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Abstract: This paper presents a complex analytical study on the distribution, solubility, amorphiza-
tion, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of
microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier
transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC),
scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro
dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was
guaranteed by the implementation of two contrasting reference models: physical drug–polymer mix-
tures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The
spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used
as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity
between the microsponge particles and the solid dispersions indicated the molecular-type dispersion
of the former. The comparative drug-desorption study and the qualitative observations over the
DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous
microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution
profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized
as the most promising, with the highest population of drug molecules in the polymer bulk and the
most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was
developed for the comprehensive physicochemical characterization of complex delivery systems of
this kind.

Keywords: diltiazem; Eudragit RS; microsponge drug delivery; solid dispersions

1. Introduction

Acrylate and methacrylate polymers are widely used in the pharmaceutical industry as
matrix- or film-forming materials [1,2]. The development of solid amorphous drug–polymer
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dispersions is the most common goal when subjecting them to the various techniques of
molding/casting, hot-melt extrusion, 3D printing, solvent evaporation, granulation, pre-
cipitation, etc. [3–5]. Compared to the solid crystalline dispersions, the solid amorphous
drug–polymer dispersions are characterized by increased homogeneity, permeability, drug
saturation point, and drug release [2]. Not by accident, the predominantly amorphous-in-
nature ammonio methacrylate copolymers (Eudragit® RS and RL), butylated methacry-
late copolymer (Eudragit® E), and methacrylic acid–methyl methacrylate copolymer 1:1
(Eudragit® L) [6] are applied as crystallization inhibitors (both on nucleation and crystal
growth) in the composition of miscellaneous drug-delivery carriers [7–9]. The polymers’
amorphization potency depends on the processing methods and variables and the drug
properties; they determine critical qualities of the final product, such as matrix/membrane
permeability, porosity, stability, solubility, desorption pattern, etc. [7,10].

Ammonio methacrylate copolymer type B (Eudragit® RS) is a polycationic polymer
composed of methyl methacrylate and ethyl acrylate units, among which 4.5 to 7.0%
methacrylic acid esters with quaternary ammonium groups are to be found [6]. The latter
determine the permeability of the polymer, which indeed possesses a water-insoluble
structure and pH-independent swelling [2,11,12]. Eudragit® RS finds a broad application
in the development of sustained-release drug-dosage forms and drug-delivery systems;
it displays thermoplasticity and considerable chemical stability, wherefore is considered
suitable for pharmaceutical processing [2].

In our previous works we presented the synthesis and physicochemical, functional, and
biopharmaceutical characterization of diltiazem-loaded Eudragit RS microsponges [13,14]–a
highly preferable drug-carrier system in solid as well as in semisolid dosage forms [15,16].
The microsponges were designated to serve as a controlled delivery system in diltiazem
2% rectal hydrogels. The method used for their preparation (quasi-emulsion solvent dif-
fusion method) belongs to the precipitation- and solvent-evaporation techniques [17]. To
further extend the structural knowledge of the particles obtained, we herein suggest com-
plex FTIR and sorption studies on the microporous matrix-typed microsponges along with
two control (reference) models: physical drug–polymer mixtures and homogeneous solid
drug–polymer dispersions, obtained by a casting approach (Figure 1). The morpholog-
ical, elemental, and functional peculiarities of the drug-delivery system in question are
additionally investigated by applying SEM-EDX and DSC.
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Figure 1. Schematic illustration of diltiazem and Eudragit RS and the expected structural assignment
of their composites obtained by different techniques.

2. Materials and Methods
2.1. Materials

Diltiazem hydrochloride 99.9% was purchased from Puho Pharmaceuticals Co. Lim-
ited, Guangzhou, China. Ammonio methacrylate copolymer (type B) (Eudragit® RS 100)
was a kind gift from Evonik Industries AG (Darmstadt, Germany). Poly(vinyl alcohol), Mw
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49.000 Da was purchased from Sigma Aldrich, St. Louis, MI, USA. Dialysis membranes
were provided from a local hospital (10 kDa molecular weight cutoff). The solvents ethanol
(anhydrous) and dichloromethane (DCM, HPLC grade > 97.8%) were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Methods
2.2.1. Sample Preparation

Three working models of diltiazem-Eudragit RS mixtures were prepared, each at a mini-
mum of three concentrations: 5%, 15%, and 25% diltiazem content. Additionally, the reference
formulations (explained below) were also prepared at 10% and 20% diltiazem content.

