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ABSTRACT
Podoplanin (PDPN) has been proved to have significant immunoregulatory effects in several types of 
malignancies and is considered to be a novel immune checkpoint molecule. However, the clinical 
significance of PDPN and its potential influence on immune contexture in gastric cancer remain obscure. 
Here, we aimed to investigate the clinical outcomes and immunoregulatory role of tumor-infiltrating 
PDPN+ cells (tPDPNs) in gastric cancer. A total of 454 tumor tissue microarray specimens and 68 fresh 
tumor tissues of gastric cancer patients from Zhongshan Hospital, and transcriptional data of 293 gastric 
cancer patients from The Cancer Genome Atlas were included. We demonstrated that tPDPNs high 
subgroup experienced worse overall survival and disease-free survival, and indicated inferior therapeutic 
responsiveness to fluorouracil-based adjuvant chemotherapy (ACT) in gastric cancer. The abundance of 
tPDPNs was correlated with an immunoevasive contexture characterized by pro-tumor macrophage and 
dysfunctional CD8+ T cell infiltration. Moreover, dysfunctional CD8+ T cells in tPDPNs high subgroup 
exhibited decreased interferon-γ, granzyme B and perforin-1 expression yet elevated programmed cell 
death-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. 
Stratification of gastric cancer patients into different risk groups based on tPDPNs and CD8+ T cells 
showed distinct prognosis, responsiveness to ACT and molecular characteristics. This study revealed that 
the abundance of tPDPNs could identify an immunoevasive contexture and might be applied as an 
independent predictor for poor prognosis and suboptimal ACT responsiveness. Thus, we recommended 
tPDPNs as a promising therapeutic target in gastric cancer.
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Introduction

Gastric cancer is the fifth most common malignancy and the 
third leading cause of cancer-related death worldwide.1 Clinical 
guidelines have established radical gastrectomy as the most 
feasible curative treatment for gastric cancer.2 For advanced 
gastric cancer patients, fluorouracil-based adjuvant chemother
apy (ACT) is recommended as the first-line postoperative 
treatment.3 Nevertheless, chemotherapeutic resistance limits 
the clinical application of fluorouracil,4,5 and many patients 
still experience relapse and death after ACT treatment. In addi
tion, targeting human epidermal growth factor receptor-2 
(HER-2) and vascular endothelial growth factor receptor-2 
(VEGFR-2) in gastric cancer have been proven unsatisfactory. 
The only two targeting agents trastuzumab and ramucirumab 
have a modest impact on survival.6–8 Therefore, further stratifi
cation of gastric cancer patients for survival benefits and ther
apeutic responsiveness remains a critical challenge.

Researches on immunotherapy have stimulated interest in 
characterizing the host immune responses and the underlying 
mechanisms of tumor immune evasion.9,10 Re-activation of 
T-cell-mediated anti-tumor immunity in the tumor 

microenvironment (TME), such as targeting immune check
points (ICKs), has emerged as a novel treatment paradigm in 
several types of malignancies.11,12 Notably, pembrolizumab 
and nivolumab have been applied for the treatment of 
advanced or metastatic gastric cancer based on clinical trials 
such as KEYNOTE-059 and ATTRACTION-2.13,14 However, 
only approximately 10%-20% of gastric cancer patients benefit 
from ICK inhibitors that block programmed cell death-1/pro
grammed cell death-ligand 1 (PD-1/PD-L1) signaling. This 
may, partly, be attributed to the heterogeneous TME, T-cell- 
inflamed gene-expression profile and different molecular 
subtypes.15,16 Consequently, in order to further improve 
response rates and expand therapeutic effects, novel predictive 
biomarkers and potential immunoevasive mechanisms should 
be identified in gastric cancer.

Podoplanin (PDPN) is a cell-surface mucin-type transmem
brane glycoprotein with various functions.17 Physiologically, 
PDPN interacts with C-type lectin receptor type-2 (CLEC-2) to 
promote the separation of blood vessels and lymphatic vessels 
during embryonic development.18 PDPN may be a novel 

CONTACT Jiejie Xu jjxufdu@fudan.edu.cn Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 
200032, China; Ruochen Li rcli12@fudan.edu.cn; Heng Zhang zhang.heng@zs-hospital.sh.cn Department of General Surgery, Zhongshan Hospital, Fudan 
University, Shanghai 200032, China
*These authors contributed equally to this work.

