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Cordyceps militaris has long been used as a crude drug and folk tonic food in East Asia. The present study aims to evaluate the
antidiabetic and antinephritic effects of the aqueous extract of the Cordyceps militaris fruit body (CM) in diet-streptozotocin- (STZ-
) induced diabetic rats. During four weeks of continuous oral administration of CM at doses of 0.5, 1.0, and 2.0 g/kg and metformin
at 100 mg/kg, the fasting blood glucose and bodyweight of each rat were monitored. Hypoglycemic effects of CM on diabetic rats
were indicated by decreases in plasma glucose, food and water intake, and urine output. The hypolipidemic activity of CM was
confirmed by the normalization of total cholesterol, triglycerides, and low- and high-density lipoprotein cholesterol in diabetic
rats. Inhibitory effects on albuminuria, creatinine, urea nitrogen, and n-acetyl- -d-glucosaminidase verified CM’s renal protective
activity in diabetic rats. Furthermore, CM exerted beneficial modulation of inflammatory factors and oxidative enzymes. Compared
with untreated diabetic rats, CM decreased the expression of phosphor-AKT and phosphor-GSK-3f in the kidneys. Altogether, via
attenuating oxidative stress, CM displayed antidiabetic and antinephritic activities in diet-STZ-induced diabetic rats.

1. Introduction

The prevalence of diabetes and metabolic disease is increasing
rapidly worldwide and has become a major health problem
[1]. Currently, 387 million people are diagnosed with dia-
betes mellitus, 90% with type 2 diabetes mellitus (T2DM).
A deficiency of insulin secretion leads to increased blood
glucose levels and organ damage, which further disrupts
the metabolism of the three major nutrients, namely, lipids,
carbohydrates, and proteins [2, 3]. Various complications
including nephropathy, neuropathy, retinopathy, and hyper-
lipemia are observed in most diabetic patients [4]. The
longitudinal data predict that patients with T2DM will have
a much more aggressive course of disease with greater risk
of early hypertension and nephropathy compared with type 1
(T1DM) patients [5].

Diabetic nephropathy is a major cause of end-stage renal
disease with high mortality and morbidity [6]. During the
pathogenic process, microalbuminuria follows macroalbu-
minuria, leading to renal dysfunction. Multiple and complex
mechanisms are involved in the pathogenesis of diabetic
nephropathy, which is characterized by persistent albumin-
uria, elevated arterial blood pressure, and a decline in
the glomerular filtration rate (GFR) [7]. In 2013, diabetic
nephropathy accounted for over 25% of the incidence of end-
stage renal disease (ESRD) in the UK, while over 40% of
diabetic nephropathic patients in the United States receive
dialysis [8].

Current therapy for diabetes focuses only on the recovery
of pancreatic islet function and regulation of blood glucose,
most of which fails to improve the symptoms of complications
[9]. Poorly controlled blood pressure and cholesterol activate
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inflammatory mediators, and genetic predisposition helps
patients progress to an advanced stage of nephropathy.
Insulin injection and commonly prescribed drugs such as
metformin and pioglitazone produce adverse side effects,
including insulin resistance, hypoglycemia, and gastrointesti-
nal disturbances [10]. Due to the limited and unsatisfactory
therapeutic effects of antidiabetic agents, alternative medi-
cations to treat diabetes and related nephropathy are highly
desirable.

Herbs are a source of novel pharmaceuticals not only due
to their potent efficacy with fewer side effects, but also due to
the complex bioactive compounds they contain [11]. About
1,200 plants have been claimed to have antidiabetic prop-
erties, and over 400 plants and their bioactive compounds
have been scientifically evaluated for T2DM treatment [12].
Due to its anti-inflammatory, antioxidant, and antitumor
activities, Cordyceps militaris has been extensively used as
a crude drug and folk tonic food in East Asia [13]. In our
research group, Cordyceps militaris mycelium obtained via
submerged fermentation has shown excellent antidiabetic
and antinephropathic activities [14]. Aqueous extracts of
Cordyceps militaris enhance insulin secretion and cholinergic
activation in normal Wistar rats [15].

