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An Epidemiological Human Disease 
Network Derived from Disease  
Co-occurrence in Taiwan
Yefei Jiang1, Shuangge Ma2, Ben-Chang Shia3 & Tian-Shyug Lee1

In “classic” biomedical research, diseases have usually been studied individually. The pioneering 
human disease network (HDN) studies jointly consider a large number of diseases, analyse their 
interconnections, and provide a more comprehensive description of diseases. However, most of the 
existing HDN studies are based on molecular information and can only partially describe disease 
interconnections. Building on the unique Taiwan National Health Insurance Research Database 
(NHIRD), in this study, we construct the epidemiological HDN (eHDN), where two diseases are 
concluded as interconnected if their observed probability of co-occurrence deviating that expected 
under independence. Advancing from the existing HDN, the eHDN can also accommodate non-
molecular connections and have more important practical implications. Building on the network 
construction, we examine important network properties such as connectivity, module, hub, and others 
and describe their temporal patterns. This study is among the first to systematically construct the eHDN 
and can have important implications for human disease research and health care and management.

In “classic” biomedical research, diseases have usually been studied individually. Accumulating evidences have 
shown that diseases can be interconnected. For example, epidemiological studies have suggested the correlation 
between asthma and certain type of cancers1. Mutations in certain gene pathways, such as DNA repair and apop-
tosis, can lead to an elevated risk of multiple cancer types, making them “correlated”. In some early studies, a small 
number of pre-selected diseases were studied. A breakthrough is the pioneering human disease network (HDN) 
research2–6, under which a large number of diseases are simultaneously considered, and their interconnections 
are modelled.

Promising findings have been made in the HDN and other pan-disease studies. Notable studies include 
Calvano et al., which explored the genome-wide interaction network and suggested that network analysis using 
comprehensive knowledge can identify new functional modules perturbed in the disease processes7. Feldman et 
al. investigated the network properties of complex disease genes and found that network neighbours of known 
disease genes form an important class of candidates for identifying novel genes for the same disease8. Hidalgo 
et al. integrated different genetic, proteomic, and metabolic datasets, proposed a Phenotypic Disease Network, 
and found that disease progression can be represented and studied using network methods, offering the poten-
tial to enhance our understanding of the origin and evolution of human diseases3. Barabási et al. found that 
network medicine is essential for identifying new disease genes, for uncovering the biological significance of 
disease-associated mutations, and for identifying drug targets and biomarkers for complex diseases9.

Many of the recent HDN and other pan-disease studies, including the aforementioned, are based on molec-
ular information. Such studies, despite significant successes, may have limitations. Most, if not all, diseases are 
only partially molecular. Shared environmental exposures, socioeconomic risk factors, and others can also lead 
to correlations among diseases. However, such non-molecular correlations cannot be effectively reflected in the 
existing HDNs. Shared molecular risk factors can only suggest the potential correlation in disease occurrence. 
That is, two diseases sharing common molecular risk factors not necessarily have a significantly higher (or lower) 
probability of co-occurrence, which may make the molecular HDNs practically less relevant. In addition, search-
ing for the molecular basis is still an ongoing effort for most diseases, which may cast concerns on the credibility 
of the molecular HDNs.
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There are also a few studies that establish disease interconnections based on clinical and epidemiological data. 
However, with constrained data availability, they are often limited to a small number of diseases and possibly 
biassed sample selection10.

The goal of this study is to construct the epidemiological HDN (eHDN), where two diseases are concluded 
as connected if their probability of co-occurring in clinics deviating from that expected under independence. 
This effort will take advantage of the unique Taiwan National Health Insurance Research Database (NHIRD; 
more details below). The eHDN fits the HDN analysis paradigm and will have similar important implications as 
the existing HDNs. On the other hand, it may advance from the existing literature in multiple aspects. Built on 
data observed in clinics, it can accommodate both molecular and non-molecular disease connections and hence 
be more comprehensive. By directly built on observed disease occurrence, it can be practically more relevant. 
In addition, with the huge sample size of NHIRD, the constructed network can be more reliable than some of 
the existing ones. Overall, this eHDN analysis may complement the existing molecular HDNs and significantly 
advance our understanding of disease interconnections from an epidemiological perspective. It may provide 
important insights for health care and management.

Methods
Database.  Taiwan launched the single-payer national health insurance (NHI) programme on March 1st, 
1995. By the end of 2004, about 99.9% of the Taiwan population were enrolled11,12. With the high cost of treat-
ments that are not insured or by commercial insurance, the dominating majority of hospital/clinic-based dis-
ease treatments go through NHI. To get insurance reimbursement, hospitals and clinics are required to provide 
comprehensive data on each disease treatment episode. Data are then sorted and stored in NHIRD. Compared 
to other databases, unique advantages of the NHIRD may include unbiasedness (virtually the whole Taiwan pop-
ulation are covered), comprehensiveness (comprehensive information are available on all inpatient and outpatient 
treatment episodes), and uniformity (all data are collected and stored under the same protocol). NHIRD has 
served as the basis of a large number of biomedical and public health studies (with already close to 400 publica-
tions in PubMed). We refer to Hwang et al. and the NHIRD website for more detailed information on NHIRD11,13.

