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Abstract

The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel 

formulation and numerical solution of stochastic inverse problems for physics-based models. The 

uncertainty is quantified in terms of a probability measure and the physics-based model considered 

here is the state-of-the-art ADCIRC model although the presented methodology applies to other 

hydrodynamic models. An accessible overview of the formulation and solution of the stochastic 

inverse problem in a mathematically rigorous framework based on measure theory is presented. 

Technical details that arise in practice by applying the framework to determine the Manning’s n 

parameter field in a shallow water equation model used for coastal hydrodynamics are presented 

and an efficient computational algorithm and open source software package are developed. A new 

notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the 

computation of probabilities. This notion of condition is investigated to determine effective output 

quantities of interest of maximum water elevations to use for the inverse problem for the 

Manning’s n parameter and the effect on model predictions is analyzed.
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1. Introduction

In shallow water hydrodynamics, especially in coastal regions, channels and overland flows, 

bottom stress induced by surface roughness heavily influences flow behavior. Bottom stress 

is typically parameterized using the Gauckler-Manning-Strickler formula which relates 

average cross-sectional velocity, hydraulic radius, and the channel bed slope [1, 2, 3, 4, 5] 

and includes a coefficient that depends on the specific characteristics of the bottom surface 

according to standard definitions. In this paper, we use Manning’s formula to describe 

bottom stress and focus on the determination of the so-called Manning’s n coefficient, which 

is a spatially dependent field variable. Additionally, we investigate the indirect 

determination of the Manning’s n coefficient from observations on the state of water 

elevation and momentum, where Manning’s n coefficient is connected to wave motion 

through a deterministic shallow water model.

This is an example of an inverse problem whose solution provides the basis for scientific 

inferences for a deterministic, physics-based model. The goal is to predict unobserved 

behavior of a system using the mathematical model fed by input data and parameters that 

characterize the physical properties of a given state of the system. However, it is often 

infeasible or prohibitively expensive to experimentally observe all of the important input 

quantities that characterize the physical properties of a given state. Rather, the available data 

tends to be on observable aspects of the state of the system itself. Moreover, the set of 

observable quantities is generally different than the set of quantities to be predicted because 

of physical limitations in what, where, and when data can be collected.

In Fig. 1, we illustrate the abstract process of solving an inverse problem for a physics-based 

model in order to provide the input for scientific inferences based on model predictions. The 

physics-based model is given as a set of differential equations whose solution produces a 

map between the space of input data and parameters to the solution space. A set of 

functionals form a map from the solution space to the space of observable quantities, while 

another set of functionals map the solution space to the space of quantities we wish to 

predict. These are illustrated by the red arrows. Note that the observation and prediction 

functionals can be physically different transformations or they can be the same set of 

transformations but evaluated at different times and locations. To solve the prediction 

problem, we first solve the inverse problem for the map from the space of input data and 

parameters to the observation space obtained by composing the observable functionals with 

the solution of the physics-based model. We then solve the model “forward” with those data 

and parameter values and apply the prediction functionals to the solution(s) to produce the 

prediction. This flow is illustrated with black arrows.

The determination of Manning’s n for a model of coastal hydrodynamics provides a concrete 

example. Manning’s n characterizes the momentum loss due to bottom friction that affects 

bottom stress in a hydrodynamics model in Manning’s formula for drag. The Gauckler-

Manning-Strickler formula was originally developed for open-channel flow in a fully-

turbulent fairly regular unvegetated domain [1, 2, 3, 4, 5, 6]. For open-channel flow that 

meets these assumptions Manning’s coefficient may be determined indirectly from field or 
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laboratory measurements of flow characteristics or from a sampling of the diameters of 

roughness elements [7, 8, 9, 10]. Arcement and Schneider [11], along with Chow [12], and 

Barnes [8] have provided guides for selecting Manning’s coefficient that extend the original 

domain of application to flood plains, vegetated water ways, and channels with irregular 

boundaries. These guides supply tables [12], photographic guides [8], and a combination 

thereof [11]. Furthermore, Manning’s formula, although extremely useful, is not the correct 

model of momentum loss due to vegetation in natural waterways as Manning’s formula 

models bottom friction not the complex form drag of flexible vegetation [13, 14, 15]. 