Model I (subject of the study): Diltiazem-loaded Eudragit RS microsponges (M) were
prepared by a quasi-emulsion solvent-diffusion method. In short, a molecular solution of
diltiazem base and polymer Eudragit RS (in varying ratios; Table 1) in dichloromethane
was droplet-wise added to an external aqueous phase, containing poly (vinyl alcohol)
as surfactant. The resultant mixture was kept under continuous stirring until sufficient
hardening of the particles and vaporization of the organic solvent. The particles were
isolated by filtration and purified by multiple washing. A microsponge-type morphology
was established (polymeric, microsized, highly porous spheres). The exact protocol for the
synthesis is described elsewhere [13,14].

Table 1. Mass ratios of diltiazem and the polymer Eudragit RS 100.

Code Used Amounts of Diltiazem and Eudragit RS, W/W%

P-5 5/95
P-10 10/90
P-15 15/85
P-20 20/80
P-25 25/75
C-5 5/95

C-10 10/90
C-15 15/85
C-20 20/80
C-25 25/75
M-5 5/95
M-15 15/85
M-25 25/75

Model II (control model): Physical mixtures of diltiazem and Eudragit RS (P) were ob-
tained by manually grinding predetermined amounts of diltiazem and Eudragit RS (Table 1)
at room temperature (21 ◦C) for approximately 10 minutes. For the homogenization, an
agate mortar and a pestle were used.

Model III (control model): Highly-dispersed diltiazem-Eudragit RS composites (solid
solutions) (C) were obtained by dissolving 15.0 mg of diltiazem and precisely determined
amounts of Eudragit RS in 5.0 mL dichloromethane-solvent, appropriate for both com-
ponents. Each solution was cast into a clock glass and evaporated to dryness in a well-
ventilated hood. The C-samples presented as thin, homogeneous, semitransparent films.
When needed, samples for analysis from the C-series were extracted by scraping with a
metal spatula.

2.2.2. ATR-FTIR Spectroscopy

The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were
recorded on a Tensor II FTIR spectrophotometer (Bruker, Germany) in the attenuated total
reflection (ATR) mode, at a resolution of 0.4 cm−1 accumulating 32 scans. The spectra
were collected at room temperature. The OPUS 8.0 software was used to autocorrect the
spectral baselines.
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2.2.3. In Vitro Dissolution Test

Drug-dissolution studies were performed on EU pharmacopoeial dissolution appa-
ratus type II (Dissolution Tester Model PT-DT 70, Pharmatest, Germany). Each analyte
was weighed in an amount equivalent to 15.0 mg of diltiazem. P and M samples were
suspended in 1.0 mL of distilled water and placed in cellulose acetate dialysis bags with a
molecular cutoff of 10 kDa. The pouches thus formed were attached to the paddles of the
dissolution tester using cotton threads. The C- specimens (together with the clock-glasses)
were placed at the bottom of the dissolution vessel. As a dissolution medium, distilled
water at a volume of 400 mL was used. All samples were allowed to swell freely for 24 h
under static conditions prior to starting their dissolution testing. At the end of this stage,
the losses of the target analyte (diltiazem) in the dissolution media during the swelling
process were analyzed.

In order to initialize dissolution and diffusion-controlled drug release of diltiazem
in the aqueous media, equimolar (to the applied drug) amounts of hydrochloric acid
(concentrated) were added to each vessel. The dissolution tester was set at 25 ± 0.5 ◦C and
a rotation speed of 30 rpm. The concentration of diltiazem hydrochloride was assessed at
even time intervals for 9.0 h. After each sampling, fresh aliquots of the dissolution medium
(1.0 mL) were added. Quantification was performed using an optimized and validated
UV-Vis spectral method, described in previous work of ours [14].