In this study, we retrieved data collected between 2000 and 2013 from NHIRD. The initial dataset contains 
records on one million subjects (about 4.26% of Taiwan’s population) randomly selected from the 2005 registry 
for beneficiaries. In NHIRD, each subject has a unique ID, which is used to link different databases. For our 
analysis, we analysed both outpatient and inpatient treatments, with information in the CD (ambulatory care 
expenditures by visits) and DD (inpatient expenditures by admissions) files, respectively.

For disease identification, the ICD-9-CM code was used. Prior to 2005, the ICD-9-CM 1992 version was used. 
For consistency, it was converted to the 2001 version. With more interest on diseases, following the literature, 
records with the E and V codes (external causes of injury and supplemental classification), 630–679 (Pregnancy, 
Childbirth and Puerperium Complications), and 760–999 (Symptoms, Signs & Ill-Defined Conditions) of ICD-
9-CM were removed from analysis. Limitations of the ICD-9 code have been recognised. For example, it may be 
biassed by experts’ discrimination. In addition, the vocabulary used to describe multiple patient billing codes may 
actually describe the same clinical disease. To address such problems, following the literature14, we adopted the 
electronic health record (EHR) driven Phenome-wide association studies (PheWAS) codes (PheCode), which 
group the ICD-9 codes into 1,723 PheWAS Codes (PheCode). To generate more reliable estimates, we focused on 
common diseases defined as having nonzero occurrence in each of the fourteen calendar years, leading to a total 
of 1,356 diseases for downstream analysis. More information on data processing is provided in Supplementary 
Information (SI). On the patient side, records with inconsistency (for example, conflicting sex information) were 
removed to ensure a high standard of analysis. The final analysed dataset contains records on 986,646 patients 
with 1,381,749 inpatient and 173,355,725 outpatient episodes in the study period. Among them, there are 486,992 
males and 499,654 females. More information is provided in SI.

Figure 1.  Flowchart of network-based analysis.
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This study was exempt from full review by the Institutional Review Board of Fu Jen Catholic University, as 
only de-identified data are analysed for a research purpose.

Network-based Analysis.  Our network analysis is based on the WGCNA (weighted gene co-expression 
network analysis)15, which was originally designed for the analysis of gene expression data and has demonstrated 
satisfactory performance in a large number of publications16–19. A closer examination of WGCNA suggests that 
its applicability is not limited to gene expression data. For the completeness of this article, below the analysis steps 
are briefly described, and readers are referred to Horvath for more details20. It is noted that although with some 
minor changes, the main advancement of this study is not on the WGCNA technique itself. Rather, this study 
marks a new and innovative application of the WGCNA technique. A flowchart describing the proposed analysis 
procedure is shown in Fig. 1. Below we provide more details on each analysis step.

Network Construction.  In the eHDN analysis, a node corresponds to a disease, and two diseases are connected 
with an edge if their probability of co-occurrence deviating from that expected under independence. The edge 
information is accommodated in the adjacency matrix. Denote n as the number of diseases. For diseases i and j (i, 
j ∈ 1, …, n), their φ-correlation is computed as:
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Here the threshold τ is imposed to remove spurious small correlations, only retain the large ones, and generate 
a sparse and more interpretable network. Its value is chosen using the scale-free topology criterion2,3,15,21, which 
has been extensively adopted in the literature. In the adjacency matrix, all components take values between 0 
and 1 (that is, positive and negative correlations are treated in the same manner). Two diseases are more strongly 
correlated (positive or negative) if their corresponding value in the adjacency matrix is bigger.

Figure 2.  Top ten diseases with the highest prevalence (top) and their connectivity (bottom).
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Connectivity, Module, and Hub.  For node (disease) i, its connectivity is defined as = ∑ ≠K ai j i ij, which quanti-
fies how strongly it is connected to the other nodes. In the literature, an alternative definition of connectivity has 
also been considered, where = ∑ ≠k TOMi j i ij (the definition of TOM is provided below. more information on the 
two connectivity measures is provided in SI).

An important network concept is module (also referred to as “community” in some studies), which is com-
posed of tightly connected nodes. Consider the topological overlap matrix (TOM), where its (i, j)th element is:

=
+

+ −
TOM

l a
K K amin{ } 1 (3)

ij
ij ij

i j ij

with = ∑l a aij u iu uj. Loosely speaking, lij measures how many neighbour nodes that i and j shared. TOMij meas-
ures the distance between diseases i and j in a network sense20,22. Accordingly, define dissTOMij = 1 − TOMij, 
which is non-negative and symmetric and measures the dissimilarity between any two diseases. With matrix 
dissTOM, whose (i, j)th element is dissTOMij, modules can be identified by hierarchical clustering with a dynamic 
tree cutting approach15,23.

