogel were investigated using a thermo-
gravimetric analyzer (STA 449 F3 Jupiter, Netzsch, Germany). The samples were heated
from 30 °C to 800 °C at a heating rate of 10 °C/min under a constant N flow. The
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micromorphology of the SS/CMCS hydrogel and its derived carbon prepared at different
temperatures was observed using scanning electron microscopy (SEM, TM4000Plus, Tokyo,
Japan). The specific surface area was estimated by the Brunauer-Emmett-Teller (BET)
method through a Ny adsorption—desorption test at 77 K (ASAP 2460, Micromeritics,
Norcross, GA, USA). The zeta potential of SC1050 under different pH values was measured
by a Zetasizer Nano ZS90 (Malvern Instruments, Worcestershire, UK).

3.4. Batch Adsorption Experiment

The effects of Cu(II) initial concentration, solution pH, adsorption temperature, and
contact time on Cu(II) removal were investigated. A certain mass of copper nitrate was
dissolved in deionized water to obtain a Cu(Il) stock solution of 1000 mg/L, which was
then diluted to the corresponding concentration in subsequent experimental use.

3.4.1. Effect of Cu(Il) Initial Concentration

The 1000 mg/L Cu(Il) stock solution was diluted into 6 groups with initial concen-
trations of 5, 10, 15, 20, 30, and 40 mg/L, and the initial solution pH was adjusted to
5.0. The ratio of the SC sample mass to the Cu(Il) solution volume in the weighing bot-
tle was 0.5 g/L. The weighing bottles were placed in a shaking incubator (LYGZ-2102C,
JTLIANGYOU Instrument Co., Ltd., Jiangsu, China) at a speed of 100 rpm at 25 °C for 24 h.
The filtrate was obtained after filtration through a 0.22 pum filter membrane (Jiangsu Green
Union Science Instrument Co., Ltd., Jiangsu, China). The concentration of Cu(ll) in the
filtrate after adsorption was determined according to Chinese Standard HJ 486-2009 (wa-
ter quality determination of copper-2,9-dimethyl-1,10-phenanthroline spectrophotometric
method) [39]. Briefly, the Cu(Il) ion was reduced by hydroxylamine hydrochloride to its
cuprous form, which, in turn, was reacted with 2,9-dimethyl-1,10-phenanthroline to form
a yellow complex. This complex was then measured via an ultraviolet-visible (UV-Vis)
spectrophotometer (UV1900, Shanghai Jinghua Technology Instrument Co., Ltd., Shanghai,
China) at 457 nm. To ensure experimental accuracy, all experiments were performed in
triplicate.

The equilibrium adsorption amount g. (mg/g) and the percentage removal R (%) were
calculated by Equations (1) and (2), respectively [40]:

oo (7Gx ¥ o

Co—C
R%=—0_—¢
P==c

¢ x100% 2)
0
where Cy and C, are the concentrations (mg/L) of Cu(ll) in solution at the initial and
equilibrium states, M is the SC weight (g), and V is the volume of Cu(II) solution (mL).

3.4.2. Effect of Initial pH

Cu(Il) solution with a concentration of 15 mg/L was selected, and the initial solution
pH was adjusted to 4.5, 5.0, and 5.5. The mass-to-volume ratio of the SC sample and
Cu(Il) solution in the weighing bottles was maintained at 0.5 g/L. The weighing bottles
were placed in a shaking incubator at a speed of 100 rpm at 25 °C for 24 h. After filtra-
tion, the Cu(Il) solution concentrations were determined according to Chinese Standard
HJ 486-2009 [39].

3.4.3. Effect of Adsorption Temperature and a Thermodynamic Study

Cu(Il) solution with a concentration of 15 mg/L was selected, and the initial solution
pH was adjusted to 5.5. The mass-to-volume ratio of the SC sample and Cu(II) solutions in
the weighing bottle was maintained at 0.5 g/L. The weighing bottles were placed in a shak-
ing incubator with a rotational speed of 100 rpm for 24 h at different temperatures (15 °C,
25 °C, and 35 °C). After filtration, the Cu(II) solution concentrations were determined
according to Chinese Standard HJ 486-2009 [39].
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The Gibbs free energy change (AG, k] /mol), the enthalpy change (AH, kJ/mol), and
the entropy change (AS, ]/ mol-K) were calculated by the van’t Hoff equation to investigate
the thermodynamic behavior of Cu(II) adsorption onto SC1050. The equations are shown
in (3)-(5) [9]:

_ e
ka = C. ®3)
—AH AS
AG = —RT Inky )

where T is the absolute temperature (K), and R is the gas constant (8.314 J/mol-K).

3.4.4. Effect of Contact Time and Adsorption Kinetics

Cu(Il) solution with a concentration of 15 mg/L was selected, and the initial solution
pH was adjusted to 5.5. The mass-to-volume ratio of the SC sample and Cu(II) solution
in the weighing bottle was maintained at 0.5 g/L. The weighing bottles were placed in
a shaking incubator at 35 °C with a rotational speed of 100 rpm to oscillate for 5 min,
10 min, 30 min, 60 min, 90 min, 120 min, 240 min, 360 min, 720 min, and 1440 min.
After filtration, the Cu(Il) solution concentrations were determined according to Chinese
Standard HJ 486-2009 [39].

