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Background: Obstructive sleep apnea (OSA) is considered to be an independent factor
affecting lipid metabolism. This study explored the relationship between immune genes
and lipid metabolism in OSA.

Methods: Immune-related Differentially Expressed Genes (DEGs) were identified by
analyzing microarray data sets from the Gene Expression Omnibus (GEO) database.
Subsequently, we conducted protein-protein interaction (PPI) network analysis and
calculated their Gene Ontology (GO) semantic similarity. The GO, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, Disease Ontology (DO), gene set enrichment
analysis (GSEA), and gene set variation analysis (GSVA) were employed for functional
enrichment analyses and to determine the most significant functional terms. Combined
with the results of boruta and random forest, we selected predictors to build a prognostic
model, along with seeking out the potential TFs and target drugs for the predictive genes.

Results: Immune-related DEGs included 64 genes upregulated and 98 genes
downregulated. The enrichment analysis might closely associate with cell adhesion and
T cell-mediated immunity pathways and there were many DEGs involved in lipid and
atherosclerosis signaling pathways. The highest-ranking hub gene in PPI network have
been reported lowly expressed in OSA. In line with the enrichment analysis, DO analysis
reveal that respiratory diseases may be associated with OSA besides immune system
disorders. Consistent with the result of the KEGG pathway, the analysis of GSVA revealed
that the pro-inflammation pathways are associated with OSA. Monocytes and CD8 T cells
were the predominant immune cells in adipose tissue. We built a prognostic model with the
top six genes, and the prognostic genes were involved in the polarization of macrophage
and differentiation of T lymphocyte subsets. In vivo experimental verification revealed that
EPGN, LGR5, NCK1 and VIP were significantly down-regulated while PGRMC2 was
significantly up-regulated in mouse model of OSA.

Conclusions: Our study demonstrated strong associations between immune genes and
the development of dyslipidemia in OSA. This work promoted the molecular mechanisms
and potential targets for the regulation of lipid metabolism in OSA.
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INTRODUCTION

Obstructive Sleep Apnea (OSA) is a common disease
characterized by repeated episodes of upper airway closure
during sleep. The symptoms of OSA, such as snoring,
nocturnal awakening, nocturia, and daytime sleepiness has low
specificity to distinguish (Patel, 2019). The apnea-hypopnea
index (AHI) and hypopnea per hour of sleep is the key metric
to measure OSA (Jordan et al., 2014). Overnight
polysomnography is the best test of OSA, as the procedure is
dedicated and expensive. Atypical symptoms and inconvenient
detection methods lead to a low diagnostic rate of OSA. OSA
affects 9–38% of the adult population, from 6 to 19% in women
and 13–33% in men (Senaratna et al., 2017).

OSA is associated with increased risk for hypertension,
coronary artery disease, heart failure, stroke, type 2
diabetes, and fatty liver diseases (Tan et al., 2018; Chung
et al., 2021; Yeghiazarians et al., 2021). Nowadays, more
and more evidence shows that in the treatment of those
diseases, OSA should be paid more attention to (Tan et al.,
2018; Yeghiazarians et al., 2021). There has been a great
interest in the interaction between OSA and metabolic
dysfunction. Patients with OSA usually have abnormal
metabolism of glucose and lipids. Though obesity is one of
the main risk factors of OSA, many investigations have shown
that OSA can have an independent effect on dyslipidemia as
well as obesity (Karkinski et al., 2017; Silva et al., 2018; Alterki
et al., 2020). In non-obese patients, OSA could aggravate
abnormal lipid metabolism (Karkinski et al., 2017).
Dysregulation lipid profiles are related to sleep hypoxemia
even in mild OSA (Silva et al., 2018). But in obese patients, the
role of OSA in the changes of dyslipidemia is not as important
as in non-obese patients (Karkinski et al., 2017). However, it
has also been reported that after eliminating interference
factors, only severe OSA had an independent association
with dyslipidemia (Martínez-Cerón et al., 2021). Treatment
with OSA, either multilevel sleep surgery or continuous
positive airway pressure (CPAP) therapy, has a positive
impact on the metabolic status (Alterki et al., 2020; Simon
et al., 2020). So, the question is, which key factors through
what signaling pathways contribute to abnormal lipid
metabolism in patients with OSA.

Lots of studies using high throughput microarray to analyze
the differential expression genes and functional pathways
related to the mechanisms and consequences of OSA. A
previous study took two systems biology approaches to
detect hub proteins associated with OSA in subcutaneous
and visceral fat tissues. The hub genes were different
between using biased methods and unbiased methods,
because of the nature of the two approaches (Liu et al.,
2011). Two studies were obtained the same result that the
olfactory transduction pathway plays an important role in
OSA using visceral adipose tissues (Gu et al., 2019) and
subcutaneous adipose tissues (Cao et al., 2021) respectively.
Yet, the different biomarkers and enriched pathways were
using the same microarray data from visceral adipose
tissues (GSE38792) (Chen et al., 2015; Gu et al., 2019), for

the small sample size increased the false-positive of the results.
Moreover, although a series of bioinformatics analyses has
thoroughly investigated the potential biomarkers and
functional pathways of OSA in adipose tissues, they remain
to use cross analysis in various datasets to explore the possible
mechanisms. There is a high false-positive rate using a single
dataset or single method that may contribute to discordant
results across these studies. Previous studies have shown that
inflammatory is involved in the development of OSA (Gharib
et al., 2020; Liu et al., 2020), the landscape of immune
infiltration in OSA has not been entirely revealed.
Accordingly, we conducted cross-analysis in immune-
related biomarkers and the predicted target drugs of
treatment in OSA dyslipidemia.