However, complex hydrological models require some representation of momentum loss due 

to a combination of bottom friction, vegetation, bed-forms, and the porous media-like 

structures that occur in coastal estuaries [16, 17, 18]. Detailed field measurements can be 

used to determine Manning’s coefficient through hydraulic calibration for a specific 

geographical location [19].

Unfortunately, it would be extremely cost prohibitive to use field measurements to estimate 

Manning’s n for these conditions at a fine detail over a large physical domain. One set of 

observation data that is available in coastal hydrodynamics is the maximum water surge 

heights at various fixed observation stations. We aspire to leverage the land cover and 

classification data collected by the NCLD and CCAP projects to estimate Manning’s 

coefficient for these types of computational modeling problems [20, 21, 14, 22]. This sets up 

the problem of determining the Manning’s n values from the maximum surge height data by 

solving the inverse problem for the shallow water hydrodynamics model. A related 

prediction problem is then to use the computed Manning’s n to predict inundation at certain 

critical points in the domain, e.g. near physical barriers intended to reduce the effects of 

flooding.

The inverse problem for prediction is complicated by two issues. First, the map from the 

data and parameter space to the observable space generally reduces the dimension, i.e. it is a 

“many-to-few” map. This means that the inverse problem has set-valued solutions, i.e. there 

is a set of possible data and parameters values corresponding to each observation data point. 

Second, all of the available data is subject to natural variation as well as experimental/

observational error so the solutions of the inverse problem for parameter determination and 

the forward prediction problem are described in terms of probability measures. Both of these 

issues can be addressed directly by measure theory, which provides a very natural 

framework for the formulation, solution, and numerical approximation of the inverse 

problem for scientific inference [23, 24, 25, 26].

Measure theory is fundamentally based on the notion of an inverse of a map, and so the 

measure theoretic description of the stochastic inverse problem given below is universal in 

nature. There are other ways to formulate inverse problems for determining parameters in 

models. For example, the most common deterministic approach alters the inverse problem 

through “regularization” to obtain a new problem that has a unique solution. Numerically, 

the solution is often formulated as the solution of an optimization problem that is then 

solved approximately [27]. There are other techniques for solving stochastic inverse 

problems, e.g. Bayesian approaches [28, 29, 30] and Kalman filtering [31]. However, 

outside of our solution approach, we do not know of any stochastic solution methods that 

Butler et al. Page 3

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clearly adhere to the structure of the inverse problem, i.e. set-valued solutions, of the 

original model. It may be that they are in fact either solving a different inverse problem (as 

is the case when a parameterized distribution is assumed for the solution) or have altered the 

original problem (Bayesian approaches often implicitly involve regularization).

In the following, we let Q denote the map formed by the composition of the observable 

functions with the solution operator of the model, Λ denote the domain of input values for 

Q, and  ≔ Q(Λ) denote the range. This Q should not be confused with the quantities Qx 

and Qy in the shallow water equations.

2. Description of the model and the Manning’s n parameter field

Assuming hydrostatic pressure and domains with large horizontal length scales relative to 

vertical length scales, the shallow water equations (SWEs) are used to model the 

hydrodynamic system. The SWEs can be derived by depth integration of the incompressible 

Navier-Stokes equations or directly from the integral form of the fundamental equations of 

fluid dynamics, resulting in a coupled system of equations consisting of a first-order 

hyperbolic continuity equation for water elevation and momentum equations for horizontal 

depth-averaged velocities.

Let ζ denote the free surface elevation relative to the geoid, then the continuity equation is 

given by

(2.1)

and the momentum equations for depth-averaged x- and y-velocities (denoted by Ux and Uy, 

respectively) are given by

Here, h is bathymetric depth relative to the geoid, H = ζ + h is the total water column height, 

f is the Coriolis parameter, Ps is the atmospheric pressure at the free surface, ρ0 is the 

reference density of water, and η is the Newtonian equilibrium tide potential. Letting xi = x 

or xi = y, then Qxi = UxiH is the flux per unit width in the xi direction, Mxi is the vertically-

integrated lateral stress gradient, Dxi is the momentum dispersion, and Bxi is the vertically-

integrated baroclinic pressure gradient. Finally, τsxi are the imposed surface stresses and τbxi 
are the bottom stress components.