We therefore hypothesized that the polysaccharide-rich
aqueous extract of the Cordyceps militaris fruit body (CM)
may possess antidiabetic and antinephritic properties. A
high-fat diet and streptozotocin- (STZ-) induced rat model
was used to investigate the effects of CM on diabetes, renal
injury, and other underlying mechanisms related to inflam-
matory factors and oxidative stress.

2. Materials and Methods

2.1. Cordyceps militaris Extract Preparation. Cordyceps mil-
itaris fruit body (purchased from Qianxiang Co., Ltd.,
Shenyang, China) was extracted with 10 volumes of double
distilled (DD) water at 45°C for 3 h. After centrifugation, the
residue was extracted at 80°C for another 3.5h. After the
two extracts were combined, the supernatant was sequentially
concentrated in an evaporator under reduced pressure and
then freeze-dried to produce a solid aqueous extract (CM).
CM contained 29.1% polysaccharides, 20.5% total proteins,
6.1% cordycepic acid, 0.2% adenosine, and 0.4% cordycepin.
The concentrations of adenosine and cordycepin were deter-
mined using HPLC methods and the results were shown
in Figure 1S (in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/9685257).

2.2. Animal Care. The experimental animal protocol used in
the study was approved by the Institutional Animal Ethics
Committee of Jilin University. Male Sprague Dawley rats
weighing 180-220 g (SCXK(JI)-2014-0003) (purchased from
the Norman Bethune College of Medicine, Jilin University,
China) were maintained on a 12 h light/dark cycle (lights on
07:00-19:00) at 23 + 1°C with water and food available ad
libitum. All efforts were made to minimize animal suffering
and reduce the number of animals used.
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2.3. The Diet-Streptozotocin-Induced Diabetic Rat Model and
Drug Administration Procedure. Rats were randomly divided
into two groups and fed with either the standard control diet
(normal control group, n = 6) or a high-fat diet (HFHSD,
12% protein, 5% fat, 67% carbohydrate, 5% cholesterol, and
5% other additives) (n = 30) for 8 weeks. HFHSD-treated rats
were further intraperitoneally injected with 25 mg/kg STZ
agent dissolved in a citrate buffer (0.1 mol/L sodium citrate
and 0.1 mol/L citric acid, pH 4.5) for one week (once a day).
Rats were defined as diabetic if their blood glucose levels 72 h
after the last STZ injection were over 11.1 mmol/L.

Diabetic rats were randomly divided into five groups and
orally treated with 2.0 mL/kg sterile saline (HFHSD+STZ dia-
betic model group, n = 6), 0.10 g/kg metformin hydrochlo-
ride (Met; from Beijing Jingfeng Zhiyao Co., Ltd, Beijing,
China) (Met+HFHSD+STZ group, n = 6), and 0.5, 1.0, and
2.0 g/kg CM (CM+HFHSD+STZ group, n = 6). Normal rats,
which received 2.0 mL/kg sterile saline, served as the normal
control group. Over the four-week drug delivery period,
bodyweight and blood glucose were recorded weekly. At the
end of the experiment, the daily food intake, water intake, and
24 h urine output of each rat were recorded using the diuresis
and metabolic cage method.

2.4. Oral Glucose Tolerance Test (OGTT) in Rats. After the
last drug administration, the rats were fasted for 16 h, before
undergoing a glucose tolerance test. Briefly, the rats were
weighed and then orally given glucose (2.0 g/kg). Tail-vein
blood samples were collected at intervals from 0 to 240 min
and assayed via a fast blood glucose meter [16]. The area
under the blood glucose curve (AUC) was calculated using
the following [17]:

AUC = (basal glycaemia + glycaemia 0.5h) x 0.25
+ (glycaemia 0.5h + glycaemia 1h) x 0.25 (1)

+ (glycaemia 1h + glycaemia 2h) x 0.5.