In the present study, we discover the key immune molecules
and signaling pathways involved in lipid metabolism and
identify immune molecule-related transcription factors
(TFs) and drug targets. To obtain more accurate results, we
downloaded two microarray datasets from the Gene
Expression Omnibus (GEO) database, and then analyzed
and verified them. We obtained immune-related
differentially expressed genes (DEGs) between normal and
OSA groups. With these DEGs, we conducted protein-protein
interaction (PPI) network analysis and calculated their Gene
Ontology (GO) semantic similarity. Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, Disease Ontology (DO), gene set enrichment
analysis (GSEA), and gene set variation analysis (GSVA)
were employed for functional enrichment analyses and to
determine the most significant functional terms. Combined
with the results of boruta and random forest, we selected
predictors to build a prognostic model, along with seeking out
the potential TFs and target drugs for the predictive genes.
The aim of this study was to provide a theoretical basis for
immune genes that affected lipid metabolism in OSA.

MATERIAL AND METHODS

Data Collection and Processing
The datasets were obtained from the Gene Expression Omnibus
database (GEO) (http://www.ncbi.nlm.nih.gov/geo/). GSE135917
(Gharib et al., 2020) and GSE38792 (Gharib et al., 2013)
microarray datasets were performed on the same platform
GPL6244 (HuGene-1_0-st; Affymetrix Human Gene 1.0 ST).
GSE135917 contained fifty subcutaneous adipose tissue
samples including normal controls (n � 8) and OSA patients
without treatment (n � 34). GSE38792 contained eighteen
visceral adipose tissue samples including normal controls (n �
8) and OSA patients without treatment (n � 10). We used
GSE135917 as the training set and GSE38792 as the testing
set. The clinical and demographic characteristics of the study
patients in GSE135917 was shown in Table 1.

Raw data were downloaded using the GEOquery package
(Davis and Meltzer, 2007) and analyzed using the oligo
package (Carvalho and Irizarry, 2010) of Bioconductor in R
version 4.1.0. The data were normalized with the RMA
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method and probe IDs were converted into gene names according
to the platform annotation information.

Differentially Expressed Genes Analysis
Limma package (Ritchie et al., 2015) in R was used to identify
DEGs between OSA and normal adipose tissues. Genes with
adjusted p-value < 0.01 were considered to be statistically
significant.

The immune-related gene list was obtained from the ImmPort
database (http://www.immport.org) (Bhattacharya et al., 2014).
Then the gene set with immune-related genes was identified in
the GSE135917 and the immune-related genes with adjusted
p-value < 0.01 were considered to be statistically significant.

Protein-Protein Interaction Network
Construction With Immune-Related
Differentially Expressed Genes
The STRING database (https://string-db.org/) (von Mering et al.,
2003) is a biological database and web resource of known and
predicted protein-protein interactions. We uploaded the
immune-related DEGs to the STRING database. The species
was set as Homo sapiens and the minimum interaction score
was 0.4 to build a protein interaction network. The PPI network
of the immune-related DEGs was visualized with Cytoscape 3.8.2
software (Shannon et al., 2003).

Calculation of Gene Ontology Semantic
Similarity
GO terms include biological process (BP), molecular function
(MF), and cellular component (CC). The GO semantic similarity
score can be applied to quantify the functional similarity between
genes. To assess immune-related gene functional similarity, we
calculated semantic similarity scores of GO terms using the R
GOSemSim package (Yu et al., 2010; Yu, 2020). MgeneSim
automatically removes genes without annotations and
computed the semantic similarity among GO terms. The

functional similarity score of the target gene is calculated as
follows:

Fsim �
�������������������
simbp p simcc p simmf3

√

Gene Ontology and Pathway Analysis
To reveal the functions and pathways of immune-related DEGs,
GO and KEGG pathway analyses were performed using the R
clusterProfiler package (Yu et al., 2012). Significant KEGG
pathways and participating genes were visualized with the R
pathview package (Luo and Brouwer, 2013). In all enrichment
analyses, Benjamini-Hochberg (BH) adjustment to calculate the
false discovery rate (FDR) was applied. A q-value < 0.05 was set as
the cutoff criterion.

DOSE (Yu et al., 2015) is an R package for disease ontology
semantic and enrichment analysis. We used the DOSE R package
to analyze the enrichment of immune-related DEGs with Disease
Ontology (DO) terms.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
Gene set enrichment analysis was performed using the R
clusterProfiler package (Yu et al., 2012). p values were adjusted by
the BHmethod.We used FDR (false discovery rate)< 0.1, and p-value
< 0.01 as the threshold to determine significant enrichment of the gene
sets. Then Gene Set Variation Analysis (GSVA) (Hänzelmann et al.,
2013), a nonparametric unsupervised method, was used to display
differential enrichment pathways between normal controls and OSA
patients. A p-value < 0.01 was set as the cutoff criterion. In this study,
we used the R package “GSVA” to explore KEGG pathways of
immune-related genes. Gene terms were considered statistically
significant, and a heatmap was generated using R.

Prognostic Model Building and Validation
Boruta feature selection (“Boruta” package in R) (Miron B. Kursa
and Rudnicki, 2010) was used on the training dataset

TABLE 1 | Clinical and demographic characteristics of patients in two datasets.