The amount of Cu(Il) adsorbed at time ¢, g; (mg/g), can be calculated through Equation (6):

=G XV ©

M
To explore the kinetics of the adsorption process of Cu(Il) onto SC1050, pseudo-first-
order kinetics, pseudo-second-order kinetics, and the intra-particle diffusion model were
selected to fit the experimental data
The pseudo-first-order kinetic model is shown in Equation (7) [27]:

7 =q:(1 — ) @)

where kj is the pseudo-first-order adsorption rate constant (L /min), and ¢ is the adsorption
time (min).
The pseudo-second-order kinetic model is shown in Equation (8) [35]:

koqat

P— 8
1+ koget ®

qt

where k; is the pseudo-second-order rate constant (g-mg~!-min~') and ¢ is the adsorption
time (min).
The intra-particle diffusion (IPD) model is shown in Equation (9) [35]:

gt = kit/24+-C ©)

where k; is the diffusion coefficient of the particle (mg-g~'-min~!/2), and C is a constant. A
larger C indicates a stronger effect of the boundary layer on the adsorption process [33].

3.4.5. Adsorption Isotherm

To investigate the maximum adsorption capacity of the adsorbent, Cu(II) stock solu-
tion of 1000 mg/L was diluted to 5, 10, 15, 20, 30, and 40 mg/L. The initial solution pH was
then adjusted to 5.5. The mass-to-volume ratio of the SC sample and Cu(II) solution in the
weighing bottle was maintained at 0.5 g/L. The weighing bottles were then placed in a
shaking incubator operating at a rotational speed of 100 rpm at 35 °C for 24 h. After filtra-
tion, the Cu(Il) solution concentrations were determined according to Chinese Standard
HJ 486-2009 [39].
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Langmuir and Freundlich isotherm models were applied to modeling the adsorption
isotherms. The Langmuir isotherm model for monolayer adsorption on homogeneous sites
is described by Equation (10) [2]:

e N Qm'kL qm

1
c_ 1 .c w0

where g, is the maximum adsorption amount at equilibrium (mg/g), and ky is the Langmuir
isotherm constant associated with the adsorption free energy (L/mg).

The dimensionless separation factor R; is the basic characteristic of a Langmuir
isotherm and can be used to determine the favorability of an adsorption process. It is
calculated by Equation (11) [1]:

R = — 1
T T4k

where k; is the Langmuir isotherm constant. The adsorption is favorable when 0 < R <1,
unfavorable when R; > 1, and irreversible when R; = 0.

The Freundlich isotherm model for multilayer adsorption on heterogeneous sites is
expressed as Equation (12) [2]:

(11)

Ing, =In kp—ﬁ—%ln Ce (12)

where 7 is the Freundlich constant related to surface heterogeneity.

3.5. Adsorption of Cu(Il) Determined by Inductively Coupled Plasma Optical
Emission Spectrometry

The sample was carefully weighed and then mixed with 5 mL of HNO3, 1 mL of
HE 1 mL of H,O,, and 1 mL of HCI. The mixture was placed in an autoclave at 180 °C
for 8 h. Then, the reactor was cooled to room temperature. Finally, the mixture inside
was transferred into 25 mL volumetric flasks and made up to the volume for inductively
coupled plasma optical emission spectrometry (ICP-OES; Agilent 730, Agilent Technologies,
Santa Clara, CA, USA) analysis.

3.6. Data Analysis

All adsorption experiments were repeated 3 times. Microsoft Excel 2019 (Redmond,
WA, USA) and Origin software (Origin Pro 8.0, OriginLab Corp., Northampton, MA, USA)
were used for data analysis and graphing.

4. Conclusions

In this study, the adsorption capacity of carbon derived from SS for Cu(Il) was investi-
gated. An SS/CMCS hydrogel with porosity was fabricated by electrodeposition. The SC
samples were further fabricated by pyrolysis at 450 °C, 650 °C, 850 °C, and 1050 °C. SEM
results indicated that SC1050 had a more developed pore structure, which increased the
surface area and provided more adsorption sites for Cu(ll) adsorption.

The results of batch adsorption experiments showed that SC1050 had the highest
adsorption capacity and removal rate of Cu(ll), and the optimum condition for Cu(Il)
adsorption by SC1050 was T = 35 °C and pH = 5.5. The adsorption of Cu(Il) by SC1050
was a spontaneous, endothermic process. The fitted Cu(ll) adsorption results agreed
with the pseudo-second-order kinetic model and the Langmuir isotherm. The maximum
adsorption amount of Cu(Il) on SC1050 was 17.97 mg/g. Compared with pistachio green
hull-derived carbon (19.84 mg/g) [41], apple tree branch-derived carbon (11.41 mg/g) [33],
and Chaenomeles Sinensis seed-derived carbon (15.78 mg/g) [27], SC1050 showed a better
Cu(II) adsorption capacity. Therefore, SC1050 can act as an effective adsorbent for removing
Cu(Il) from aqueous solution.
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