2.5. Sample Collection and Biochemical Analysis. Before sac-
rifice, blood was sampled from the heart of each rat under
anesthesia. The blood samples were centrifuged at 3000 g for
10 min, and the serum was frozen at —80°C. After sacrifice,
the kidneys were collected, and one part was homogenized
in DD water (or RIPA buffer) with three washes in ice-cold
physiological saline, while the other part was placed in 4%
paraformaldehyde for histopathological examination.

The levels were then determined for serum pyru-
vate kinase (PK), total cholesterol (TC), triglyceride (TG),
low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), creatinine (Scr), urea nitro-
gen (BUN), glutathione peroxidase (GSH-Px), superoxide
dismutase (SOD), and n-acetyl-3-d-glucosaminidase (NAG)
and for albuminuria in urine, malondialdehyde (MDA) in
serum and kidneys, and reactive oxygen species (ROS) in
kidneys, using commercial kits (Nanjing Biotechnology Co.,
Ltd., Nanjing, China).

The serum levels of insulin (INS), interleukin-2 (IL-2),
interleukin-6 (IL-6), tumor necrosis factor-a (TNF-«), and
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TaBLE 1: The effects of CM and Met on daily food intake, water intake, and urine output in each experimental rat.
Food intake (g/100 g) Water intake (g/100 g) Urine output (mL/100 g)

CTRL — 14.0 £ 2.0 145+ 3.6 41+1.2
Model — 19.5 +3.2° 63.8 + 6.88™ 51.1+5.8%

0.5 133+ 1.9" 423 £ 5.9 40.3 £ 6.7
CM (g/kg) 1.0 157+ 1.8 32.6+3.6™" 30.7 + 7.17%*

2.0 13.6 +0.7° 37.1 +4.2%* 39.0 + 3.6
Met (mg/kg) 100 16.6 +2.1 38.9 + 6.4"* 41.7 + 6.6™*

Daily food intake, water intake, and urine output were normalized to rat body weight, g/100 g or mL/100 g BW. Data are expressed as mean + SEM (n = 6) and
analyzed using one-way ANOVA. *P < 0.05 and ** P < 0.01 versus normal controls. *P < 0.05 and ** P < 0.01 versus model group.

6-keto-PGF were detected using enzyme-linked immunosor-
bent assay (ELISA) kits (Calbiotech, USA).

2.6. Histopathological Examination. The collected kidney
tissue was immersed in 4% paraformaldehyde for 48 h and
then dehydrated step by step using a gradient of ethanol (50%,
70%, 80%, 90%, 95%, and 100%). Samples were immersed
in xylene for 30min and incubated in paraffin at 65°C
overnight. Once embedded in wax, the samples were cut
serially into 5pum thick sections using a microtome (Leica,
Germany) and spread over microscopy slides. The sections
were deparaffinized with fresh xylene for 10 min, rehydrated
with a gradient of ethanol (100%, 90%, 80%, and 70%),
and then washed three times with DD water. The sections
were analyzed via hematoxylin and eosin (H&E) staining
and examined with a light microscope digital camera (Nikon
Instruments, Tokyo, Japan).

2.7. Western Blot. One part of the kidney tissue was homog-
enized in a radioimmunoprecipitation assay buffer (RIPA;
Sigma-Aldrich, USA) containing 1% protease inhibitor cock-
tail and 2% phenylmethanesulfonyl fluoride (Sigma-Aldrich,
USA). Protein concentrations were determined by the Brad-
ford method, and 40 ug proteins were separated using 10%
SDS-PAGE gel and transferred electrophoretically onto nitro-
cellulose membranes (0.45 ym; Bio Basic, Inc., USA). The
transferred membranes were blotted with primary antibod-
ies at 4°C overnight at a dilution of 1:1000: phosphor-
AKT (abl31443), total-AKT (ab200195), phosphor-GSK-3/3
(ab75745), total-GSK-3 (#32391), and glyceraldehyde-3-
phosphate dehydrogenase (#2118) (Abcam, Cambridge, UK)
and then incubated with horseradish peroxidase-conjugated
secondary antibodies (Santa Cruz, USA). Chemilumines-
cence was detected using ECL detection kits (GE Healthcare,
UK). The intensity of the bands was quantified by scanning
densitometry using Image J software (National Institutes of
Health, Bethesda, USA).