GSE135917 GSE38792

Group1 (individuals
undergoing ventral hernia

repair surgery)

Group2 (individuals diagnosed with OSA getting initiated on CPAP
therapy)

Control (n = 8) OSA (n = 10)

Control (n = 8) OSA (n = 10) OSA (n = 24)

Age (years) 54.5 ± 11.6 56.1 ± 10.8 49.4 ± 10.9 54.5 ± 11.6 56.1 ± 10.8
Gender
Male 1 3 13 1 3
Female 7 7 11 7 7
Body mass index
(kg/m2)

35.2 ± 5.8 36.1 ± 9.3 42.6 ± 9.4 35.2 ± 5.8 36.1 ± 9.3

RDI or AHI (events/hour) 0.6 ± 0.5 19.2 ± 25.9 41.5 ± 23.8 0.6 ± 0.5 19.2 ± 25.9
Diabetes 0 3 5 0 3
Hypertension 3 3 9 3 3
Heart disease 0 0 2 0 0
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(GSE135917) to identify the immune-related genes that
contribute significantly to OSA. Random forest was
implemented in R using the randomForest package (Liaw and
Wiener, 2001), and important immune-related genes were
selected as features that could construct a prognostic model.

Based on the results of boruta and random forest, the selected
set of predictors were used to construct a prognostic model. The
receiver operating characteristic (ROC) curve was used to
confirm the performance of the model and the area under the
curve (AUC) was estimated in the training dataset (GSE135917),
and the GSE38792 dataset was applied to verify the established
prognostic model. At last, we analyzed the expression of
predictors between normal and OSA groups in the two datasets.

Immune Cell Infiltrate Analysis
To understand the immunemicroenvironment of adipose tissue, we
analyzed the differential expression of different types of immune
cells. The CIBERSORTx algorithm (Newman et al., 2015) was used
to calculate and analyze the immune microenvironment of adipose
tissue involved in OSA and normal controls.

Correlation Analysis Between Predictors
and Immune Cells
To further understand the relationship between predictors and
immune cells, Pearson’s correlation was performed to analyze the
correlation between the expression value of predictors and the
different types of immune cells.

Transcription Factors and Target Drugs
Analysis
To further investigate the transcription factor binding motifs of
predictors, the iRegulon (Janky et al., 2014) software was used.
The set of predictors was submitted to iRegulon and analyzed
using the following options: minimumNEScore � 5.0. The results
were visualized using Cytoscape software.

Furthermore, we identified drug-gene interactions using
Drug-Gene Interaction Database (DGIdb) (Cotto et al., 2018).
The list of predictors was uploaded to DGIdb and matched with
drugs that could be the potential therapeutic targets of OSA.

Animal Model and Chronic Intermittent
Hypoxia Protocols
C57BL/6J adult male mice (8 weeks old) were purchased from the
Model Animal Research Center of Tongji Medical College of
Huazhong University of Science and Technology (Wuhan,
China). Animals were randomly assigned to control and OSA
groups (n � 6 animals/group). The OSA groupmice were exposed
to 4 weeks of CIH (8 daylight hours per day, 10:00 am to 6:00
pm), whereas the control group was maintained under normal
oxygenation conditions. The animal study was approved by the
Institutional Ethics Committee for Animal Research of Tongji
Medical College, Huazhong University of Science and
Technology. All procedures conformed to the Guide for the
Care and Use of Laboratory Animals.

Gas-control delivery equipment was installed to regulate
nitrogen and oxygen flow into the customized chamber. The
equipment was composed of sensors for O2 and gas injectors.
During each 510-s cycle there included 4 stages. In stage 1, with
N2 infused into the chamber, the concentration of O2 lowered
from 21 to 5% in 150 s, and then maintained at 5% for 120 s in
stage 2. In stage 3, the chamber was infused with O2 for 120 s to
restore O2 to an ambient concentration of 21%, and it was
maintained in stage 4 until the beginning of the next CIH cycle.

Reverse Transcription-Polymerase Chain
Reaction
Visceral adipose tissue was collected and total mRNA and was
extracted using TRIzol Reagent following the manufacturer’s
protocol. The extracted mRNA (1 μg) was reverse transcribed
into cDNA using. Real-time PCR was performed on a LightCycler
System 2.0 (Roche, Mannheim, Germany) using SYBR Premix EX
Taq kit (Takara, Dalian, China). RT-PCR was performed at 95°C
for 5 min, then 95°C (45 s), 56°C (30 s), and 72°C (45 s) followed
by a 10 min extension at 72°C for 40 cycles. Each sample was run
in triplicate and averaged. The relative gene expression was
calculated by the 2-△△Ct method.

The primer sequence is as follows: EPGN forward primer: 5′-
GGGGGTTCTGATAGCAGTCTG-3′, reverse primer: 5′-TCG
GTGTTGTTAAATGTCCAGTT-3’. LGR5 forward primer: 5′-
CCTACTCGAAGACTTACCCAGT-3′, reverse primer: 5′- GCA
TTGGGGTGAATGATAGCA-3’. NCK1 forward primer: 5′-
TCCTGCTGATGATAGCTTTGTTG-3′, reverse primer: 5′-
ACGATCACCTTGGTCCCTTTTAT-3’. PGRMC2 forward
primer: 5′- TGGGAAAGTCTTCGACGTGAC-3′, reverse
primer: 5′- GTGCATCCTTATCCAGGCAGA-3’. VIP forward
primer: 5′- AGTGTGCTGTTCTCTCAGTCG-3′, reverse primer:
5′- GCCATTTTCTGCTAAGGGATTCT-3’. β-actin forward
primer: 5′- GCGCAAGTACTCTGTGTGGA-3′, reverse
primer: 5′-GAAAGGGTGTAAAAC GCAGC-3’.