In regions where water depths are quite shallow; e.g., low-lying coastal areas, tidal flats, 

channels, etc., the bottom stress components τbxi are more sensitive to Manning’s coefficent 

(Eq. 2.2). These are defined using a linear or quadratic drag law through the coefficient 

Kslip,
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We utilize a quadratic drag law, so Kslip = Cf |U|. The constant Cf is determined using the 

Manning’s n formulation,

(2.2)

where n denotes the Manning’s n coefficient of roughness. Note that for H sufficiently small 

Cf is set to a fixed constant to prevent division by zero.

3. Numerical solution of the hydrodynamic model and quantities of interest

We use ADCIRC to solve a hydrodynamic model that depends on 16 parameter fields, 

including bottom stress, bathymetric depth, and surface stress, using finite element methods 

on unstructured triangular meshes discretizing the spatial domains and using finite 

difference schemes in time. In ADCIRC, the continuity equation, Eq. (2.1), is replaced by a 

second-order, hyperbolic generalized wave continuity equation (GWCE) [32, 33] to reduce 

spurious oscillations that can occur in numerical solution of the form of the SWEs discussed 

above [34]. The steps for obtaining the GWCE are: (1) a multiple, τ0 ≥ 0, of the continuity 

equation is added to the time derivative of the continuity equation, (2) bathymetric depth is 

assumed constant in time, i.e., ∂H/∂t = ∂ζ/∂t, and (3) substitute the momentum equations into 

the continuity equation. The interested reader can find all details of these equations, their 

derivation, and numerical implementation in ADCIRC in [35].

The ADCIRC model has undergone extensive verification and validation, e.g., using 

hindcast studies with data from hurricanes over the last five decades including including 

Hurricanes Betsy (1965), Ivan (2004), Dennis (2004), Katrina (2005), Rita (2005), Gustav 

(2008), and Ike (2008) [36, 37, 16, 17, 38]. ADCIRC has also been used to generate tidal 

constituent databases for the eastern coast of the conterminous U.S. [39].

The verification and validation studies of ADCIRC have consistently shown that the 

maximum water heights obtained from the model are in excellent agreement with those 

observed in the field by fixed observation stations. Therefore, in this work, we consider the 

quantities of interest as the maximum heights at a given set of locations.

4. Formulation and solution of the stochastic inverse problem

4.1. Measure theory and inverse problems

Probability is introduced when we assume stochastic models for the natural variations and 

experimental error in data. However, this also introduces measure theory because rigorous 

probability is described in terms of measure theory [40]. Measure theory is based on the 

concept of inverse problems, hence a rigorous probabilistic description of the inverse 

problems for parameter determination in the presence of stochastic variation has a very 

specific mathematical formulation. There are features of this formulation that must inform 

Butler et al. Page 5

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any approximate solution technique for the original stochastic inverse problem for a 

deterministic model. There are other ways to formulate inverse problems for parameters in a 

model and solution techniques that involve altering the original stochastic inverse problem. 

We give brief descriptions of examples below at appropriate places. To our knowledge, a 

systematic comparison of different inverse problems for parameter determination has not 

been carried out.

Below, we summarize the ingredients of measure theory briefly, and then express the 

relevant results about inverse problems and probability measures in terms of iterated 

integrals in several dimensions. The expression of probability measures in terms of integrals 

is key to all stochastic or deterministic approximate solution methods. In this way, we 

present a technically correct, numerically relevant description of the consequences of 

rigorous measure theory that is accessible to a wide technical audience. We then describe 

how we exploit these results to produce a numerical solution technique.

The ingredients of measure theory are: (1) a domain; (2) a σ-algebra; and (3) a (probability) 

measure. After specifying the domain of interest (Λ), a σ-algebra (ℬΛ) is the class of subsets 

in the domain for which it makes sense to compute the (probability) measure. In the case of 

a probability measure, the sets in ℬΛ are called events. The pair (Λ, ℬΛ) defines what is 

called a measurable space. A measure can only be defined once a domain and a σ-algebra 

are specified (i.e., once a measurable space is defined). There are typically many possible 

measures on a given measure space.

The notion of a σ-algebra is often presented as an abstract construction involving infinite 

sequences of set operations, e.g., intersections, unions, complements, beginning with simple 

sets. However, this construction is actually grounded in practical numerical approximation. 

Many natural probability questions lead to the need to compute the probability measure of 

very complex events. This is carried out by approximating complex events by collections of 

simpler sets, e.g. generalized rectangles when Λ ⊂ ℝm, and then computing a piecewise 

constant approximate probability measure with respect to the approximating sets. The 

central theoretical foundation of measure theory insures this approach works.