Supplemental data for this article can be accessed on the publisher’s website.

ONCOIMMUNOLOGY                                        
2020, VOL. 9, NO. 1, e1845038 (11 pages) 
https://doi.org/10.1080/2162402X.2020.1845038

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-7431-9063
https://doi.org/10.1080/2162402X.2020.1845038
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2162402X.2020.1845038&domain=pdf&date_stamp=2020-11-09


potential therapeutic target due to its involvement in inflam
mation and cancer.19 Besides being highly expressed by lym
phatic endothelial cells, PDPN is also widely found in tumor 
cells, fibroblasts, and several immune cells.20 Although the 
implications of PDPN+ tumor cells or fibroblasts in tumor 
progression and invasion have been well documented,21,22 the 
role of tumor-infiltrating PDPN+ cells (tPDPNs) in gastric 
cancer is unclear. Consequently, we aim to investigate the 
clinical outcomes of tPDPNs and its association with the 
immune contexture in gastric cancer.

In the current study, we demonstrated that tPDPNs 
could indicate poor prognosis and inferior responsiveness 
to ACT in gastric cancer patients. Further analysis showed 
that the abundance of tPDPNs was positively associated 
with an immunoevasive contexture. Moreover, we also 
comprehensively analyzed the clinical significance of 
tPDPNs and CD8+ T cells for patient stratification. Our 
results shed light on targeting tPDPNs as a promising ther
apeutic strategy in gastric cancer.

Patients and methods

Study design and patients

This study enrolled three patient cohorts and the study design 
was shown in Supplementary Figure S1. Cohort 1 recruited 496 
patients who underwent gastrectomy from Zhongshan 
Hospital, Fudan University (Shanghai, China) between 
August 2007 and December 2008. All tumor and matched 
peritumor specimens were formalin-fixed, paraffin-embedded 
(FFPE) and constructed into tissue microarray (TMA). 
Clinicopathological staging was assessed according to the 7th 

edition of American Joint Committee on Cancer Staging 
Manual. A total of 42 patients were excluded due to clinical 
information missing, metastatic diseases, or dot loss. The 
remaining 454 patients were then randomly divided into two 
independent data sets (Discovery set, n = 200; Validation set, 
n = 254). After gastrectomy, patients with stage II or III were 
principally given routine fluorouracil-based ACT. None of the 
patients had received radiotherapy. All follow-up data were 
collected until April 2014. The overall survival (OS) was 
defined as the time from the date of surgery to the date of 
death or last follow-up. The disease-free survival (DFS) was 
defined as the time from the date of surgery to the date of 
disease recurrence or last follow-up. Cohort 2 was generated 
from The Cancer Genome Atlas (TCGA). RNA sequencing 
and clinical data of 443 gastric cancer patients were down
loaded by R package TCGAbiolinks,23 whereas 293 gastric 
cancer patients with available data were included. Cohort 3 
enrolled additional 60 patients who underwent gastrectomy 
from Zhongshan Hospital, Fudan University between 
August 2018 and November 2018. Fresh tumor specimens 
were obtained at the surgery for flow cytometry (FCM) analy
sis, and corresponding FFPE tissues were constructed as an 
independent TMA for tPDPNs evaluation. Moreover, we ana
lyzed cell types of CD45+PDPN+ cells by FCM in an additional 
eight tumor and corresponding peritumor specimens of gastric 
cancer collected from September, 2020 to October, 2020. 
Informed consent was acquired from all patients, and this 

study was approved by the hospital Clinical Research Ethics 
Committee.