RESULTS

Data Pre-processing
Our workflows are shown in Figure 1. To eliminate batch
expression difference, each data was normalized by the RMA
method in R (Figure 2). The original expression values varied
significantly between the samples and the mean values of gene
expression for each sample were fundamentally the same after
normalization.

Identification of Differentially Expressed
Genes in Obstructive Sleep Apnea
The GSE135917 after normalization was utilized to obtain the
differentially expressed genes between OSA and normal adipose
tissues. With adj p-value < 0.01 as the screening threshold, DEGs
were obtained with 249 genes upregulated and 133 genes
downregulated. The volcano plot and heatmap of the DEGs
are shown in Figures 3B,C. With adj p-value < 0.01 as the
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screening threshold, immune-related DEGs were obtained with
64 genes upregulated and 98 genes downregulated. The volcano
plot and heatmap of the DEGs are shown in Figures 3E,F. In
vocano plot, red dots represent significant different expression
genes, and green dots represent no significant different expression
genes. In heatmap, each row represents one gene, and each
column represents one sample. Red indicates that the
expression of genes is relatively upregulated, and blue
indicates that the expression of genes is relatively downregulated.

We applied principle component analysis (PCA) on the DEGs
(Figure 3A) and immune-related DEGs (Figure 3D).
Unsupervised clustering of the two set DEGs showed that
samples from normal and OSA could be divided into two
main clusters. The result revealed that the features of OSA
adipose tissue could be explained only by immune-related
DEGs, then we used 162 immune-related DEGs to perform
subsequent analysis.

Protein-Protein Interaction Network
Construction and Semantic Similarity
Analysis
To analyze the interaction among 162 immune-related DEGs, the
STRING database was used. A total of 122 nodes and 496 edges
were obtained with a combined score >0.7, as shown in
Figure 4A. The top3 hub genes with the highest ranking were
found: interleukin 6 (IL6), proopiomelanocortin (POMC),
mitogen-activated protein kinase 3 (MAPK3).

We also calculated the average semantic similarity for
immune-related DEGs in GO terms, including biological
process (BP), molecular function (MF), and cellular
component (CC) categories. Based on the average functional
similarity, we ranked the top 10 genes among the immune
genes (Figure 4B). Defensin beta 129 (DEFB129), fibroblast
growth factor 16 (FGF16), and proteasome 26S subunit, non-
ATPase 8 (PSMD8) were the top three genes potentially playing
key roles in OSA.

Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes Pathway, and Disease
Ontology Terms Enrichment Analysis
The results of GO functional, KEGG pathway and Do terms
enrichment analysis are shown in Figure 5. In the BP category of
the GO enrichment analysis, immune-related DEGs were mainly
enriched in items such as “positive regulation of cell-cell adhesion”,
“positive regulation of cell adhesion”, and “regulation of cell-cell
adhesion” (Figure 5A). In the CC category of the GO enrichment
analysis, these genes were mainly enriched in items such as
“proteasome accessory complex”, “proteasome regulatory particle”,
and “secretory granule lumen” (Figure 5B). In theMF category of the
GO enrichment analysis, these genes were mainly enriched in items
such as “receptor ligand activity”, “signaling receptor activator
activity”, and “hormone activity” (Figure 5C). Meanwhile, based
on the results of the KEGG pathway enrichment analysis
(Figure 5D), most of the immune-related DEGs were significantly
enriched for the terms: “cytokine-cytokine receptor interaction”
(Figure 5H), “T cell receptor signaling pathway” (Figure 5F), and
“lipid and atherosclerosis” (Figure 5G). Therefore, theGO terms from
BP and KEGG signaling pathways might closely associate with cell
adhesion and T cell-mediated immunity pathways. Interestingly,
among the differentially expressed genes, there were many involved
in lipid and atherosclerosis signaling pathways.

We found DO terms mainly enriched in “bacterial infectious
disease”, “osteoarthritis”, and “primary bacterial infectious disease”
(Figure 5E). In line with the above GO-term and KEGG pathway
analysis, disease ontology (DO) revealed that respiratory diseases
may be associated with OSA besides immune system disorders.

Pathway Enrichment Analysis of the
Immune-Related Differentially Expressed
Genes
To further explore the signaling pathway associated with immune
genes involved in OSA, we identified the pathways significantly

FIGURE 1 | Flow chart of methodologies applied in the current study.
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enriched through GSEA and GSVA analysis. GSEA analysis
indicated that OSA is predominantly associated with an IL-17
signaling pathway, pertussis, rheumatoid arthritis, parathyroid
hormone synthesis, secretion, and action, TNF signaling
pathway, amyotrophic lateral sclerosis, and non-alcoholic fatty
liver disease (Figures 6A,B). This result was consistent with the

analysis of KEGG pathways that the IL-17 signaling pathway may
play an important role in OSA. It is noteworthy that the non-
alcoholic fatty liver disease signaling pathway is involved in the
genesis of OSA disease.

The GSVA result is presented in the heat map (Figure 6C),
and further uncovered differences of normal and OSA samples.

FIGURE 2 | The Expression profiles before and after normalization. (A) GSE135917 data before normalization. (B) GSE135917 data after normalization. (C)
GSE38792 data before normalization. (D) GSE38792 data after normalization.
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Consistent with the result of the KEGG pathway, toll-like
receptor signaling pathway, MAPK signaling pathway, and
T cell receptor signaling pathway are associated with OSA.