2.2.4. DSC

Differential scanning calorimetry tests were performed on microsponge (M-25) samples
and the raw materials (diltiazem and Eudragit RS 100) by using DSC Q200 (TA Instruments,
New Castle, DE, USA). Samples (~6–7 mg) were run in two modes: (1) heating-only mode
from 0 to 250 ◦C at 10 ◦C/min heating rate and (2) heating–cooling–heating mode in the
temperature interval from 0 to 250 ◦C at 10 ◦C/min. All DSC runs were performed under
nitrogen flow (50 mL/min).

2.2.5. Scanning Electron Microscope Images and EDX-Analysis

The air-dried samples (M-25 particles) were embedded in paraffin without additional
dehydration steps to avoid dissolving the lipophilic components. The resulting blocks were
cut into semithin sections (20 micrometers) using a conventional histological microtome
(Microtome 1508A, Nanjing Oxy Technology and Trading Co., Ltd., Shanghai, China) and
mounted on a graphite base for observation. The size and morphology of the polymeric
particles (viz. M-25 sample) as well as the elemental analysis of the so-obtained micro-
tome cuts were studied by scanning electron microscope (SEM, Tescan LYRA I XMU dual
beam SEM/FIB system), equipped with an energy-dispersive X-ray analyzer (Bruker EDX
detector Quantax 200).

3. Results and Discussion

Diltiazem was introduced in Eudragit RS matrices by different approaches in order to
follow the changes in the polymers’ amorphization potency, permeability, solubilization
capacity for diltiazem, and desorption behavior. The focus of the study was directed
to the newly synthesized diltiazem-loaded Eudragit RS microsponges, herein marked as
M-samples. Two other models were proposed as control formulations for the interpretation
of the obtained results (Figure 1). The first control (reference) model, P-series, was de-
signed to represent a heterogeneous drug–polymer dispersion, in which the drug molecules
are primarily distributed on the polymeric particles’ surface. The second control model,
C-series, on the contrary, aimed to achieve a maximum level of homogeneity and dispersiv-
ity between the two components; within this model, the drug is expected to be molecularly
dissolved in the polymeric matrix, whereas only molecules in excess will show the tendency
to crystallize on the polymeric surface.
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3.1. ATR-FTIR Analysis

The complete vibrational-frequency assignments of diltiazem (base) are presented in
Figure 2. Most assignments were made by comparing the spectrum of the diltiazem as
obtained by us with that of its hydrochloric salt [18].
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Carbonyl Group Vibrations

• Qualitative observations

In the progress of our observations, we found out that the proposed ATR-FTIR method
acquires satisfactory performance (with the required high analytical sensitivity and speci-
ficity) in a relatively narrow wavenumber range of about 50 cm−1 (from 1700 to 1650 cm−1)
(Figure 3). Similarly, in many other circumstances, it has been assumed relevant to track out
the changes in the carbonyl frequency (νCO) region when carbonyl-bearing drug molecules
are examined [19–21].
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Diltiazem shows two highly characteristic, well-defined, and readily recognizable
C=O stretching bands with relatively high intensity in the range of 1760–1660 cm−1

(Figures 2 and 3). The band observed at 1746 cm−1 is assigned to the CO group of the
acetate functional, and that positioned at lower frequencies (with a maximum at 1673 cm–1)
is assigned to the CO functional group of the seven-membered lactam ring [22]. In the same
spectral interval, however, the presence of a very intense and broad IR band (with a max. at
1723 cm−1) in the spectrum of the polymer Eudragit RS 100 was also registered (Figure 3).
Certainly, this last-mentioned absorption band should be considered as consisting of at
least three overlapping bands corresponding to the three different kinds of grafted carbonyl
(ester) groups on the polymeric backbone (Figure 1). According to the generally accepted
theory of infrared spectroscopy, however, when solvent–solute mixtures of two or more
constituents are examined (as in the case here studied), considerable frequency shifts of
all carbonyl groups due to mutual interference effects are expected to appear. Usually, the
used solvent (a liquid of low-molecular-weight organic substance) or a high-molecular
organic matrix (polymer) affects both the position and the intensity of each absorption
band of the examined solute (diltiazem) via the so-called solvent effect. Indeed, when
the spectra of diltiazem–Eudragit RS physical mixtures (P) and solid solutions (C) were
analyzed, considerable differences in the CO frequency pattern of each participant from its
native spectrum were registered (Figure 3).