Immunohistochemistry and RNA-in situ hybridization

Protocol details of TMA construction and immunohistochem
istry (IHC) staining have been described elsewhere.24 Briefly, 
the slides were deparaffinized and rehydrated, endogenous 
peroxidase blocked, heated with an autoclave in appropriate 
buffer solution for antigen retrieval, and incubated with nor
mal goat serum to eliminate nonspecific reactions. 
Subsequently, the slides were incubated with primary antibo
dies, followed by horseradish peroxidase (HRP)-labeled sec
ondary antibody incubation and detection using 
diaminobenzidine (DAB) reagent. Negative controls were 
applied equally, but with the primary antibody omitted. 
Ultimately, IHC single staining slides were counterstained 
with hematoxylin, dehydrated, and applied coverslip and neu
tral resins. For IHC double staining, after DAB visualization, 
the slides were incubated with the second primary antibodies 
before applying to alkaline phosphatase (AP)-labeled second
ary antibody and Vector Blue reagent. All antibodies involved 
in this study were shown in Supplementary Table S1. To 
evaluate the presence of Epstein-Barr virus (EBV) infection, 
we detected EBV-encoded small RNA (EBER) by in situ hybri
dization (EBER-ISH) with the Digoxigenin EBER probe 
(Talent Biomedical, China) as manufacturer’s instructions. 
Strong staining within almost all tumor cell nuclei was con
sidered to be positive.

Definition of cutoff values

All slides were independently examined by two pathologists 
who were blind to the clinical information. The mean number 
of stained cells and the intensity of cellular staining were 
evaluated under ×200 magnification in three randomized 
high power fields (HPF; Leica DM6000 B, Leica 
Microsystems, Wetzlar, Germany). The cutoff value for classi
fying tPDPNs high and low subgroups was the median value. 
For PDPN mRNA level, the cutoff value was determined by the 
minimum P-value method using X-Tile software (Version 
3.6.1, Yale University). In addition, survminer package (ver
sion 0.4.8; https://CRAN.R-project.org/package=survminer) in 
R software version 3.6.1 was also applied to identify cutoff 
values of tPDPNs or PDPN mRNA, which were consistent 
with cutoff values mentioned above.

Flow cytometry

Fresh tumor specimens were obtained at the surgery. Single- 
cell suspension was isolated by collagenase IV, and then incu
bated with red blood cell (RBC) lysis buffer (BD Biosciences) 
followed by FcR-blocking reagent (Biolegend). Cells were 
stained with the indicated surface markers for 30 min at 4°C 
in dark. If necessary, cells were pre-treated with Fixation/ 
Permeabilization Solution Kit (BD Biosciences) and then per
formed intracellular protein staining. Stained cells were washed 
and re-suspended in cell staining buffer. FCM was performed 
using BD FACSCelesta and analyzed by FlowJo v10.0 
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(Treestar). Dead cells were excluded based on the scatter pro
file. Antibodies involved were listed in Supplementary 
Table S2.

Statistical analysis

Categorical variables were analyzed with Chi-squared test, and 
continuous variables were assessed by t test. One-way ANOVA 
followed by Tukey’s multiple comparisons test was performed 
using GraphPad Prism v8.3.0 (GraphPad Software, La Jolla, 
California, USA). Boxplots display a statistical summary of 
median, interquartile range (IQR) and possibly extreme values. 
Each box represents the median and IQR of the data. The end 
of the whiskers represents the maximum or minimum values, 
except for outliers. The outliers were defined as the 25th 
percentile minus 1.5IQR and the 75th percentile plus 1.5IQR. 
The individual points indicated the extreme values greater than 
the outliers. Scatter plots were presented as mean ± SD. 
Correlations were analyzed by Spearman correlation. Survival 
curves to compare OS and DFS were estimated by the Kaplan– 
Meier method and detected by log-rank test, using MedCalc 
15.6.1 (MedCalc Software bvba, Ostend, Belgium). Cox regres
sion models were performed to assess covariate effects on 

prognosis and interactions between covariates. IBM SPSS 
Statistics v20.0 (SPSS Inc., Chicago, IL) was applied for statis
tical analyses, and two-sided P < .05 was considered statistically 
significant.