Prognostic Model Building and Validation
Boruta feature selection method was used to select significant
predictors to improve prediction in immune-related DEGs.
Along with Boruta running, the z score evolution is shown in
Figure 7A. A total of 27 genes were selected by the Boruta
algorithm (Figure 7B). Random forest analysis provided
further support for the predictors’ selection (Figures 7C,D).
The average error rate was minimum with five sample trees
from Figure 7C. Then we analyzed the variable importance of
random forest by using accuracy and the Gini index of a mean
decrease (Figure 7D). Therefore, we built the final prognostic
predictors with the top six genes, that were vasoactive intestinal
peptide (VIP), progesterone receptor membrane component 2
(PGRMC2), NCK adaptor protein 1 (NCK1), leucine rich repeat
containing G protein-coupled receptor 5 (LGR5), epithelial
mitogen (EPGN), and defensin beta 135 (DEFB135). ROC
curves were also applied to compare the efficiency of the
predictive model and those genes.

Training and testing sets were used for each evaluation to
confirm the performance and reliability of the prognostic model
(Figures 6E–H). The expression trend of the predictive genes in
the training set (GSE135917) (Figure 7F) was consistent with the
testing set (GSE38792) (Figure 7G). The AUC of the ROC for this
prognostic model was 1 in both of the two sets (Figures 7E,H),
indicating that these predictors showed good performance in
distinguishing persons who will easily lead to OSA.

Immune Cell Infiltrate Analysis
We investigated whether distinct patterns of immune infiltration
could be discerned based on the 10 kinds and 22 types of the
immune cell by the CIBERSORTxmethod. First, we evaluated the
composition of the immune cell infiltrate in OSA (Figure 8A). In
adipose tissue, the predominant immune cell type was
monocytes, followed by CD8 T cells. The main cell types of
monocytes kind were monocytes, anti-inflammatory
macrophages (M2), and inactive macrophages (M0), with
almost no inflammatory macrophages (M1).

The differential proportions of immune infiltration cells in
normal and OSA groups are shown in Figure 8B. Within the 10
kinds of immune cells, there were no significant differences in

FIGURE 3 | Analysis of DEGs and immune-related DEGs in data set GSE135917. (A) Principle component analysis (PCA) plot of 382 DEGs shows that samples be
divided into two clusters. Blue dots indicate normal samples, red dots indicates obstructive sleep apnea (OSA) samples. (B) The volcano plot of differentially expressed
genes (DEGs). Red dots represent significant different expression genes, and green dots represent no significant different expression genes. (C) The heatmap of DEGs.
Each row represents one gene, and each column represents one sample. Red indicates that the expression of genes is relatively upregulated, and blue indicates
that the expression of genes is relatively downregulated. (D). PCA plot of 162 immune-related DEGs. (E) The volcano plot of immune-related DEGs. (F) The heatmap of
immune-related DEGs.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7475767

Peng et al. Immune-Genes Effect Dyslipidemia in OSA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


immune cell composition between OSA patients and normal,
whereas when divided into the 22 types, macrophages M0 was
statistically significantly different between OSA patients and
normal. Macrophages M0 was significantly higher in the
adipose tissue of OSA patients compared with normal.

Furthermore, Pearson correlation analysis was used to
investigate the correlations of immune cells in the training set
(Figure 8C). We observed that monocytes had a significant
positive correlation with CD8 T cells, and a significantly
negative with macrophages M0, macrophages M2. Meanwhile,
T cells CD8 was negatively correlated with macrophages M0 and
macrophages m2. The relationship between CD8 T cells and
monocytes, as well as the polarization of monocytes, requires
further study. In addition, there was a positive correlation
between NK cell activated and mast cell resting.

Correlation Analysis Between Predictors
and Immune Cells
Significant correlations between six predictive genes and immune
cells are shown in Figures 9A–G. The abundance of macrophages
M0 in normal and OSA groups is illustrated using violin plots
(Figure 9H). NCK1 had a significant correlation with more
immune cells than the other five genes. There was a
significant negative correlation between NCK1 and monocytes,
which was following the results in front. That indicated that
NCK1 may be associated with monocytes and subsequent
polarization in the adipose tissue of OSA patients.

Transcription Factors and Target Drugs
Analysis
Candidate transcription factors, being hypothetically able to
control the expression of the six predictors, were predicted
(Figure 10A). We also used DGIdb to identify essential genes
that are potentially “druggable”. Figure 10B shows a drug-gene
network visualization using gene-centric fashions.

Analysis of the Expression Level of the
Predictive Genes In Vivo.
Mice exposed to chronic intermittent hypoxia (CIH), which
mimic hypoxia condition during OSA, are most frequently
used as an animal model for OSA. The flow chart of CIH
exposure procedure in our study was shown in Figure 11A.
As DEFB135 was not expressed in mice, the expression of the
other five predictive genes after chronic intermittent hypoxia for
4 weeks is shown (Figures 11B–F). The levels of EPGN, LGR5,
NCK1, and VIP in visceral adipose tissue of CIH group mice were
significantly down-regulated compared to the control group
while the level of PGRMC2 was significantly up-regulated.