With each module, connectivity can be re-computed and referred to as intramodular connectivity. Nodes 
(diseases) with the highest correlation with the eigen-diseases (definition below) are identified as hubs.

Remarks.  The network quantities described above have important implications. Adjacency directly describes 
how strongly two diseases are connected to each other. Of interest are diseases that are tightly interconnected. In 
health care management and planning, such diseases should be considered together as opposed to individually. In 
network analysis, it has been suggested that more highly connected nodes play more important roles in a network. 
It is thus of interest to examine connectivity and identify the highly connected ones. Such nodes (diseases) may 
have a higher priority in disease control and prevention, as they can potentially have a higher impact on the over-
all health conditions. In biomedical research, clustering/classifying diseases is an important task, and the module 
structure provides an alternative way for disease clustering. Diseases within the same modules can potentially 

Figure 3.  The traditional view of eHDN in the year 2013.
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share common risk factors (and thus the analysis can have scientific value) and be treated with similar regimens 
(and thus the analysis can have practical value).

Temporal Trends.  For all diseases, occurrence rates change over time. In addition, occurrence observed in clin-
ics is also affected by diagnosis and other factors, which are also time-dependent. As such the eHDN and its quan-
tities described above change over time. By conducting analysis year by year and comparing across time, we are 
able to obtain the temporal trends of the eHDN. This is significantly different from the molecular HDNs, which 
are static. For scalar quantities, variation over time can be directly assessed. For the module structure, we assess 
variation using the Jaccard indexes for modules obtained in consecutive years.

Visualisation.  The patient-disease relationship and disease correlations can be visualised using heatmaps. The 
overall network structure can be visualised using the software Gephi24. In such a plot, diseases that share edges are 
connected with lines, the size of a node is proportional to its connectivity, and different modules are represented 
using different colours. Construction of modules can be visualised using dendrograms and heatmaps. For scalar 
quantities (prevalence, connectivity, etc.), changes over time can be visualised using scatter plots (possibly with 
nonparametric fits). Changes of module memberships can be visualised using alluvial diagrams. Changes of mod-
ulesâ€™ mean connectivity can be visualised using radar charts. The aforementioned visualisation tools provide a 
more intuitive way of interpreting network structures and properties.

Results
The numbers of patients for each calendar year are shown in Table S1 in SI. In Table S2 in SI, we further present 
summary statistics on the numbers (proportions) of inpatient and outpatient treatment episodes, stratified by 
gender, age, and calendar year. Across time, an increasing trend of inpatient treatment is observed. For outpatient 
treatment, an increasing trend is also observed, although not as prominent as for inpatient. It is noted that the 
number of observations per year is large enough (larger than many of the peer studies) to make credible inference.

For a more intuitive description of the patient-disease distributions, in Fig. S2 in SI, we present the 
patient-disease heatmaps, where the x-axis corresponds to patients, the y-axis corresponds to diseases, and a red 
dot represents one disease occurrence. It is noted that with the huge sample size, plotting all patients generates 
plots with huge sizes. Thus, in Fig. S2, we presented results for 1% subjects randomly selected from our data in 
2012 and 2013. The prevalences of diseases are computed year by year. The top ten are presented in the top panel 
of Fig. 2. Acute upper respiratory infections (code 465) has the highest prevalence in all years. The high preva-
lence of acute upper respiratory infections in Taiwan has been noted in multiple publications25. Also in the top 
ten are gingivitis (code 523.1), acute sinusitis (code 464), and atopic/contact dermatitis (code 939) and others, all 
of which have been extensively examined in the literature13,25–27.