Results

Association between tPDPNs and clinicopathological 
factors in gastric cancer patients

We performed IHC analysis for PDPN+ cells in gastric tissues 
(Figure 1a). The density of tPDPNs was significantly higher than 
that of peritumor-infiltrating PDPN+ cells (ptPDPNs) (P < .001, 
Figure 1b). In addition, we investigated cell types of 
CD45+PDPN+ cells using FCM analysis. The results demon
strated that CD4+ T cells were the main component of 
CD45+PDPN+ cells in the tumor and peritumor tissues of gastric 
cancer (Supplementary Figure S2A-B). The clinicopathological 
characteristics of patients with high or low tPDPNs in both 
Discovery set and Validation set were summarized in Table 1. 
Higher density of tPDPNs was positively associated with 
T classification and tumor-node-metastasis (TNM) stage. 
Notably, TNM stage II or III tumors showed apparently more 
tPDPNs than stage I tumors (Figure 1c and Table 1). Moreover, 

Figure 1. Accumulated tPDPNs in gastric cancer are correlated with tumor progression. (a) Representative immunohistochemistry (IHC) images of tumor- 
infiltrating PDPN+ cells (tPDPNs) and peritumor-infiltrating PDPN+ cells (ptPDPNs) in gastric tissues. Arrow heads show tPDPNs and ptPDPNs. Scale bars, 100 μm. (b) IHC 
evaluation of tPDPNs versus ptPDPNs. Paired t test. (c) Distribution of tPDPNs across tumor-node-metastasis (TNM) stage. One-way ANOVA followed by Tukey’s multiple 
comparisons. (d) Distribution of PDPN mRNA level across TNM stage. One-way ANOVA followed by Tukey’s multiple comparisons. ns refers to not significant.
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hypoxia positive tumors contained higher tPDPNs than hypoxia 
negative tumors (Supplementary Figure S3A-B). However, 
tPDPNs showed no obvious association with age, gender, loca
lization, tumor size, Lauren classification, grade, or adjuvant 
chemotherapy (Table 1). Furthermore, we found PDPN 
mRNA level was upregulated in advanced gastric cancer using 
TCGA database analysis (Figure 1d and Supplementary Table 
S3). Together, these results indicate that the accumulation of 
tPDPNs in gastric cancer might be correlated with tumor 
progression.

Prevalence and prognostic significance of tPDPNs in 
gastric cancer

Then, we explored the prognostic significance of tPDPNs in 
gastric cancer. We found that in both Discovery set and 
Validation set, tPDPNs high subgroup experienced 

significantly poorer OS (P = .023 and P < .001) and DFS 
(P = .012 and P = .002) than tPDPNs low subgroup (Figure 
2(a, b). According to the multivariate analysis, tPDPNs were 
identified as an independent risk factor, with regard to OS 
(Hazard Ratio (HR): 1.574, 95% Confidence Interval (CI): 
1.017–2.436, P = .042 and HR:1.890, 95% CI: 1.291–2.769, 
P = .001) and DFS (HR: 1.699, 95% CI: 1.108–2.604, 
P = .015 and HR:1.862, 95% CI: 1.261–2.750, P = .002) in 
both Discovery set and Validation set (Figure 2c). We also 
performed survival analysis based on PDPN mRNA level. 
Patients with PDPN mRNA high expression had obviously 
poorer OS than those with low expression (P = .006), 
whereas no significant difference was observed for DFS 
(P = .133) between PDPN mRNA high and low expression 
subgroups (Supplementary Figure S4A-B). Consequently, 
these data suggest that tPDPNs could be a promising inde
pendent prognosticator for gastric cancer patients.

Figure 2. tPDPNs predict poor prognosis in gastric cancer. (a-b) Kaplan-Meier curves for overall survival (OS) and disease-free survival (DFS) in gastric cancer patients 
according to tPDPNs status in Discovery set and Validation set. The OS (a) and DFS (b) were compared between tPDPNs low and high subgroups. Log-rank test was 
performed for Kaplan-Meier curves. (c) Multivariate analysis of OS and DFS were conducted on the basis of clinicopathological characteristics in Discovery set and 
Validation set. HR, hazard ratio; CI, confidence interval.
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Relationship between tPDPNs and responsiveness to ACT