DISCUSSION

Obesity is a clear risk factor in the development of OSA, the
incidence rate of OSA is increasing year by year with the
prevalence of obesity. The synergistic effect of obesity and OSA

FIGURE 4 | Protein-protein interactions (PPI) network construction and semantic similarity analysis of immune-related DEGs. (A) The PPI network of immune-
related DEGs. Each circle represents a gene. The upregulated genes (red) and downregulated genes (green) are represented by circles. Different sizes indicate the core
degree of genes in the PPI network, whereas bigger size indicates more important in the network. (B) Summary of functional similarities of the top 10 immune-related
DEGs. The aggregate score is between 0 and 1. The higher the score is, the more similarity genes are.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7475768

Peng et al. Immune-Genes Effect Dyslipidemia in OSA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


increased the incidence of metabolic diseases, such as
dyslipidemia, hypertension, insulin resistance,
cardiovascular diseases, and non-alcoholic fatty liver
disease. (Jordan et al., 2014). Recently, OSA is considered to
be an independent factor affecting lipid metabolism and there
has been a great interest in the interaction between OSA and

lipid metabolic dysfunction. Rodents are used to study the
occurrence and development mechanism of dyslipidemia in
OSA but they do not naturally exhibit OSA. Animal models to
research the physiological mechanisms underlying OSA
always achieve its hallmarks outcomes as intrathoracic
pressure swings, sleep fragmentation, hypercapnia, and

FIGURE 5 |GO, KEGG pathway and Do terms enrichment analysis of immune-related DEGs. GO terms enrichment analysis of the DEGs, including BP (A), CC (B),
and MF (C) categories. (D) KEGG pathway enrichment analysis of the DEGs. (E) Do terms enrichment analysis of DEGs. The size of the symbol represents the gene
counts enriched in the signaling pathway. The color indicates the degree of significance. Signaling pathways of the T cell receptor signaling pathway (F), lipid and
atherosclerosis (G), and cytokine-cytokine receptor interaction (H). The genes significantly up-regulated filled in red color and down-regulated filled in green color.
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intermittent hypoxia (Barros and García-Río, 2019; Mesarwi
et al., 2019).

Inflammation and lipid signaling are synergism to maintain
the stability of the internal environment and immunity
(Shimobayashi et al., 2018), so the dyslipidemia of OSA may
be the result of the immune response. Therefore, we performed an
integrated analysis to identify the effect of immune-related genes
on dyslipidemia in OSA. In the first part of our study, the results
of the PCA analysis showed that normal and OSA adipose tissue
samples could be clearly distinguished by the immune-related
DEGs as well as DEGs. It laterally proved that immune responses
contribute to the pathogenesis and progress in adipose tissue
of OSA.

Next, we used the immune-related DEGs to build a PPI
network and find the functional similarity between them. GO,
KEGG, DO, GSEA, and GSVA analyses were performed to
explore the biological functions, enriched signaling pathways,
and related diseases. IL-6, the highest ranked gene in the PPI
network, was significantly downregulated in cytokine-cytokine
receptor interaction and lipid and atherosclerosis signaling
pathways. MAPK3, one of top3 hub genes in PPI network, is a

member of the MAP kinase family. MAP kinases, also known as
extracellular signal-regulated kinases (ERKs), act in a signaling
cascade that regulates various cellular processes such as
proliferation, differentiation, and cell cycle progression in
response to a variety of extracellular signals. Protein kinase C
and ERK activation are required for TFF-peptide-stimulated
bronchial epithelial cell migration and tumor necrosis factor-
alpha-induced interleukin-6 (IL-6) and IL-8 secretion (Graness
et al., 2002). The IL6-202 and IL6-205 transcripts that confer drug
resistance to Vemurafenib by reactivating the MAPK pathway
while IL6-201 is not responsible for the resistance in A375
melanoma cells. Neutralizing IL-6 significantly increased the
sensitivity of drug-resistant cells to Vemurafenib (Zhao et al.,
2020). From our results, those two pathways were the top3
pathways negatively correlated with the OSA group. It is the
same as a previous meta-analysis that either children or adults
with obstructive sleep apnea syndrome had higher serum/plasma
IL-6 levels compared to healthy controls (Imani et al., 2020).
Results of GO BP terms, KEGG pathway, and GSVA revealed that
immune-related DEGs were mainly enriched in cell adhesion and
T cell-mediated immunity pathways, according to well with the

FIGURE 6 | Pathway enrichment analysis of the immune-related DEGs. Gene set enrichment analysis (GSEA) displays the top 7 enriched pathways in OSA using
enrichment plots (A) and ridge plots (B). (C) Gene set variation analysis (GSVA) for significantly enriched pathways in OSA.
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pathophysiological mechanism of DO term enriched diseases.
Notably, the IL-17 signaling pathway, the result enriched both in
KEGG analysis and GSEA, is IL-17 family mediated immune
response in both acute and chronic inflammatory responses.
Clinical evidence indicated that the pathogenesis of OSAS may
be associated with increased IL-17A broken the balance of
peripheral Th17/Treg (Ye et al., 2012; Ying et al., 2014).
Following clinical observation (Jordan et al., 2014; Chung
et al., 2021; Yeghiazarians et al., 2021), disease ontology (DO)
queries revealed multiple DO terms not only associated with
inflammation, but also with metabolic diseases such as
cardiovascular diseases and liver diseases. GSEA analysis

showed the immune-related DEGs significantly enriched in
pathways related to non-alcoholic fatty liver disease, maybe it
was the combined action of obesity and OSA in lipid metabolism.