2.8. Statistical Analysis. All values were expressed as mean
+ SEM. A one-way analysis of variance (ANOVA) was used
to detect statistical significance followed by post hoc multiple
comparisons (Dunn’s test) using SPSS 16.0 software (IBM
Corporation, Armonk, USA). A value of P < 0.05 was
considered significant.

3. Results

3.1. Hypoglycemic Effects on Diabetic Rats. Compared with
the normal control group, the diabetic rats clearly consumed
more food and water and produced more urine (P < 0.01,
Table 1). The four-week CM treatment at 1.0 g/kg strikingly
decreased their urine output and water intake, and at 0.5 g/kg
and 2.0 g/kg food intake was strongly reduced (P < 0.01,
Table 1).

Reduced bodyweight and elevated blood glucose were
observed after STZ treatment (P < 0.01, Table 2). Similar to
Met, compared with the diabetic model rats, the maximum
increase in bodyweight was nearly 31.3% in CM-treated
diabetic rats (P < 0.01, Table 2). CM at doses of 0.5 and
1.0 g/kg reduced fasting blood glucose by 42.2% and 34.9%,
respectively (P < 0.05, Table 2). However, only 0.5 g/kg CM
clearly increased serum insulin compared with the diabetic
model group (P < 0.05, Figure 1(a)). Both Met (100 mg/kg)
and CM (1.0 g/kg) markedly increased PK activity in diabetic
rats (P < 0.05, Figure 1(b)).

OGTT was applied to avoid false positive results from
fasting blood glucose. Compared with the normal control
rats, dramatically higher fasting blood glucose concentrations
were noted in the diabetic rats from 0 to 240 min (P <
0.01, Figure 1(c)), with 1.0 g/kg CM significantly preventing
blood glucose from shooting up at 30 to 240min (P <
0.05, Figure 1(c)). The calculated AUC values for glucose
response during the OGTT revealed a striking increment in
the diabetic model group (43.3 + 8.4h-mmol/L) compared
with the normal control group (10.9 + 1.5 h-mmol/L). CM at
1.0 g/kg and Met at 100 mg/kg showed a significant reduction
in AUC (P < 0.05, Figure 1(d)).

3.2. Hypolipidemic Effects in Diabetic Rats. Hyperlipidemia
commonly accompanies diabetes mellitus [18]. Thus, a study
was carried out to investigate whether CM beneficially affects
the abnormal lipid profiles of diabetic rats. As with Met, CM
at 1.0 and 2.0 g/kg significantly decreased TC and TG levels
(P < 0.05, Figures 2(a) and 2(b)). Unlike Met, CM at 0.5 and
2.0 g/kg decreased LDL-C levels in diabetic rats (P < 0.05,
Figure 2(c)). But only CM at 2.0 g/kg increased HDL-C levels
in diabetic rats (P < 0.05, Figure 2(d)).

3.3. Renal Protection in Diabetic Rats. Albuminuria is tradi-
tionally considered a hallmark of diabetic nephropathy [19].
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FIGURE 1: Diet-STZ-induced diabetic rats were treated with or without 100 mg/kg metformin (Met) and Cordyceps militaris water extract
(CM) for four weeks. After the final drug treatment, the serum levels of insulin (a) and pyruvate kinase (b) were detected in all experimental
rats. At the end of the experiment, after an oral treatment of 2 g/kg D-glucose in all experimental rats, the changes of plasma glucose (c) and
area under the curve of glucose (d) were analyzed. Data are expressed as mean + SEM (1 = 6) and analyzed using one-way ANOVA. *P < 0.05
and ¥ P < 0.01 versus normal controls. * P < 0.05 and ** P < 0.01 versus nontreated diabetic rats.