Another key ingredient of measure theory is the concept of measurable function, or random 

variable in the case of a probability measure. In particular, measurable functions such as 

probability densities are those functions which can be integrated over measurable sets. A 

measurable function is defined in terms of the behavior of its inverse with respect to the σ

−algebras on its domain and range. Specifically, if the preimage (inverse) of any set in the 

output σ-algebra is a set in the input σ-algebra, then the function is said to be measurable. 

Examples of measurable functions include the physics-based maps from input parameters to 

observable data and probability densities which map the measurable spaces into the non-

negative real numbers.

Given a measure/probability on a measurable space, a measurable function on this space 

induces a measure/probability on the output space of the measurable function in terms of the 

inverses of measurable sets. Thus, measure theory is ideal for both the formulation and 
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solution of the inverse problem for scientific inference using deterministic models even in 

cases where the inverse of the measurable map is set-valued.

4.2. The generalized contours of an inverse problem

In the most idealized case, a map Q : Λ →  assigns distinct output values to distinct input 

values, so the inverse of the map is defined as a pointwise map from  to Λ. However, this 

ideal case is far too restrictive in general. In particular, physics models often have the 

property that the domain has higher dimension than the range of the observable outputs 

defining the map Q, which makes it impossible to assign distinct input values to distinct 

output values.

In some mathematical fields, such maps are referred to as “non-invertible” and the inverse 

problem is said to be “ill-posed.” However, the inverse of any map is a well defined concept. 

The inverse of a map is generally a set-valued function that does not map the range  back 

to Λ in a pointwise sense. Rather the inverse of a map sends  to a new space ℒ whose 

points consist of sets (preimages) in Λ. When the map Q is piecewise differentiable, these 

set-valued inverses exist as lower dimensional manifolds that we refer to as generalized 

contours. This is a generalization to higher dimensions of the familiar concept of a contour 

map for elevations. We show an example in Fig. 2, where we plot some of the contours of 

the map from ℝ2 to ℝ1,

(4.1)

For a map between Λ ⊂ ℝm and  ⊂ ℝd with m > d > 1, the generalized contour is a 

manifold of dimension m − d embedded in Λ. For the problem of determining Manning’s n, 

a point in the space ℒ simply represents all the possible Manning’s n fields producing the 

same maximum water height. Moreover, we can decompose Λ as a union of generalized 

contours corresponding to the points in ℒ (see Fig. 2).

Notions such as continuity and well-posedness for the inverse map must be phrased with 

respect to points in ℒ, not with respect to points in Λ. For example, the condition or degree 

of near-ill-posedness of the inverse map is determined by how well the map distinguishes 

different generalized contours from each other. The concept of condition is explored in more 

depth in Section 6.

The map Q has a natural restriction Qℒ to ℒ since we can evaluate Qℒ on a generalized 

contour by evaluating Q at any point on the contour. It follows that Qℒ : ℒ →  is a 

bijection, so is invertible, and it is possible to identify each generalized contour by the 

unique corresponding value in  (see Fig. 3). Contours in a contour map are usually indexed 

by the altitude. However, it is also possible to find manifolds in Λ that can serve as an 

indexing set for the generalized contours in ℒ (see Fig. 3 and 4) in the sense that each 

generalized contour corresponds to a unique point of the indexing set. We call such an 

indexing set a transverse parametrization (TP)1. In the context of the Manning’s n problem, 

1Note that in general a TP may consist of a collection of disconnected manifolds and that there are infinitely many possible TP.
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a TP simply identifies a way to distinguish which sets of Manning’s n fields produce distinct 

water heights.

We choose any TP to serve as a representation of ℒ, and abusing notation, we call this TP ℒ. 

With this choice, we obtain a new (nonlinear) “coordinate system” for the original Λ. Any 

point λ ∈ Λ can be written as λ = [xℒ; x ], where xℒ ∈ ℒ indicates the unique generalized 

contour λ passing through λ and x λ is the unique point in λ that distinguishes λ from the 

other points in λ (see Fig. 3).

We note that it is possible to numerically approximate all of these manifolds in the set-

valued solution of the inverse problem ([23, 24, 25, 26]). However, this is computationally 

intensive and it is not necessary for solving the stochastic inverse problem.