Type of Disease PheCode Disease (module) Connectivity
Intramodular 
Connectivity

Overall Top Ten Disease

401.1 Essential hypertension 6.11 1.63

250.2 Type 2 diabetes 5.97 1.77

401.21 Hypertensive heart disease 5.92 1.74

411.8 Other chronic ischemic heart 
disease, unspecified 5.62 1.79

411.4 Coronary atherosclerosis 5.37 1.83

366.2 Senile cataract 5.32 0.82

272.1 Hyperlipidemia 5.21 1.48

740.9 Osteoarthrosis NOS 5.16 1.59

433.8 Late effects of cerebrovascular 
disease 5.05 1.72

600 Hyperplasia of prostate 4.98 1.24

Hub Disease in 2013

401.1 Essential hypertension (yellow) 6.16 1.04

480 Pneumonia (black) 5.38 1.35

366.2 Senile cataract (magenta) 5.27 0.76

585.3 Chronic renal failure (brown) 5.14 1.20

721.1 Spondylosis without myelopathy 
(green) 5.06 1.50

626.13 Irregular menstrual cycle 
(turquoise) 3.59 2.30

571.51 Cirrhosis of liver without mention 
of alcohol (blue) 3.21 1.28

300.4 Dysthymic disorder (red) 2.70 1.13

939 Atopic/contact dermatitis (pink) 2.65 0.93

Table 1.  Diseases with the highest overall connectivity (upper) and hubs in the year 2013 (lower).
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Network construction and connectivity.  The eHDN is constructed using the approach described above. 
The threshold value τ is determined as 0.03. More detailed results are provided in SI. In Fig. 3, we provide a 
“traditional view” of the network structure of the eHDN for the year 2013. Similar constructions/plots have also 
been done for other years (details omitted and available from the authors). In Fig. 3, diseases that are connected 
with edges are linked with lines. Extensive “activities” are observed, suggesting a high degree of interconnections 
among diseases. A certain number of isolated diseases not linking to other diseases are also observed.

As shown in Fig. S4 in SI, for the NHIRD data, the weighted connectivity ki and unweighted connectivity Ki 
values are highly correlated. In the bottom panel of Fig. 2, we present the weighted connectivity values for the 
top ten diseases. More variations are seen in connectivity than in prevalence. For multiple diseases, bell-shaped 
curves are observed. Such an observation has not been made in the literature. Changing in connectivity can be 
caused by both intrinsic reasons (such as changing patterns in disease occurrence) as well as reasons such as diag-
nosis. Disease 464 (acute sinusitis) is observed to have the highest connectivity. It is a common disease and related 
to a large number of respiratory diseases. Significant increases in connectivity are observed for multiple diseases, 
especially disease 523.1 (gingivitis) and disease 939 (atopic/contact dermatitis). As a common non-destructive 
gum disease, gingivitis has been increasingly linked to multiple oral, digestive, and blood diseases. Also, patients 
with atopic/contact dermatitis and allergic rhinitis have a higher risk of asthma and many autoimmune dis-
eases13,28. More information on connectivity is also available in Fig. 3, where the sizes of nodes are proportional to 
their connectivity. The variations in connectivity across nodes are clearly observed.

In the investigation of disease connectivity, we first identify those with the highest overall connectivity across 
2000 and 2013 and present the top ten diseases in the upper panel of Table 1. The list includes multiple heart 
diseases, type 2 diabetes, and osteoarthrosis, all of which have been suggested as connected to a large number of 
diseases. It is “reassuring” that our analysis coincides with “traditional wisdom”. In the lower panel of Table 1, we 
present the list of hub diseases for the year 2013. Their module information is also provided in the bracket. The 
differences between the upper and lower panels are caused by the module structure (hubs are identified within 
modules separately) as well as variations across years.

Figure 4.  Disease module structure for the year 2013. Different modules are represented using different 
colours.
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Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease

pink 078 Viral warts & 
HPV turquoise 624 Symptoms involving 

female genital tract red 301 Personality 
disorders brown 251.1 Hypoglycemia black 038.2 Gram positive 

septicemia

pink 110.1 Dermatophytosis turquoise 625

Pain and other 
symptoms 
associated with 
female genital 
organs

red 301.2

Antisocial/
borderline 
personality 
disorder

brown 276.13 Hyperpotassemia black 041.4 E. coli

pink 110.11 Dermatophytosis 
of nail turquoise 626

Disorders of 
menstruation and 
other abnormal 
bleeding from 
female genital tract

red 303.3 Psychogenic 
disorder brown 276.41 Acidosis black 270.38

Other specified 
disorders of 
plasma protein 
metabolism

pink 110.12 Althete's foot turquoise 626.1 Irregular menstrual 
cycle/bleeding red 303.4 Somatoform 

disorder brown 276.6 Fluid overload black 276.12
Hyposmolality 
and/or 
hyponatremia

pink 110.13 Dermatophytosis 
of the body turquoise 626.11

Absent or 
infrequent 
menstruation

red 304 Adjustment 
reaction brown 401.2 Hypertensive heart 

and/or renal disease black 276.14 Hypopotassemia

pink 216 Benign neoplasm 
of skin turquoise 626.12

Excessive 
or frequent 
menstruation

red 316
Substance 
addiction and 
disorders

brown 401.22 Hypertensive chronic 
kidney disease black 290

Delirium 
dementia and 
amnestic and 
other cognitive 
disorders

pink 686

Other local 
infections of skin 
and subcutaneous 
tissue

turquoise 626.13 Irregular menstrual 
cycle red 327 Sleep disorders brown 411.1

Unstable angina 
(intermediate 
coronary syndrome)

black 290.1 Dementias

pink 686.1 Carbuncle and 
furuncle turquoise 626.14 Irregular menstrual 

bleeding red 327.4 Insomnia brown 411.2 Myocardial infarction black 290.11 Alzheimer's 
disease

pink 686.5 Pyoderma turquoise 626.15
Infertility, female, 
associated with 
anovulation

red 327.41
Organic or 
persistent 
insomnia

brown 427.21 Atrial fibrillation black 290.13 Senile dementia

pink 689
Disorder of skin 
and subcutaneous 
tissue NOS

turquoise 626.2 Dysmenorrhea red 333

Extrapyramidal 
disease and 
abnormal 
movement 
disorders

brown 428.1 Congestive heart 
failure (CHF) NOS black 290.16 Vascular 

dementia

pink 690.1 Seborrheic 
dermatitis turquoise 626.4 Premenstrual 

tension syndromes blue 070.2 Viral hepatitis B brown 428.2 Heart failure NOS black 290.3