CM strongly suppressed the raised serum albuminuria levels
of diabetic rats, especially at 1.0 g/kg (P < 0.05, Table 3).
Abnormal BUN and Scr levels are recognized manifestations
of renal dysfunction, and these were all reduced after four
weeks of CM administration (P < 0.05, Table 3). However,
Met and CM failed to influence serum NGA concentration
in diabetic rats (Table 3).

Hyperglycemia and hyperlipidemia in T2DM always lead
to toxicity in the kidneys, inducing renal damage associated
with severe inflammation and characterized by the release of
multiple inflammatory factors. Extremely high serum levels
of IL-2, IL-6, TNF-«, and 6-keto-PGF were noted in the

diet-induced diabetic rats (P < 0.05, Figures 3(a)-3(d)).
Met showed a suppressive effect on inflammatory cytokines
(P < 0.05, Figures 3(a)-3(d)). Compared with the diabetic
model group, CM at 1.0 g/kg reduced IL-2 and IL-6 levels
by 35.1% and 27.1%, respectively (P < 0.01, Figures 3(a)
and 3(b)). Additionally, serum TNF-« and 6-keto-PGF were
reduced in CM-treated diabetic rats by up to 31.2% and 24.6%,
respectively (P < 0.01, Figures 3(c) and 3(d)). CM treatment
also significantly ameliorated the incidence of glomerular
basement membrane thickening or mesangial proliferation
and of inflammatory infiltrate injuries in the kidneys of
diabetic rats (Figure 3(e)).
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FIGURE 2: After four-week Met and CM treatment, the serum levels of total cholesterol (a), triglyceride (b), LDL-C (c), and HDL-C (d) in
diet-STZ-induced diabetic rats were detected. Data are expressed as mean + SEM (1 = 6) and analyzed using one-way ANOVA. “P < 0.05
and ¥ P < 0.01 versus control. * P < 0.05 and ** P < 0.01 versus model group.

TaBLE 3: The effects of CM and Met on the levels of Scr, BUN, and albuminuria in serum and NAG in urine of diabetic rats.

Scr (pmol/L) BUN (mmol/L) Albuminuria (mg/mL) NAG (U/L)

CTRL — 143.8 + 31.3 51+0.5 0.9 +0.05 30.2 + 6.4
Model — 338.8 +32.3" 102 +0.7% 2.6 +0.3" 75.7 + 7.7
0.5 328.4 +22.2% 9.2+ 1.0 2.0 +0.3" 60.8 + 7.5

CM (g/kg) 1.0 228.5 + 54.6™** 8.2+ 0.5 1.8 £ 0.2 68.9 + 8.1
2.0 226.3 +32.1°** 8.6+ 12" 1.9 + 0.3 732+ 9.0

Met (mg/kg) 100 288.5 + 74.9" 9.3+ 1.1% 2.0 +0.3" 62.9 +9.1

Data are expressed as mean + SEM (1 = 6) and analyzed using one-way ANOVA. * P < 0.05 and ** P < 0.01 versus normal controls. * P < 0.05 and **P < 0.01

versus model group.

3.4. Antioxidative Effects in Diabetic Rats. Oxidative stress
underlies the development of T2DM and related compli-
cations [20]. Overproduction of intracellular ROS leads to
oxidative stress and deleterious effects on tissues; however,
antioxidant enzymes including GSH-Px and SOD prevent
oxidative injury. The accumulation of ROS and MDA and low
GSH-Px and SOD activity were noted in the serum and/or

kidneys of diabetic rats (P < 0.05, Table 4). CM enhanced
GSH-Px and SOD activity and reduced the serum and kidney
levels of ROS and MDA (P < 0.05, Table 4). Importantly,
CM (2.0 g/kg) decreased ROS production in the kidneys by
12.4% (P < 0.05, Table 4). Met was also seen to modulate
the oxidative factors in the serum and kidneys of diabetic rats
(P < 0.05, Table 4).
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using one-way ANOVA. ”P < 0.05 and P < 0.01 versus control. *P < 0.05 and **P < 0.01 versus model group.
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TABLE 4: The regulatory effects of CM and Met on the oxidation related factors in serum and kidney of diabetic rats.