Concerning the lower-frequency subzone, from 1690 to 1660 cm−1 (Figure 3), the ap-
pearance of a new absorption band at 1684 cm−1 in the spectra of both types of mixtures (P
and C models) was recorded. In the case of the physical mixtures, the presence of this band
(normally detected as a shoulder on the high-energy tail of the primary band at 1673 cm−1)
was, as a whole, less pronounced. In the spectra of the solid solutions (C), however, this
band occurs as spectrally predominant and thus indicative of the successful dispersing
of drug molecules in the polymer matrix. It is reasonable to assume that the emerging
new band increases its intensity as a function of the extent of mixing (dispersing) the drug
molecules into the polymeric bulk, whereas the lower one, at 1673 cm−1, accordingly de-
creases its integral transparency. The shift in the observed CO frequency of about 11 cm−1

should, in principle, be attributed to the effect of strong dipole–dipole interaction between
molecules of the used solvent, Eudragit RS 100, and the dispersed solute, diltiazem.

• Quantitative observations

All types of diltiazem–Eudragit RS mixtures were studied at varying concentrations
in order to determine the point of saturation for each of the techniques applied and follow
other concentration-dependent changes within the polymer matrix (Figure 4).
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mixtures (P) should be directly ascribed to the particularities of the preparation technique.
Upon mixing of the two constituents, due to significant variations in their hardness and
the relatively high coefficient of applied friction, an effect of partial mutual diffusion
(penetration) between both ground constituents is expected to occur at the points of contact.
Thus, the “distinct” neighboring molecules diffuse, creating a heterogeneous composite
mixture of microparticles consisting of a polymeric core and an outer “functionalized”
shell of irregularly organized diltiazem molecules. As the drug content increases, however,
the population of diltiazem molecules included in the polymeric volume reaches its limit
(the point of saturation), while the molecules in excess form an intact diltiazem phase; the
latter displays the characteristic for the drug IR absorption behavior (i.e., abs. maximum at
1673 cm−1). Approaching the drug-saturation point of the polymeric surface, no further
increase in the intensity of the 1684 cm−1 band is observed, whereas the 1673 cm−1 band
continues to “grow”. A deconvolution analysis in the C=O (lactamic) stretching vibrations
range (from 1700 to 1650 cm−1), performed with the aid of specialized peak-fitting software,
Origin 8.1 (Tables A1–A10, Appendix A), allowed us to define the exact point of polymer
saturation with diltiazem when the drug is introduced via mechanical grinding and mixing
(P models) (Figure 5).
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Figure 5. Deconvolution analysis in the C=O (lactamic) stretching vibrations range for physical
drug–polymer mixtures (P models); (A) an example for deconvolution analysis carried on Sample
P-25 spectrum (the same analysis is carried for all other samples-Tables A1–A10, Appendix A) and
(B) determination of drug-saturation point of the polymer matrix by the physical-mixing approach;
the curve in red presents optimized processing of the deconvolution analysis data, in which the cause
for the low regression coefficient (R2)–a peak at 1653 cm−1, is not taken into account.

Concerning the spectra of diltiazem–Eudragit RS solid solutions (C models), significant
changes in the considered wavenumber range were registered. The appearance of several
new bands was observed for all concentrations examined (Figures 4B and 6). Each of the
newly appearing bands may be assigned to a complex intermolecular interaction between
the two constituents, diltiazem and Eudragit RS. The good mutual solubility between them
was illustrated and confirmed by the appearance of three new bands in the C=O stretching
region (at 1663, 1670/1671, and 1684 cm−1) and by the reduction in the intensity of the
absorption band at 1673 cm−1. Nonetheless, the spectral patterns of the highly dispersed
mixtures (C probes) were considered too complex for a clear identification to be made. Still,
it is reasonable to assume that during the process of homogeneous dispersion, the drug
molecules occupy regions of the polymeric matrix with different degree of crystallinity, and
to a certain extent dielectricity, which produce detectable frequency variations in νCO of
the drug solute.
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Figure 6. An example of deconvolution analysis carried out on Sample C-25 spectrum.