Other persistent 
mental disorders 
due to conditions 
classified 
elsewhere

pink 695.3 Rosacea turquoise 626.8 Infertility, female blue 070.3 Viral hepatitis C brown 433.1
Occlusion and 
stenosis of 
precerebral arteries

black 480 Pneumonia

pink 695.7 Prurigo and 
Lichen turquoise 628 Ovarian cyst blue 070.4 Chronic hepatitis brown 433.12 Cerebral 

atherosclerosis black 480.1 Bacterial 
pneumonia

pink 698 Pruritus and 
related conditions magenta 362.21 Macular 

degeneration, dry blue 070.9 Hepatitis NOS brown 433.31 Transient cerebral 
ischemia black 480.12 Pseudomonal 

pneumonia

pink 701.1 Keratoderma, 
acquired magenta 362.22 Macular 

degeneration, wet blue 155.1
Malignant 
neoplasm of liver, 
primary

brown 503
Pulmonary 
congestion and 
hypostasis

black 496 Chronic airway 
obstruction

pink 704.8
Other specified 
diseases of hair 
and hair follicles

magenta 362.23
Cystoid macular 
degeneration of 
retina

blue 280.2

Iron deficiency 
anemia 
secondary 
to blood loss 
(chronic)

brown 505 Other pulmonary 
inflamation or edema black 496.21

Obstructive 
chronic 
bronchitis

pink 705.1 Dyshidrosis magenta 362.26 Macular puckering 
of retina blue 285 Other anemias brown 509.2 Respiratory 

insufficiency black 501
Pneumonitis due 
to inhalation of 
food or vomitus

pink 706.1 Acne magenta 362.29

Macular 
degeneration 
(senile) of retina 
NOS

blue 317 Alcohol-related 
disorders brown 585.1 Acute renal failure black 507 Pleurisy; pleural 

effusion

pink 706.2 Sebaceous cyst magenta 362.4
Retinal vascular 
changes and 
abnomalities

blue 317.1 Alcoholism brown 585.2 Renal failure NOS black 509.1 Respiratory 
failure

pink 706.3 Seborrhea magenta 362.8
Retinal 
hemorrhage/
ischemia

blue 317.11 Alcoholic liver 
damage brown 585.3 Chronic renal failure 

[CKD] black 563 Constipation

pink 939

Atopic/contact 
dermatitis due 
to other or 
unspecified

magenta 362.9 Retinal edema blue 530.1
Esophagitis, 
GERD and 
related diseases

brown 586 Other disorders of the 
kidney and ureters black 591 Urinary tract 

infection

pink 947 Urticaria magenta 366 Cataract blue 530.11 GERD yellow 041 Bacterial infection 
NOS black 707.1 Decubitus ulcer

Continued
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Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease

turquoise 112 Candidiasis magenta 366.2 Senile cataract blue 530.12 Ulcer of 
esophagus yellow 250.2 Type 2 diabetes green 351 Other peripheral 

nerve disorders

turquoise 131 Protozoan 
infection magenta 367.4 Presbyopia blue 530.14 Reflux 

esophagitis yellow 272.1 Hyperlipidemia green 353.2 Nerve root 
lesions

turquoise 218.1 Uterine 
leiomyoma magenta 368.9 Subjective visual 

disturbances blue 530.2
Esophageal 
bleeding (varices/
hemorrhage)

yellow 272.11 Hypercholesterolemia green 716.9 Arthropathy 
NOS

turquoise 218.2
Other benign 
neoplasm of 
uterus

magenta 369.5 Conjunctivitis, 
infectious blue 530.7

Gastroesophageal 
laceration-
hemorrhage 
syndrome

yellow 272.12 Hyperglyceridemia green 720 Spinal stenosis

turquoise 220 Benign neoplasm 
of ovary magenta 370.2 Superficial keratitis blue 531.1

Hemorrhage 
from 
gastrointestinal 
ulcer

yellow 272.13 Mixed 
hyperlipidemia green 720.1 Spinal stenosis of 

lumbar region

turquoise 253

Disorders of 
the pituitary 
gland and its 
hypothalamic 
control

magenta 370.31 Keratoconjunctivitis 
sicca blue 531.2 Gastric ulcer yellow 274.1 Gout green 721.1