CTRL Model CM (g/kg) Met (mg/kg)
0.5 1.0 2.0 100

SOD (U/mL) 245+ 15 201 +12° 223 +11 248 + 16" 237 +17° 215+ 17
Serum MDA (nmol/mL) 8.7+0.8 28.0 + 0.7 219 +2.7% 12.4+2.7°%* 10.7 +1.8** 15.0 + 2.5°**

GSH-Px (umol/L) 1116 + 41 944 + 37° 1000 + 51 1053 + 25* 994 + 33* 994 + 9*

SOD (U/mgprot) 134 + 14 84 + 11* 110 + 18 122 +13** 105 + 14* 111 +11%

Kidney MDA (nmol/mgprot) 70+ 1.4 11.3+2.6" 112 +2.7% 82+12° 9.3 +2.0" 8.5+ 1.5
GSH-Px (umol/gprot) 6987 + 318 4925 + 402* 5236 + 2107 6012 + 462" 5985 + 433" 5784 + 223"

ROS (FI/gprot) 815 + 32 988 + 55" 903 + 31 895 + 28" 865 + 48" 875 + 36

Data are expressed as mean + SEM (n = 6) and analyzed using one-way ANOVA. * P < 0.05 and **P < 0.01 versus normal controls. * P < 0.05 and **P < 0.01

versus model group.
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FIGURE 4: The expressions of T-AKT, P-AKT, T-GSK-3, and P-GSK-3f3 in kidney were analyzed via western blot. Quantification data of the
expression of P-AKT and P-GSK-3f were normalized by corresponding T-AKT and T-GSK-3, respectively. Data are expressed as mean +
SEM (1 = 6) and analyzed using one-way ANOVA. “P < 0.05 and **P < 0.01 versus control. **P < 0.01 versus model group.

3.5. Activation of AKT/GSK-3f3 in Kidneys. The expression
of P-AKT and P-GSK-3f in the kidneys of diet-STZ-induced
diabetic rats was significantly restored to normal levels after
four weeks of CM and Met administration (P < 0.01,
Figure 4).

4, Discussion

The HFHSD-STZ-induced diabetic rat model is closely anal-
ogous to the clinical situation of type 2 diabetes mellitus
in humans [21]. Combined with the reduction in high
fasting blood glucose levels, the modulation of OGTT, a
more sensitive measure of early abnormality in glucose
regulation [22], further verifies the hypoglycemic activity of
CM. Abnormal changes in glucose metabolism are observed
in diabetic patients, including decreased glycolysis, impeded
glycogenesis, and increased gluconeogenesis [23]. Pyruvate

kinase is a key glycolytic enzyme for promoting glucose
metabolism and energy production [24]. All of the data
support the antidiabetic activity of CM in the diet-STZ-
induced diabetic rat model.

Although the pathogenesis of T2DM-induced renal dam-
age is multiple and complicated, dyslipidemia and subsequent
lipotoxicity play important roles in this process and accel-
erate kidney injury. Dyslipidemia, defined as abnormal lipid
profiles characterized by increased plasma and tissue levels
of TG, TC, and LDL [21], is a major complication associated
with high morbidity and mortality in diabetics [25]. Diabetes-
related dyslipidemia is responsible for lipid accumulation
in the kidney, which leads to insulin resistance, inflamma-
tion, and oxidative stress [26]. Gradually, insulin resistance
results in the release of adipocytokines and relaxation of
the afferent arteriole, finally causing glomerular hyperfiltra-
tion, angiogenesis, and mesangial cell proliferation [27, 28].
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The antilipemic effect of CM plays an important role in renal
protection in HFHSD-STZ-induced diabetic rats.