Strangely enough, the FTIR spectra of the microsponge samples (M samples) imitate the
spectral profile of the solid drug–polymer solutions (C samples) (Figure 7). This observation
does not correspond to the fact that—as shown in Figure 7—the population of dispersed
diltiazem molecules (absorbing at 1684 cm−1) in the bulk of the two kinds of materials is
different. Comparing the respective peak heights of the relevant bands in the spectrum
of the M-25 sample, one could see that the proportion of occluded to easily diffusing
(absorbing at 1673 cm−1) diltiazem molecules appears to be significantly lower than that
of its C-25 equivalent. As it will be shown below, these observations have led us to an
adequate explanation of the unusual desorption behavior of the sample in question at
neutral pH. However, such a result testifies for good homogeneity and amorphization of
diltiazem within the microsponge-type polymeric matrix.
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3.2. Dissolution Rate Study

All diltiazem–Eudragit RS models were subjected to drug dissolution (desorption)
studies in order to relate their structural features to some important functional properties:
apparent solubility, drug diffusivity, and matrix permeability. To identify the potential
resultant differences as a function of the diffusion-controlled drug release in particular,
all samples were allowed to swell before initializing the drug dissolution. The period of
swelling (24 h) slightly affected the drug load in the matrices since diltiazem base is a
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strictly hydrophobic molecule [13]. Only when a concentrated solution of hydrochloric
acid was applied in a stoichiometrically calculated volume ratio (after the “swelling” stage)
was the drug base allowed to form its highly water-soluble salt (453 mg/mL in distilled
water at 37 ◦C [13]) and diffuse into the aqueous media (Figure 8).
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Figure 8. Diltiazem release from physical mixtures (P), solid dispersions (C), and microsponge (M)
formulations.

The physical drug–polymer mixtures (P) showed the fastest and most complete drug-
release rate among all models. This result supports the data from the FTIR analysis,
which indicated a low degree of interaction between the components upon their mixing by
mechanical grinding. As the drug is only superficially located onto the polymeric particles,
there are not expected to be any particular barriers to its diffusion, except its intrinsic
solubility. Moreover, as the relative drug content in the P-models increases, the dissolution
rate decreases. Eudragit RS may be here reviewed as a “solid” mediator for the drug
particles’ size reduction; therefore, the higher the polymeric content in these mixtures, the
larger the active surface area of diltiazem and the faster the dissolution.

The casting-obtained C-probes demonstrated minimal and incomplete drug desorp-
tion. Based on the FTIR results and the visual appearance of these samples (semitransparent
films), it could be claimed that this model provides less potency for drug/polymer amor-
phization and entraps diltiazem in a much denser, less permeable, and more organized
polymeric matrix. As solid solutions are formed, the drug excess, however, showed the
tendency to crystalize on the polymeric surface. Accordingly, the higher the relative drug
content, the higher the excess and the released drug portion.

The sorption behavior of the microsponge samples (M) showed an intermediate position
compared to the two reference models (P and C). However, a resemblance was observed
with the C formulations. The polymeric matrix possesses a higher capacity for diltiazem
incorporation and greater permeability when a porous structure is obtained (as in the case
of the drug-loaded microsponges [13]). In this regard, the M samples, although proven to
be as highly dispersed as the C samples, ensure faster and more complete drug release after
matrix swelling. The more significant the polymeric contribution within the microsponge
particles, the longer the diffusion path for diltiazem; hence, samples with higher relative
drug content and respective lower polymeric content showed superiority with respect to
drug release.