We then investigated the relationship between different 
tPDPNs subgroups and the responsiveness to fluorouracil- 
based ACT in the pooled cohort of stage II and III gastric 
cancer patients. The definition of tPDPNs low and high 
subgroups was based on the median value of the whole 
cohort, which has been used in Figure 2. As presented in 
Figure 3a, stage II and III gastric cancer patients could 
benefit from ACT with regard to OS (P < .001) but not 
DFS (P = .325). Notably, both OS and DFS outcomes were 
improved after ACT application in tPDPNs low subgroup 
(P < .001 and P = .024; Figure 3b). Contrarily, in tPDPNs 
high subgroup, receiving ACT just showed a trend toward 
OS improvement, while could not predict DFS benefits 
(P = .083 and P = .536; Figure 3c). Furthermore, subgroup 
interaction analysis showed that tPDPNs high subgroup 
had significantly inferior chemotherapeutic responsiveness 
to fluorouracil, with regard to either OS or DFS (P = .009 
and P = .045 for interaction; Figure 3d). Collectively, these 
results suggest that tPDPNs enrichment could potentially 
impede responsiveness to fluorouracil-based ACT.

Association between tPDPNs and immunoevasive 
contexture in gastric cancer

Considering tumor immune contexture could affect the prog
nostic information and chemotherapeutic responsiveness,25 we 

further explored the relationship between tPDPNs and 
immune contexture. Through IHC analysis of nine types of 
immune cells in gastric cancer (Supplementary Figure S5A), we 
found that CD8+ T cells and CD68+ macrophages were highly 
enriched in tPDPNs high subgroup, compared with tPDPNs 
low subgroup (Figure 4a). Additionally, tPDPNs high sub
group contained higher numbers of CD163+ cells, DC-SIGN+ 

macrophages, and higher PD-L1 IHC score (Supplementary 
Figure S6A-B), which were identified as macrophage-related 
pro-tumor markers.26–28 Since tPDPNs indicated elevated 
CD8+ T cell infiltration, which was often used as a predictor 
for better prognosis,29 we investigated if tPDPNs could affect 
CD8+ T cell functional status. TCGA database analysis showed 
that the score of exhausted CD8+ T cell gene signature in PDPN 
mRNA high subgroup was higher than that in PDPN mRNA 
low subgroup (Figure 4b and Supplementary Table S4). 
Consistently, FCM analysis also validated increased CD8+ 

T cells in tPDPNs high subgroup (Figure 4c). These CD8+ 

T cells exhibited an exhausted phenotype with decreased levels 
of interferon-γ, granzyme B, and perforin-1 (Figure 4d), yet 
elevated expression of PD-1 and T-cell immunoglobulin and 
mucin-domain containing-3 (TIM-3) (Figure 4e). Moreover, 
PD-1+ cells and TIM-3+ cells were significantly associated with 
tPDPNs by IHC analysis (Table 2 and Supplementary Figure 
S5B). Consequently, these findings imply that tPDPNs shape 
an immunoevasive contexture characterized by pro-tumor 
macrophages and dysfunctional CD8+ T cells in gastric cancer.

Figure 3. tPDPNs are associated with inferior therapeutic responsiveness to fluorouracil. (a) The overall survival (OS) curves and disease-free survival (DFS) curves 
in stage II and III gastric cancer patients according to adjuvant chemotherapy (ACT) application. (b) The OS curves and DFS curves in tPDPNs low subgroup according to 
ACT application. (c) The OS curves and DFS curves in tPDPNs high subgroup according to ACT application. Log-rank test was performed for Kaplan-Meier curves. (d) 
A test for an interaction between tPDPNs and responsiveness to ACT. HR, hazard ratio; CI, confidence interval.
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Figure 4. tPDPNs are associated with an exhausted CD8+ T-cell phenotype in gastric cancer. (a) Immunohistochemistry analysis of the immune contexture in 
tPDPNs low and high subgroups. Treg, regulatory T; NK, natural killer; Mac, macrophages; Neu, neutrophils; DCs, dendritic cells. (b) Relationship between PDPN mRNA 
level and exhausted CD8+ T cell gene signature in TCGA database. (c-e) Flow cytometry to detect the number of CD8+ T cells in CD45+ cells (c), the expression of effector 
molecules (interferon-γ, granzyme B and perforin-1) in CD8+ T cells (d) and immune checkpoints (PD-1, TIM-3, CTLA-4 and LAG-3) in CD8+ T cells (e) between tPDPNs low 
and high subgroups. Unpaired t test. ns refers to not significant. PD-1, programmed death-1; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; CTLA-4, 
cytotoxic T-lymphocyte-associated protein-4; LAG-3, lymphocyte-activation gene-3. (f-g) The overall survival (OS) curves (f) and disease-free survival (DFS) curves (g) in 
all gastric cancer patients, tPDPNs low subgroup and tPDPNs high subgroup according to CD8+ T cell status. Log-rank test was performed for Kaplan-Meier curves.