Oxidative stress has been singled out as a major cause of
diabetic complications, especially nephropathy [29]. O*~ and
nitric oxide (NO) levels are important in kidney and vascular
function [30]. ROS, which is responsible for oxidative dam-
age, degrades membrane polyunsaturated fatty acids through
sequential peroxidation processes [31] and elevates MDA
levels, which serve as biomarkers of tissue oxidative stress
[32]. Excessive generation of ROS and MDA in the kidneys
leads to tubular obstruction, back-leakage of renal tubules,
and contraction of the mesangial cells, finally resulting in
the abnormal expression of renal function markers such
as Scr, BUN, albuminuria, and NAG [33]. However, cells
defend themselves against oxidative stress via the activa-
tion of antioxidant enzymes. Antioxidant compounds are a
common and effective way to prevent or inhibit pancreatic
beta-cell destruction caused by alloxan [34]. SOD catalyzes
the conversion of superoxides into hydrogen peroxide and
oxygen, while GSH-Px scavenges the hydroxyl radicals [35].
The enhanced activity of SOD and GSH-Px in the serum
and kidneys of CM-treated diabetic rats helps to maintain a
balance of oxidants and antioxidants by causing the excretion
of ROS. Therefore, CM improves renal function by scaveng-
ing free radicals, especially ROS and MDA. It is well known
that inhibition of AKT phosphorylation downregulates GSK-
3 phosphorylation [36]. Gardenamide A is reported to
attenuate ROS levels by promoting the phosphorylation of
AKT, an effect that can be completely abrogated by the AKT
inhibitor [37]. In CM-treated diet-STZ-reduced diabetic rats,
decreased AKT and GSK-3 phosphorylation is responsible
for the transcriptional expression of multiple antioxidants to
prevent diabetes-related oxidative damage.

Oxidative stress in T2DM favors the appearance of endo-
thelial dysfunction, and oxidative production is an important
step in inflammation [38]. Interleukins have important roles
during inflammatory development, and the overexpression
of IL-2 activates proinflammatory CD4+ T cells, exacerbat-
ing the glomerular damage by recruiting macrophages and
neutrophils [39]. IL-6, secreted by the glomerular membrane
system, is responsible for the proliferation of mesangial
cells and the release of inflammatory mediators, including
superoxide anions [40]. As reported, TNF-« upregulates IL-
6 release by the podocytes in coculture with glomerular
endothelial cells [41]. Previous studies have reported that
oxidative stress is mediated in podocyte apoptosis in the
process of diabetic nephropathy [42] and that the progression
of renal interstitial fibrosis can be inhibited by suppressing
oxidative stress [43]. Thus, CM exerts renal protection in
diabetic rats via the regulation of inflammatory factors that
are modulated by oxidative stress.

All of the data suggest that CM targets many molecules in
the signaling of hyperglycemia, inflammation, and oxidative
stress. This “systemic targeting” will completely eliminate
the symptoms of diabetes and diabetic nephropathy in a
much natural way, so that less adverse effect is expected.
As a folk tonic food in China, CM has been emphasizing
its safety with few adverse effects. Our subchronic toxic

test provides experimental basis for its safety indicating
that CM showed no influences on bodyweights (Table 1S),
organ indexes (Table 2S), and kidney structures in mice
(Figure 2S). On the other hand, the crude drug nature of
CM suggests multieffective components, which may show
synergistic effect on the disease. It may explain that non-
dose-dependent manner was the common way of action of
some herbal medicines. Amount of natural productions is
reported to show various pharmacological activities via non-
dose-dependent manner [44, 45].

There is still a limitation in our present study. Although
we confirmed the regulatory effects of Met and CM on
inflammatory factors in serum, we failed to detect the related
changes in kidney tissues. As reported, Met successfully
regulates inflammatory cytokines associated with nephritis
but shows no influences on kidney structure [46]. Our further
study will focus on the effects of drugs on biochemical indices
and pathological changes of kidney.

In summary, we successfully explored the antidiabetic
and antinephritic effects of CM in diet-STZ-induced diabetic
rats. During the experiment, CM exhibited the ability to
reduce blood glucose, decrease blood lipids, reduce renal
injury, and lower inflammatory factors through enhanced
antioxidant expression and the attenuation of oxidative stress.
Cordyceps militaris fruit body extract, a safe pharmaceutical
agent, thus has great potential as a new treatment for diabetic
patients, especially those with nephritis.
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