Spondylosis 
without 
myelopathy

turquoise 253.1 Pituitary 
hyperfunction magenta 371.2 Conjunctivitis, 

noninfectious blue 531.3 Duodenal ulcer yellow 274.11 Gouty arthropathy green 721.2 Spondylosis with 
myelopathy

turquoise 256 Ovarian 
dysfunction magenta 371.21 Allergic 

conjunctivitis blue 531.4 Peptic ulcer, site 
unspecified yellow 276.11 Hyperosmolality and/

or hypernatremia green 722.1
Displacement 
of intervertebral 
disc

turquoise 256.4 Polycystic ovaries magenta 371.3 Inflammation of 
eyelids blue 535.8 Other specified 

gastritis yellow 332 Parkinson's disease green 722.6
Degeneration of 
intervertebral 
disc

turquoise 614
Inflammatory 
diseases of female 
pelvic organs

magenta 372 Disorders of 
conjunctiva blue 535.9 Gastritis and 

duodenitis, NOS yellow 342 Hemiplegia green 722.7
Intervertebral 
disc disorder 
with myelopathy

turquoise 614.1

Pelvic peritoneal 
adhesions, female 
(postoperative) 
(postinfection)

magenta 374.1 Ectropion or 
entropion blue 536.8

Dyspepsia and 
other specified 
disorders of 
function of 
stomach

yellow 349
Other and 
unspecified disorders 
of the nervous system

green 722.9
Other and 
unspecified disc 
disorder

turquoise 614.3
Pelvic 
inflammatory 
disease (PID)

magenta 375.1 Dry eyes blue 564
Functional 
digestive 
disorders

yellow 401.1 Essential 
hypertension green 727.1 Synovitis and 

tenosynovitis

turquoise 614.31
Acute 
inflammatory 
pelvic disease

red 295
Schizophrenia and 
other psychotic 
disorders

blue 564.1 Irritable Bowel 
Syndrome yellow 401.21 Hypertensive heart 

disease green 728.7 Fasciitis

turquoise 614.32
Chronic 
inflammatory 
pelvic disease

red 295.1 Schizophrenia blue 571.5
Other chronic 
nonalcoholic 
liver disease

yellow 411.3 Angina pectoris green 738.4 Acquired 
spondylolisthesis

turquoise 614.33
Pelvic 
inflammatory 
disease, NOS

red 295.2 Paranoid disorders blue 571.51
Cirrhosis of liver 
without mention 
of alcohol

yellow 411.4 Coronary 
atherosclerosis green 740.1 Osteoarthritis; 

localized

turquoise 614.4
Inflammatory 
diseases of uterus, 
except cervix

red 295.3 Psychosis blue 571.8

Liver abscess 
and sequelae 
of chronic liver 
disease

yellow 411.8
Other chronic 
ischemic heart 
disease, unspecified

green 740.11
Osteoarthrosis, 
localized, 
primary

turquoise 614.5
Inflammatory 
disease of cervix, 
vagina, and vulva

red 296 Mood disorders blue 571.81 Portal 
hypertension yellow 430.2 Intracerebral 

hemorrhage green 740.2 Osteoarthrosis, 
generalized

turquoise 614.51 Cervicitis and 
endocervicitis red 296.1 Bipolar blue 573 Other disorders 

of liver yellow 433 Cerebrovascular 
disease green 740.9 Osteoarthrosis 

NOS

turquoise 614.52 Vaginitis and 
vulvovaginitis red 296.2 Depression blue 578.1 Hematemesis yellow 433.2 Occlusion of cerebral 

arteries green 745 Pain in joint

turquoise 615 Endometriosis red 296.22 Major depressive 
disorder blue 578.9

Hemorrhage of 
gastrointestinal 
tract

yellow 433.21
Cerebral artery 
occlusion, with 
cerebral infarction

green 754.2 Spondylolisthesis, 
congenital

turquoise 619
Noninflammatory 
female genital 
disorders

red 300
Anxiety, phobic 
and dissociative 
disorders

brown 250.22
Type 2 diabetes 
with renal 
manifestations

yellow 433.6
Acute, but ill-defined 
cerebrovascular 
disease

green 760 Back pain

turquoise 619.1

Noninflammatory 
disorders of 
ovary, fallopian 
tube, and broad 
ligament

red 300.1 Anxiety disorder brown 250.23
Type 2 diabetes 
with ophthalmic 
manifestations

yellow 433.8
Late effects of 
cerebrovascular 
disease

green 764 Sciatica

turquoise 619.3
Noninflammatory 
disorders of 
cervix

red 300.11 Generalized anxiety 
disorder brown 250.24

Type 2 diabetes 
with neurological 
manifestations

yellow 588
Disorders resulting 
from impaired renal 
function

green 766
Neuralgia, 
neuritis, and 
radiculitis NOS

Continued
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Module identification and properties.  Construction of the module structure first involves constructing 
the dendrogram. In the left panel of Fig. S6 in SI, we show the dendrogram for the year 2013 as well as the identi-
fied modules. Different colours represent different modules, and the grey colour represents diseases not classified 
in the identified modules. Different modules are also represented using different colours in Fig. 3. In Fig. 4, we 
show the heatmap of the diseases and mark different modules using black boundaries. The “clustering structure” 
along the diagonal is clearly seen, which suggests the distinct differences across modules. For the year 2012, we 
show the corresponding plots in Fig. S9 in SI. A careful comparison of the plots suggests variation across time 
(more definitive results below). For the other years, similar plots can be generated (omitted here, available from 
the authors).