Table 2. tPDPNs are associated with PD-1+ cells and TIM-3+ cells.

Immune markers

tPDPNs

N Low High P

PD-1 452 231 221
Low 227 129 98 0.015
High 225 102 123
TIM-3 433 218 215
Low 221 128 93 0.001
High 212 90 122

The study population was divided in cases with high and low groups using the median score as cut point. Contingency analysis was performed and the P values are 
indicated.
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tPDPN-associated dysfunctional CD8+ T cells indicate poor 
prognosis

As CD8+ T cells were the core of adaptive immune resis
tance associated with tPDPNs, we assessed the potential 
impact of tPDPN-related CD8+ T cell exhaustion on sur
vival outcomes in gastric cancer patients. Kaplan-Meier 
analysis indicated that patients with high CD8+ T cell 
infiltration experienced better OS and DFS in the whole 
patient cohort (Figure 4f,g). Interestingly, CD8+ T cells 
could only predict better prognosis in tPDPNs low sub
group, rather than tPDPNs high subgroup (Figure 4f,g). 
These data suggest that the abundance of tPDPNs might 
induce the immune tolerance of CD8+ T cells and yield 
poor prognosis in gastric cancer.

Stratification of gastric cancer patients based on tPDPNs 
and CD8+ T cells predicted prognosis and 
chemotherapeutic responsiveness

Considering CD8+ T cells could not predict better prognosis in 
tPDPNs high subgroup, we then classified gastric cancer 
patients into three distinct risk groups: low-risk group 
(tPDPNslowCD8hi), medium-risk group (tPDPNslowCD8low), 
and high-risk group (tPDPNshigh). The comprehensive propor
tion of the three risk groups were shown in Figure 5a. We 
demonstrated that there was a significant difference in OS and 
DFS among the three risk groups (P < .001 and P < .001, Figure 
5b). We also investigated whether the three risk groups had 
different chemotherapeutic responsiveness in stage II and III 
gastric cancer patients. Cox regression analysis indicated that 

Figure 5. Stratification based on tPDPNs and CD8+ T cells are associated with prognosis, therapeutic responsiveness to ACT and molecular classification. (a) 
Pie charts show the proportion of three stratified risk groups in all or stage II and III gastric cancer patients. (b) The overall survival (OS) curves and disease-free survival 
(DFS) curves for three stratified risk groups. Log-rank test was performed for Kaplan-Meier curves. (c) Cox regression analysis for the difference of responsiveness to 
adjuvant chemotherapy (ACT) in three risk groups. HR, hazard ratio; CI, confidence interval. (d) Pie charts show the proportion of molecular subtypes including EBV, MSI, 
GS and CIN in three stratified risk groups in TCGA cohort (up) and Zhongshan cohort (down). EBV, Epstein–Barr virus; MSI, microsatellite instability; GS, genomically 
stable; CIN, chromosomal instability. (e) ARID1A and PIK3CA gene mutation frequency in three stratified risk groups.
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high-risk group had inferior responsiveness to fluorouracil- 
based ACT (Figure 5c). Moreover, we explored the relationship 
between the three risk groups and molecular subtypes in gastric 
cancer. Interestingly, using data of molecular subtypes defined 
by TCGA published in Nature in 2014,30 we found that EBV- 
positive gastric cancer was especially distributed in low-risk 
group (Figure 5d). Remarkably, this finding was confirmed in 
Zhongshan cohort by the approximated TCGA molecular sub
typing algorithm based on EBER-ISH and IHC (Figure 5d and 
Supplementary Figure S7). We further focused on differences 
in genetic mutations related to EBV-positive gastric cancer in 
three risk groups. As expected, ARID1A and PIK3CA gene 
mutations were most frequent in low-risk group (Figure 5e). 
Cumulatively, these findings suggest that a novel classification 
approach based on tPDPNs and CD8+ T cells could better 
stratify gastric cancer patients with distinct prognosis and 
chemotherapeutic responsiveness.