In the following part of our study, we selected significant
diagnostic genes (VIP, PGRMC2, NCK1, LGR5, EPGN, and
DEFB135) and constructed a diagnostic model using the genes.
Concerning diagnostic value, the AUC of the diagnostic model
and the expression of the six diagnostic genes were analyzed using
cross-validation. The results showed that those six genes may be
promising targets for the diagnosis of dyslipidemia of OSA.
Although none of the genes has been reported to be associated
with OSA, it is also reasonable for them to influence the

FIGURE 7 | Prognostic model building and validation. (A) The z score evolution with Boruta run. (B) Selected genes by Boruta algorithm. (C) The average error rate
of random forest model. (D) Variable importance ordered by accuracy and the gini index of a mean decrease in random forest. (E) Receiver operating characteristic
(ROC) curve with area under the curve (AUC) values for GSE135917. (F) The expression of predictors in GSE135917. (G) The expression of predictors in GSE38792. (H)
ROC curve with AUC values for GSE38792.
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development of dyslipidemia in OSA. PGRMC2, ubiquitous
expression in fat, is involved in adipose tissue development
and steroid hormone mediated signaling pathway (Galmozzi

et al., 2019). As metabolic molecules, it is not surprising that
they could be involved in the lipid metabolism of OSA.
Vasoactive intestinal peptide (VIP) has immune regulatory

FIGURE 8 | Immune cell infiltrate analysis. (A) The composition of the immune cell infiltrate in OSA. (B) The differential expression of different types of immune cells
between normal and OSA tissues. (C) Correlation matrix of 22 types of immune cell proportions.
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functions, and administration of VIP can inhibit experimental
colitis (Sun et al., 2019). EPGN is a member of the epidermal
growth factor family, and EPGN SNP (single nucleotide

polymorphism) is significantly associated with variations in
cytokine secretion to vaccinia virus stimulation in smallpox
vaccine recipients (Kennedy et al., 2012). LGR5, a receptor for

FIGURE 9 | Correlation analysis between predictors and immune cells. Significantly correlations between predictors and immune cells: NCK1 and monocytes (A),
NCK1 andmacrophagesM1 (B), NCK1 andmast cells resting (C), PGRMC2 andmacrophagesM1 (D), EPGN and plasma cells (E), VIP and T cells CD4memory resting
(F), and LGR5 and monocytes (G,H). Violin plots of the abundance of macrophages M0. The box plots in the violin indicate the median and interquartile range of the data
distribution.

FIGURE 10 | Transcription factors and target drugs analysis. (A) Regulatory network of the predicted transcription factors and the target genes. (B) Drug-gene
network using gene-centric fashions. Green circles indicate target genes, orange octagons indicate predictive transcription factors, and red quadrilateral indicate
predictive drug.
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R-spondins, promotes epithelial-mesenchymal transition by
activating the Wnt/β-catenin pathway in glioma (Zhang et al.,
2018). NCK1 is involved in enhancing downstream T cell
activation signaling (Wipa et al., 2020). DEFB135 also was one
of the diagnostic genes, while DEFB129 got the highest scores in
functional similarity analysis. Both of those two genes are a
member of the beta defensin protein family, and defensins are
the only group of antimicrobial peptides found in animals,
involved in the first line of defense in their innate immune
response against pathogens (Xu and Lu, 2020). By now, the
researches of beta-defensins mainly focus on infection (Xu and
Lu, 2020) and reproductive (Batra et al., 2019), and there is no
report on the relationship between beta-defensins and lipid
metabolism. Although not directly be regulated in lipid
metabolism, the latter four diagnostic genes have been
reported to be involved in inflammation. Infection and
inflammation are associated with marked changes in lipid and
lipoprotein metabolism (Khovidhunkit et al., 2004). Those
changes may through effecting on liver lipid synthesis, adipose
tissue lipolysis, and postprandial lipid clearance lead to
dyslipidemia in OSA (Barros and García-Río, 2019).

To further explore the reason for the changes of immune
molecules, we analyzed the immune microenvironment of
adipose tissue in the OSA group and then seek out the
relationship of diagnostic immune genes and immune cells. In
our research, monocytes were mainly enriched kinds of immune
cells. Among the kind of monocytes, the proportion of
macrophages M0 in the OSA group was significantly higher

than that in the normal group, while the ratios of
macrophages M1 were almost no expression. This suggested
that the major immune cell involved in dyslipidemia of OSA
is the macrophage. Macrophages, belonging to the monocyte-
macrophage system, modulate inflammatory responses and
microbial killing. Macrophages need to display function
plasticity to respond to different microenvironmental.
Inflammatory stimuli such as lipopolysaccharide (LPS) and
interferon-γ (IFN-γ) induce classically activated (M1)
macrophages, and anti-inflammatory cytokines such as
interleukin-4 (IL-4) or IL-13 induce an alternatively activated
(M2) macrophages (Motwani and Gilroy, 2015; Saha et al., 2017).
The lipid metabolism signaling pathway and its products play a
key role in regulating macrophage polarization (Saha et al., 2017).
In in vitro experiment, M2 macrophages depend on fatty acid
oxidation whereas M1 macrophages depend on an increase in
glycolysis (Tabas and Bornfeldt, 2016; Saha et al., 2017;
Shimobayashi et al., 2018). The relationship between
macrophage phenotypic states and pathological conditions of
metabolism disease have been demonstrated in numerous studies.
Macrophages play important roles in all stages of atherosclerosis,
and pure M1 and M2 macrophages almost certainly do not occur
in atherosclerotic lesions. Early in the disease, macrophages
accumulate in susceptible regions of arteries. When
macrophages are exposed to a plethora of stimuli, they
differentiate into different types and play different roles (Tabas
and Bornfeldt, 2016). M1 macrophages dominated the rupture-
prone shoulder regions of the plaque while increasing M2