3.3. DSC Analysis

Figure 9A shows the thermograms obtained via the heating-only mode for dilti-
azem (base), diltiazem hydrochloride, Eudragit RS 100, and M-25 sample. Diltiazem base
was demonstrated to melt at 103.8 ◦C, which is in agreement with the literature data
(105–107 ◦C) [23]. From the same figure, we detected a melting point at 214.5 ◦C for the
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hydrochloride salt, which again corresponds well to the literature [23]. The melting of
diltiazem hydrochloride (~225 ◦C) is accompanied by decomposition, which becomes
apparent above 230 ◦C [18]. Two peaks, at 63.1 and 183.6 ◦C, appear in the thermogram
of the pure Eudragit RS 100 polymer. The first is the glass transition, which is reported
to occur between 61.9 and 64.9 ◦C [24]. The high temperature peak (183.6 ◦C) is due to
Eudragit RS 100 melting, which is known to occur at ~187 ◦C [25].
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sample in heating-only mode; (B) thermogram in the heating–cooling–heating mode of Eudragit RS
100; (C) thermogram in the heating–cooling–heating mode of M-25 sample.

In the thermogram of the M-25 sample, the melting peak of diltiazem disappears.
This result confirms that the drug is in the amorphous state and that the formulation is,
in fact, a molecular dispersion of diltiazem inside the polymer [26]. Similar findings are
characteristic of highly dispersed systems (solid solutions) obtained via hot-melt extrusion,
for example [25,27]. The interaction between the drug and the polymer results in the
amorphization of both constituents within the M-25 formulation, hence the lack of their
respective melting peaks. Another observation that could be seen is the appearance of a
new peak at a temperature just above 200 ◦C. A possible explanation is the in situ formation
of diltiazem hydrochloride salt (melting point at ~225 ◦C), as diltiazem base in the particles
is prone to react with the polymeric [Cl−] counterions (Figure 1). Such ion-exchange
reactions are reported for Eudragit RS upon melting [28]. Another reasonable explanation
could be the degradation of diltiazem (detected for the pure drug above 230 ◦C) at a
lower temperature due to its amorphization and molecular dispersivity in the polymer
matrix. The decrease in the polymer’s glass transition in the M-25 composition by 13 ◦C (as
compared to that of the pure Eudragit RS) is likely due to the formation of a looser polymer
network and increased free volume in the presence of diltiazem [29].

The heating–cooling–heating mode results (Figure 9B,C) confirm the abovementioned
observations. After cooling and second heating, the glass transition of Eudragit RS (63.1 ◦C)
manifests without the relaxation enthalpy peak, and a kink typical for an irreversible
process appears.

3.4. SEM-EDX Analysis

SEM-EDX technique was applied to identify the elemental composition along a cut
made on paraffin-embedded particles from the M-25 formulation. The primary morpholog-
ical characteristics are shown in Figure 10A. On the micrograph obtained, we distinguished
and marked three zones, namely (1) clear cuts/slices of microsponge particles (#1 and #2);
(2) intact microsponge particles (#3, #4, and #5); and (3) paraffin base (surrounding the visible
particles). The white arrow on Figure 10B shows exactly where an EDX scan analysis was
performed. In the same figure, the dynamics of the elemental composition (for S, N, O, and
Cl) along the cut can be followed.
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Figure 10. (A) SEM micrograph on microtome-made cuts of microsponge particles M-25 and
(B) EDX analysis.

Our attention was directed to the sulfur (S), which indicates the distribution of dilti-
azem (S-containing drug) in the polymeric matrix-type particles. As no specific cumulation
patterns were recognized on the scan, we should conclude that the drug possesses a rela-
tively even distribution in the polymeric volume. The observed fluctuation in the S content,
as well as in the other elements’ content, could be attributed to the architectural peculiarities
of this type of microsponge materials, consisting of randomly alternating zones of hollow
micropores (in which the X-ray emission is reduced) and solid walls.