Discussion

Currently, immunotherapy with ICKs has been proved to be 
a promising treatment option in several human cancers. 
However, the treatment responses are limited and sometimes 
transient in clinical trials, emphasizing the importance of finding 
additional or combined strategies to reverse tumor immune 
evasion. In this regard, previous studies have shown that 
PDPN can be used as a novel therapeutic target. As evidenced 
in experiments, neutralizing PDPN function based on chimeric 
antigen receptor T-cell immunotherapy and corresponding anti
bodies can inhibit the growth and progression of brain tumors 
and lung cancer.31–33 Therefore, a better understanding of the 
clinical significance of PDPN in gastric cancer is crucial. In this 
study, we found that the abundance of tPDPNs was associated 
with adverse prognosis and inferior therapeutic responsiveness 
to fluorouracil-based ACT in gastric cancer, indicating that 
tPDPNs might be a biomarker with potential therapeutic value.

Numerous studies have shown that tumor immune profiles 
and immune contexture are closely related to the prognosis 
and therapeutic responsiveness of patients.29,34,35 In this study, 
we observed that tPDPNs high subgroup in gastric cancer 
contained higher pro-tumor macrophages. Interestingly, our 
previous study revealed that M2 macrophages were positively 
correlated with PDPN+ cells in muscle-invasive bladder 
cancer.36 These findings suggest that tPDPNs might collabo
rate with macrophages in orchestrating the immunoevasive 
TME. As the main effector cells, CD8+ T cells play an impor
tant role in anti-tumor immunity.29 However, emerging stu
dies have indicated two main aspects of CD8+ T cells 
promoting tumor immune evasion, including T cell exclusion 
or T cell dysfunction.37 Our study further demonstrated that 
accumulated CD8+ T cells in tPDPNs high subgroup exhibited 
dysfunctional status with reduced effector molecules (inter
feron-γ, granzyme B and perforin-1) and elevated immune 
checkpoints (PD-1 and TIM-3) using FCM analysis. We also 
validated that tPDPNs were significantly correlated with total 
PD-1+ cells and TIM-3+ cells. Consistently, previous studies 
found that PDPN co-expressed with PD-1 and TIM-3 could 
promote T cell dysfunction or exhaustion.38,39 Therefore, 
tPDPNs-associated immunoevasive immune contexture 

might provide an explanation for adverse clinical outcomes 
in tPDPNs high subgroup.

Here, we found that CD8+ T cells could only predict good 
OS and DFS in tPDPNs low subgroup. Therefore, we applied 
a new classification approach based on tPDPNs and CD8+ 

T cells to better stratify gastric cancer patients into three risk 
groups with different prognosis and therapeutic responsiveness 
to fluorouracil-based ACT. Additionally, we also evaluated the 
differences in molecular subtypes of these three risk groups and 
found that low-risk group (tPDPNslowCD8high) had the most 
EBV-positive gastric cancer and corresponding EBV-related 
mutation. EBV-positive gastric cancer patients had an 
improved survival as described previously, which might better 
explain our findings.40 These results may be clinically valuable, 
but need further confirmation by larger and independent 
cohorts.

In summary, our large cohort study identified tPDPNs as an 
independent predictor for adverse prognosis and inferior 
responsiveness to ACT. Moreover, tPDPNs play an important 
role in orchestrating an immunoevasive contexture with dys
functional CD8+ T cells. The combination of tPDPNs and 
CD8+ T cells could stratify patients into subgroups with diverse 
clinical outcomes and molecular classification features. Thus, 
tPDPNs might serve as a predictive biomarker and 
a therapeutic target for gastric cancer.
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