FIGURE 11 | The expression trend of prognostic factors after 4 weeks of chronic intermittent hypoxia (CIH). (A) The flow chart of CIH exposure procedure. The
expression of EPGN (B), IGR5 (C), NCK1 (D), VIP (E), and PGRMC2 (F). Data are presented as means ± SEM, n � 6 for each group. *p < 0.05, * *p < 0.01 and * * *p <
0.001 compared with control animals.
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activation was displayed in vascular adventitial tissue (Motwani
and Gilroy, 2015). Obesity is considered chronic tissue
information and causes insulin resistance. In obesity, the
balance is tilted toward the M1-like macrophage polarization
state (Shimobayashi et al., 2018). In our study, extremely no
expression of macrophages M1 further confirmed that
dyslipidemia in OSA is not simply caused by obesity. We
found that the cells of the monocyte-macrophage system were
mainly composed of monocytes, macrophages M0, and
macrophages M0 in adipose tissue of OSA. Only macrophages
M0 was significantly different between normal and OSA group,
and it can onset of polarization adopting variable states of
activation.

In adipose tissue, the second immune cell type was CD8
T cells. CD8 T cells are key members of adaptive immunity
and immunological memory. The control of lipid metabolism is
central to the appropriate differentiation and functions of T
lymphocytes (Howie et al., 2017), and it was according to our
result that T cell pathways mainly enriched in adipose tissue of
OSA. In early atherosclerosis, CD8 T cells control monopoiesis
andmacrophage accumulation and contribute to macrophage cell
death in atherosclerotic plaques (Schäfer and Zernecke, 2020).
While in our study, CD8 T cells were positively correlated with
Macrophages M0, Macrophages M2, and negatively correlated
with monocytes. Regulatory pathways between the macrophage
subsets and other immune cells need to be further studied to help
us better understand the mechanism of dyslipidemia in OSA.

In the animal model experiment, the expression trend of
LGR5, EPGN, PGRMC2, and VIP were consistent with the
conclusion of the testing set (GSE38792) and the training set
(GSE135917). Notably, NCK1 had the opposite trend with the
conclusion of the two sets. Perhaps NCK1 is a good molecule of
penetration. As a prognostic gene associated with various
immune cells, NCK1 is highly expressed in adipose tissue.
NCK1 covers aspects of tissue development and homeostasis,
invasiveness of tumor cells, and immune cell function. When
T-cell antigen receptor (TCR) is triggered, NCK1 is recruited to
the CD3ε subunit of the TCR then switches on downstream T-cell
activation pathway (Wipa et al., 2020). In our study, NCK1 was
significantly negatively correlated with monocytes and positively
correlated with macrophages M1. Perhaps because the activated
T cell response of NCK1 initiates activated inflammatory
macrophages (M1), leading to the corresponding decrease of
monocytes.

Moreover, we analyzed candidate transcription factors and
target drugs for the prognostic genes. We discovered that LGR5
might be the likely target gene for the treatment of dyslipidemia in
OSA. LGR5 was the only predictive gene with a significant
difference in our study and the two datasets. It also showed a
positive correlation with monocytes. Further analyses were
necessary to analyze the role of LGR5 in the polarization of
macrophages in the lipid metabolism of OSA.

The current work is the first to investigate the role of immune-
related genes in the pathogenesis of dyslipidemia in OSA patients
through bioinformatics methods. However, there were still
several limitations to our research. First, to clarify the role of
lipid metabolism in OSA, all kinds of clinical factors should be

considered, such as whether obesity, the severity of intermittent
hypoxia, daily physical activity, and fasting-fed state. Second, we
have not verified the expression of key immune genes in clinical
samples. At the last, the sample size of our data was relatively
small, whichmay affect the gene expression in OSA.More clinical
characteristics of OSA are needed to be included in the study for
further analysis. The public datasets in our study had small
sample size of control group and there was gender bisa.
Therefore, we aim to use more samples and perform further
experiments to confirm the potential mechanism and clinical
utility. First, it would be interesting to examine basic expression of
these predicted genes with western blot, IHC, IF assays and so on.
Second, to clarify the function of the genes in OSA, a clean loss-
of-function and gain-on-function study with tissue-type
specificity and cell-type specificity remains warranted. A recent
series of molecular experiments may prove strong evidence for
the possible phenotype and pathway regulation of these predicted
genes. Third, the co-expression and interaction among predicted
genes is a new exciting Frontier that awaits further investigation.

CONCLUSION

The clinical evidence confirms the link between OSA and
dyslipidemia. However, because of a bias for clinicians who
may not consider routine screening for OSA in lean
individuals, some dyslipidemia caused by OSA cannot be
identified early. Our study demonstrated strong associations
between immune genes and the development of dyslipidemia
in OSA. Six prognostic genes were found and showed great
testing efficacy. The analysis between immune filtration
landscape and prognostic genes revealed those genes may
affect the polarization of macrophage and differentiation of T
lymphocyte subsets brought about abnormal lipid metabolism in
OSA. This work will contribute to explore the relationship
between inflammation and dyslipidemia, thus promoting our
understanding of the molecular mechanisms of lipid metabolism
in OSA and may offer potential targets for the regulation of lipid
metabolism and treatment of adipose dysfunction. Additionally,
the expression of EPGN, LGR5, NCK1, PGRMC2, and VIP were
also comfired at transcriptional using qPCR, indicating that
those genes are closely linked to dyslipidemia in OSA.
However, the limitations of our study are lacking in the
function validation of the genes such as loss-of-function and
gain-on-function study. Therefore, further functional
investigations of these targets are essential. The roles of the
prognostic genes in different macrophage subsets and other
immune cell metabolic properties require further experimental
validation.
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