4. Conclusions

Combining some of the benefits of infrared spectrophotometry, differential scanning
calorimetry, energy-dispersive X-ray microanalysis, and dissolution testing, we proposed a
methodological algorithm by which we were able to analyze the molecular distribution
of diltiazem in the bulk of Eudragit RS 100-based particles of microspongeous type. For
the purposes of the analysis, we proved the ability to accurately relate the spectral and
desorption behavior of our drug-delivery systems to analogous reference formulations—
physical mixtures and highly dispersed composites (solid dispersions). Based on the
methodology set out, we were able to establish that the sample preparation technique
for this type of drug carriers results in an even, homogeneous, and molecular-type drug
distribution within the polymer matrix. Despite the spectral similarity with the solid drug–
polymer solutions, the drug-delivery particles presented a substantially increased drug-
dissolution rate owing to their porosity. For the sake of comparison, the microsponge model
was proved to combine the benefits of both reference models, namely molecular distribution
in the polymeric bulk (needed to exert control over the drug release) and satisfactory drug-
solubility rate. The result is considered highly valuable for the development of controlled-
release drug-delivery systems. In addition, this work presents an economical and rapid
algorithm for the correct analysis of drug carriers of this type.
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Appendix A

Spectral deconvolution is an algorithm-based curve-fitting process used to find the
best collection of overlapped peaks; whose sum closely matches their composite (origi-
nal) spectrum.

The integral areas of individual peaks were determined using the curve-fitting ap-
plication of Origin 8.1 software. All spectra were deconvoluted in the range of C=O
(lactamic) stretching vibrations (from 1700 to 1650 cm−1). To obtain reliable results, a
rational choice of several parameters was also applied. Validation tests based on analysis
of variance (ANOVA) were also accomplished. The results of the analyses are given in the
following tables:

Table A1. Sample P-5.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 6 0.0648 0.0108 11,282.11 0

Degrees of
freedom 30 Residual 30 2.8718 ×

10−5
9.5725
× 10−7

Reduced
Chi-square

9.5725
× 10−7

B Uncorrected
total 36 0.06483

Adj.
R-square 0.99522 Corrected

total 35 0.00701
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Appendix A 
Spectral deconvolution is an algorithm-based curve-fitting process used to find the 

best collection of overlapped peaks; whose sum closely matches their composite (original) 
spectrum. 

The integral areas of individual peaks were determined using the curve-fitting 
application of Origin 8.1 software. All spectra were deconvoluted in the range of C=O 
(lactamic) stretching vibrations (from 1700 to 1650 cm−1). To obtain reliable results, a 
rational choice of several parameters was also applied. Validation tests based on analysis 
of variance (ANOVA) were also accomplished. The results of the analyses are given in the 
following tables: 

Table A1. Sample P-5. 
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 B   DF 
Sum of 
squares 

Mean 
square 

F value Prob. > F 

Number of 
points 

36 

B 

Regressi
on 

6 0.0648 0.0108 
11282.1

1 
0 

Degrees of 
freedom 

30 Residual 30 
2.8718 × 

10−5 
9.5725 × 

10−7 
  

Reduced 
Chi-square 

9.5725 × 10−7 
Uncorrec
ted total 

36 0.06483    

Adj. R-
square 

0.99522 
Correcte
d total 

35 0.00701    

Fit status Succeeded (100)  

Table A2. Sample P-10. 

STATISTICS ANOVA 

 B   DF 
Sum of 
squares 

Mean 
square 

F value Prob. > F 

Number 
of points 

36 B 
Regressi

on 
6 0.06965 0.01161 65.297 3.21 × 10−15 

Fit status Succeeded
(100)

Table A2. Sample P-10.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F

Number of
points 36 Regression 6 0.06965 0.01161 65.297

3.21
×

10−15

Degrees of
freedom 30 Residual 30 0.00533 1.778

× 10−4

Reduced
Chi-square

1.778
× 10−4

Uncorrected
total 36 0.07499

Adj.
R-square 0.9729

B

Corrected
total 35 0.2298
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Table A4. Sample P-20.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 6 0.09502 0.01584 3720.66 0

Degrees of
freedom 30 Residual 30 1.277 ×

10−4
4.256
× 10−6

Reduced
Chi-square

4.256
× 10−6

Uncorrected
total 36 0.09515

Adj.
R-square 0.9906

B

Corrected
total 35 0.01577
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B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 6 0.10619 0.0177 2531.19 0

Degrees of
freedom 30 Residual 30 2.09757
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6.99189
× 10−6

Reduced
Chi-square

6.99189
× 10−6
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total 36 0.1064

Adj.
R-square 0.9882

B

Corrected
total 35 0.02074

Polymers 2022, 14, 2125 13 of 16 
 

 

 

Degrees 
of 

freedom 
30 Residual 30 0.00533 

1.778 × 
10−4 

  

Reduced 
Chi-

square 
1.778 × 10−4 

Uncorrec
ted total 

36 0.07499    

Adj. R-
square 

0.9729 
Correcte
d total 

35 0.2298    

Fit status 
Succeeded 

(100) 
 

Table A3. Sample P-15. 