Different modules differ in multiple aspects. First, they have different sizes. The nine modules have sizes 22 
(pink), 39 (turquoise), 21 (magenta), 24 (red), 32 (blue), 27 (brown), 25 (yellow), 24 (black), and 25 (green), 
respectively. Also, as can be seen from Fig. 4, the levels of connections within modules also vary. For example, 
there are tighter connections within the green module than others. Diseases in different modules also have differ-
ent levels of connectivity. More detailed statistics on connectivity are provided in Fig. S5 in SI. From a biomedical 
perspective, it is of interest to examine the “meanings” of the modules. In Table 2, we provide the detailed list of 
diseases in the nine modules. As suggested in the published HDN studies, the modules provide an alternative way 
of defining disease classifications. More specifically, our classification, as shown in Table 2, is based on whether 
diseases co-occur on the same patients. An enrichment analysis is conducted to examine the representative dis-
eases of different modules. It is found that the nine modules are enriched with the following diseases: mycoses 
and bacterial of skin and subcutaneous tissue disorders (pink); gynaecological disorders (turquoise); ophthalmo-
logical disorders (magenta); neurotic personality and other nonpsychotic mental disorders (red); circulatory and 
digestive system disorders (blue); comorbidity of endocrine and cardiovascular disorders (brown); endocrine and 
cardiovascular disorders (yellow); degenerative disorders (black) and arthropathies and related disorders (green), 
respectively. It is noted that some disease clustering/classification structures in the literature are based on, for 
example, biology and are defined for the whole population. In contrast, our network and module structure, based 
on the NHIRD, are tailored to the Taiwan population. The Taiwan population are dominatingly Asian, which 
may have disease risk and characteristics different from other populations. In addition, disease occurrence highly 
depends on environmental, socioeconomic, and other factors, which vary significantly across regions/countries. 
As such, for the Taiwan population and their health care and management, our constructed module structure/
disease classification can be more sensible.

Modules can describe the interconnections among diseases, with those in the same module more tightly 
connected. In a further step of analysis, it is of interest to examine the interconnections among modules. The 
eigen-disease of each module is extracted for this purpose. Eigen-diseases are defined as the first principal com-
ponents of the modules. Literature suggests that, under certain conditions, they have the highest connectivity and 
can best represent the corresponding modules. The hierarchical clustering of the nine eigen-diseases is shown in 
the right panel of Fig. S9 in SI. The brown and yellow eigen-diseases are clustered the first. Figure 4 suggests that 

Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease Color PheCode Disease

turquoise 621 Endometrial 
hyperplasia red 300.12

Agorophobia, social 
phobia, and panic 
disorder

brown 250.25

Diabetes type 2 
with peripheral 
circulatory 
disorders

yellow 600 Hyperplasia of 
prostate green 770

Myalgia and 
myositis 
unspecified

turquoise 622.1 Polyp of corpus 
uteri red 300.3

Obsessive-
compulsive 
disorders

brown 250.6 Polyneuropathy 
in diabetes black 038 Septicemia green 772 Symptoms of the 

muscles

turquoise 622.2 Mucous polyp of 
cervix red 300.4 Dysthymic disorder brown 250.7 Diabetic 

retinopathy black 038.1 Gram negative 
septicemia

Table 2.  Disease module structure for the year 2013. Different modules are represented using different colours.

module

2012

No. diseasesgrey yellow green pink blue turquoise black brown red

2013

grey 0.94 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 1117

black 0.00 0.64 0.00 0.00 0.00 0.01 0.00 0.00 0.00 24

blue 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 32

pink 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 22

turquoise 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 39

brown 0.00 0.02 0.00 0.00 0.00 0.50 0.00 0.00 0.00 27

red 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 24

green 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 25

magenta 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 21

yellow 0.00 0.15 0.00 0.00 0.00 0.26 0.00 0.00 0.00 25

Table 3.  Jaccard similarity index between modules in the year 2012 and 2013.
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this result is sensible as both modules are enriched with diseases related to endocrine and cardiovascular disor-
ders. These two modules are then clustered with the black module, which is enriched with degenerative disorders. 
This connection has not been carefully examined for the Taiwan population in the literature and demands more 
attention.