4.3. Solving the stochastic inverse problem in the space of generalized contours

If the generalized contours are available, then the solution of the stochastic inverse problem 

into ℒ is conceptually simple since Qℒ is a bijection. A probability distribution on 

corresponds to a unique induced probability distribution on ℒ. We let P  denote the given 

probability measure on , which means that if B is any event in , then the probability of B 

is P (B). The induced inverse probability measure Pℒ on ℒ is given by

(4.2)

for any event A ⊂ Λ. This is the “natural” solution of the stochastic inverse problem since it 

involves minimal assumptions.

Given a probability density ρ  on , there is a unique induced inverse probability density 

function ρℒ on ℒ such that

(4.3)

The induced probability density on the TP from Fig. 3 corresponding to a uniform 

probability measure on  is shown in Fig. 4.

To interpret the solution of the inverse problem in the space of generalized contours ℒ, we 

note that an event in ℒ corresponds to a set of generalized contours in Λ, which we call a 

contour event. We illustrate a contour event in Fig. 5 where a probability measure on ℒ 

provides the means to compute the probability of sets in Λ comprised of generalized 

contours. For the Manning’s n problem, this means that we can use a probability density on 

maximum water height data to determine the probability density on events defined by all 

possible Manning’s n fields that can generate this data.

4.4. Solving the stochastic inverse problem in the original domain

The formulation of the parameter domain Λ is an important ingredient in the construction of 

a physics model. Parameter values correspond to physical conditions that determine model 

behavior and, generally, different points and events in Λ correspond to different physical 

conditions even when they result in the same model output. Many important scientific and 
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engineering applications of a model require the ability to explore differences between 

various sets of parameter values in Λ.

The solution of the stochastic inverse problem in the space of generalized contours provides 

the means to answer questions in Λ that are formulated in terms of contour events. We can 

identify arbitrary events A and B in Λ by the smallest contour events containing A and B, i.e., 

by Q−1(Q(A)) and Q−1(Q(B)), respectively. However, without further assumption, we cannot 

use the solution of the stochastic inverse problem in ℒ to assign different probabilities to 

different events A and B in Λ when Q(A) = Q(B) (see Fig. 5).

In the deterministic inverse problem, the model cannot be used to distinguish between 

different points on the same generalized contour. However, there is a reasonable assumption 

that allows assigning probabilities to individual events in Λ that are in the same contour 

event in the case of the stochastic inverse problem. To explain this, we formulate the 

probability computations in the common form as integrals involving probability densities.

Consider any probability distribution PΛ that is given on Λ in terms of a probability density 

ρΛ, so that for any event A ⊂ Λ,

(4.4)

We introduce notation to exploit the coordinate system induced by the generalized contours. 

We fix a TP representing ℒ in Λ. For an event A ⊂ Λ, we let π(A) ⊂ ℒ denote the event in ℒ 

corresponding to the contour event determined by A. (We can compute π(A) as the unique 

event in ℒ determined by Q−1 (Q(A))). For a point xℒ ∈ ℒ, we let π−1(xℒ) be the generalized 

contour corresponding to xℒ (see Fig. 6).

Changing to the new coordinates, we obtain the iterated integral,

(4.5)

where we abuse notation to let x  denote the coordinates along the generalized contour  = 

π−1(xℒ) corresponding to xℒ. Moreover, the density ρΛ on Λ can be decomposed as

(4.6)

where ρℒ is a probability density function on ℒ and ρ (x ; xℒ) is a conditional probability 

density conditioned on the generalized contour π−1(xℒ). Substituting, we obtain,

(4.7)

We note that when ρΛ is given, then ρℒ is obtained by restriction of ρΛ to ℒ and ρ  is 

obtained by restriction of ρΛ to the generalized contours corresponding to points in ℒ. Vice 

versa, if we specify ρℒ and ρ , then ρΛ is determined uniquely.
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We emphasize the great theoretical and computational importance of the iterated integral 

(4.7) for any probability measure on Λ. Roughly speaking, (4.7) states the intuitive fact that 

the probability of an event A in Λ can be computed as the product of the conditional 

probability of A considered as an event in the probability space of the contour event π(A) 

and the probability of that contour event. However, (4.5) and (4.6) are not obvious from a 

mathematical point of view. Technical issues potentially arise because ℒ and the generalized 

contours are lower dimensional structures in Λ and so have measure zero in the volume 

measure of Λ2.