 

STATISTICS ANOVA 

 B   DF 
Sum of 
squares 

Mean 
square 

F value 
Prob. 

> F 
Number of 

points 
36 

B 

Regression 6 0.08577 0.01429 5621.55 0 

Degrees of 
freedom 

30 Residual 30 
7.62844 × 

10−5 
2.54281 × 

10−6 
  

Reduced Chi-
square 

2.54281 × 
10−6 

Uncorrected 
total 

36 0.08584    

Adj. R-square 0.9934 
Corrected 

total 
35 0.01342    

Fit status 
Succeeded 

(100) 
 

Table A4. Sample P-20. 

STATISTICS ANOVA 

 B   DF 
Sum of 
squares 

Mean 
square 

F value Prob. > F 

Number of 
points 

36 

B 

Regression 6 0.09502 0.01584 3720.66 0 

Degrees of 
freedom 

30 Residual 30 
1.277 × 

10−4 
4.256 × 

10−6 
  

Reduced Chi-
square 

4.256 × 10−6 
Uncorrected 

total 
36 0.09515    

Adj. R-square 0.9906 
Corrected 

total 
35 0.01577    

Fit status 
Succeeded 

(100) 
 

Table A5. Sample P-25. 

 

STATISTICS ANOVA 

 B   DF 
Sum of 
squares 

Mean 
square 

F 
value 

Prob. > 
F 

Number of points 36 

B 

Regres
sion 

6 0.10619 0.0177 
2531.1

9 
0 

Degrees of freedom 30 
Residu

al 
30 

2.09757 × 
10−4 

6.99189 
× 10−6 

  

Reduced Chi-square 
6.99189 × 

10−6 

Uncorr
ected 
total 

36 0.1064    

Adj. R-square 0.9882 
Correct
ed total 

35 0.02074    

1700 1690 1680 1670 1660 1650
0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Number of baseline anchorn: 8
Connected by Fit Function: ExpGrow2

Area Intg. 
0.137

Area Intg. 
0.662

COD (R2) = 0.9768

PM-10

Ab
so

rb
an

ce
, a

.u
.

Wavenumber, cm-1

1700 1690 1680 1670 1660 1650
0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

PM-20

Number of baseline anchorn: 8
Connected by Fit Function: ExpGrow2

Area Intg. 
0.104

Area Intg. 
0.952

COD (R2) = 0.9919 

Ab
so

rb
an

ce
, a

.u
.

Wavenumber, cm-1

Fit status Succeeded
(100)

Table A6. Sample P-5 rep.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 8 0.0387 0.00646 3615.75 0

Degrees of
freedom 30 Residual 28 5.36 ×

10−5
1.79 ×
10−6

Reduced
Chi-square

1.786
× 10−6

Uncorrected
total 36 0.0388

Adj.
R-square 0.98493

B

Corrected
total 35 0.00415
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Table A7. Sample P-10 rep.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 8 0.0347 0.00434 10,165.88 0

Degrees of
freedom 28 Residual 28 1.195 ×

10−4
4.269
× 10−6

Reduced
Chi-square

4.269
× 10−6

Uncorrected
total 36 0.03473

Adj.
R-square 0.99762

B

Corrected
total 35 0.00628
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Table A8. Sample P-15 rep.

STATISTICS ANOVA

B DF Sum of
squares

Mean
square F value Prob.

> F
Number of

points 36 Regression 6 0.0801 0.01335 5495.559 0

Degrees of
freedom 30 Residual 30 7.287 ×

10−5
2.429
× 10−6

Reduced
Chi-square

2.429
× 10−6

Uncorrected
total 36 0.08017

Adj.
R-square 0.99376
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Corrected
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