Temporal trends.  As discussed above, a significant advantage of the eHDN is that temporal variations can 
be observed. For the studied diseases, their prevalence varies across time, as shown in the upper panel of Fig. 2. 
More importantly, their network structures, connectivity (bottom panel of Fig. 2), module structure (Figs 4 and 
S9), and hub structure (Table 1) all vary across time. For the module structure, which defines disease clustering/
classification, we show detailed changes between consecutive years in Tables 3 and S4–S15 in SI. Take year 2012 
and 2013 as an example (patterns for other years are similar). Most of the modules in 2012 have corresponding 
modules in 2013 with the Jaccard similarity indexes larger than 0.5 (which suggests a correspondence), expect 
for the red module in 2012, which has Jaccard index 0.36 with the magenta module in 2013. Overall it is observed 
that the module structures vary significantly between 2001 and 2005, become “stable” around 2005, and then 
fluctuate again between 2007 and 2011. Modules with “more unique” diseases, for example the modules enriched 
with gynaecological disorders (which have unique etiological pathways), tend to be more stable throughout the 
years. As an alternative way of visualising changes of module structures over time, the alluvial diagrams are shown 
in Figs S10–S22 in SI. It is noted that such plots provide similar information as in Tables S4–S15 in e SI, however, 
in a more intuitive way and can be preferred by some practitioners.

For the modules, we also summarise their connectivity and examine changes over time. The results are pre-
sented in the radar charts in Figs S10–S22. Again, significant across-module differences are observed. For some 
modules, for example the one enriched with respiratory failure related diseases, significant temporal variations 
are observed. For disease 509.1 (respiratory failure), we present the temporal trends of connectivity and intra-
modular connectivity in the upper panel of Fig. 5. For a better visualisation, the nonparametric smooth fits are 
also added. The observed trends are similar to those reported in the literature27. A representative of “the opposite” 

Figure 5.  Connectivity changing patterns of respiratory failure (509.1) and coronary atherosclerosis (411.4) 
from 2000 to 2013.
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is disease 411.4 (coronary atherosclerosis), which is shown in the bottom panel of Fig. 5 and has a much more 
stable connectivity. This observation is similar to that in Tseng et al.26.

Discussion
HDN and other pan-disease research has drawn significant attention in recent literature and has brought signif-
icant insights beyond single-disease studies. Significantly different from the existing studies that are based on 
molecular information, in this study, we have taken advantage of the unique NHIRD, constructed the eHDN 
co-occurrence network, and studied its properties. This study has several contributions. The constructed eHDN 
provides a way of describing disease interconnections in a “global” manner. The adjacency measure establishes 
disease connections from an epidemiological perspective. The constructed modules provide an alternative way 
of disease clustering/classification. A closer examination of the analysis results suggest that the identified highly 
connected diseases and modules have sound biological interpretations, which provide support to the validity 
of the proposed analysis. This study also establishes a new way for analysing disease epidemiological data. The 
adopted technique is heavily based on the WCGNA studies. This study demonstrates the effectiveness of this tech-
nique for epidemiological data. In addition, this study also demonstrates various effective way of visualising the 
analysis results, which provides a more intuitive way of understanding disease epidemiological data. This study 
also provides an alternative analysis of NHIRD - in the literature, analysis has usually been focused on individual 
diseases.

Despite significant advancements, this study inevitably has limitations. The Taiwan population is dominat-
ingly Asian. Thus, extending the findings to other races should be done with cautions. In our analysis, to describe 
the “big picture”, we conduct analysis on the whole selected cohort. The occurrence of most diseases depends 
on age, gender, and other factors. It will be of interest to conduct stratified analysis. Information is only availa-
ble for the year 2000–2013. Without information on diagnosis prior to 2000, our analysis only captures disease 
occurrence within this time period. The WGCNA-based technique, although successful and popular, also has 
limitations. The network generated is undirected and hence cannot reflect the “order” of diseases. In this study, we 
have only analysed the most important network properties (connectivity, hub, module, etc.). Other, more subtle 
network properties may also be of interest. In addition, we have focused on the application of the WGCNA tech-
nique. Its theoretical validity for the NHIRD data has not been examined. However, the sensible analysis results 
provide some support to the validity of the analysis technique. There are other statistical techniques for network 
construction and analysis. It will be of interest, however beyond the scope of this study, to compare different net-
work constructions for the NHIRD data.

The merit of HDN analysis has been well established in the literature. Results obtained in this study can 
be valuable for basic and clinical science researchers as well as health care providers and policymakers. This 
study focuses on disease connection from an epidemiological perspective and may well complement the existing 
HDN studies. Specifically, comparing the eHDN with molecular HDNs may suggest which disease connection 
are attributable to molecular and non-molecular causes. However, in the literature, there is a lack of molecular 
HDN specific to the Asian population (it is noted that molecular risk factors of many diseases are race-specific). 
In addition, the existing molecular HDNs have been constructed based on techniques other than the WGCNA. 
With these considerations, we postpone the joint analysis of eHDN and molecular HDNs to future studies.
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