We now return to the stochastic inverse problem. As discussed above, (4.3) determines ρℒ 

uniquely from the inverse of the model and the imposed probability density ρ  on . 

However, the model gives no information about the conditional probability ρ  in each 

generalized contour. In the context of the Manning’s n problem, the probability density of 

water height data uniquely determines the probability density ρℒ but provides no 

information about the possible conditional probability ρ  which would distinguish between 

different Manning’s n values that give the same height. At this point, we make an 

assumption.

There is a branch of probability that deals with the assignment of probabilities when there is 

no information about probabilities of events. In the case of a discrete space, the Principle of 

Insufficient Reason3, going back to Bernoulli and Laplace, states that if there is no reason to 

assume that one outcome is favored over any others, we should assign equal probabilities to 

all outcomes. The analog in continuous probability is to assign the uniform probability 

distribution in the situation in which we have no reason to believe that there is nonuniform 

behavior in the probability.

Thus, we assume that ρ  is the uniform probability density on each generalized contour

(4.8)

With this assumption, (4.7) gives a unique solution of the stochastic inverse problem as a 

probability density on Λ. The conditional density ρ  varies with the generalized contour (see 

Fig. 6), which has a complicated effect on the resulting probability density on Λ (see Fig. 7). 

In particular, suppose two events A1 and A2 have equal measure in Λ and events π(A1), 

π(A2) ⊂ ℒ have equal probability Pℒ(π(A1)) = Pℒ(π(A2)) in ℒ. If π(A1) has greater volume 

than π(A2), then PΛ(A1) < PΛ(A2). This is evident in Fig. 7.

We emphasize that any assumed conditional probability density ρ  determines a unique 

probability distribution on Λ, and our computational methods work equally well with any 

assumed density. However, note that any non-uniform density imposes additional geometric 

structure on the problem that is not determined by the model. For example, assuming a 

Gaussian distribution on each generalized contour requires specifying a point in each 

2It is possible to show that (4.5) and (4.6) are valid with the proper interpretation provided by an mportant result in measure theory 
called the Disintegration Theorem [26].
3a.k.a.: Principle of Equally Likely Outcomes, Principle of Indifference
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generalized contour as the mean of the Gaussian. The model itself cannot distinguish a 

specific point in a generalized contour, so we have imposed an additional geometric feature 

in the problem. For further discussion of the assumption, see [26].

4.5. Comparison to other formulations of stochastic inverse problems

Modern research on the approximate solution of inverse problems is dominated by Bayesian 

and regularization approaches, and it is impossible to list all the relevant references here. 

Below, we describe the differences in our approach to some recent work using other 

approaches in the determination of Manning’s n. For more information, the interested reader 

should review the cited work and the literature cited therein.

In [41], the optimization approach of [27] is generalized and regularization is used to 

determine Manning’s n from noisy water height measurements using a shallow water 

equation model. In the stated inversion algorithm of [41], the inverse problem is formulated 

as finding a Manning’s n field that minimizes a misfit functional. This requires the 

specification of a regularization parameter and the objective is to find a specific Manning’s 

n field for the specified misfit functional. This is a completely different formulation of the 

inverse problem where the physical map defining the observable data of water heights is 

used in part to define a separate mapping (the misfit functional) over the parameter space. 

Regularization approaches such as this have proven useful in identifying a specific input to a 

model whose corresponding output values are a reasonable match, in some norm, to the 

observable data. However, the misfit functional, by design, has a completely different 

contour structure from the physical map we consider in order to produce a so-called 

“unique” answer to the inverse problem.

In [29, 30], Bayesian approaches are used to determine posterior distributions of Manning’s 

n from noisy water elevation data. Both of these works discuss methods for using and 

accelerating MCMC to sample form the posterior distribution and deal with the so-called 

hyperparameters defining prior distributions. The posterior distribution is defined as a 

conditional probability density using a likelihood and prior that, under certain assumptions, 

has an implicit connection to regularization [42]. Furthermore, the likelihood involves the 

treatment of the physical deterministic map Q as a statistical map where a probability 

density is implicitly defined over Λ by considering discrepancies in the map Q from 

observed data. This is fundamentally different than imposing uncertainty in the form of a 

probability density on the range of Q. The contours of a probability density defined by 

discrepancies are entirely dependent on the form of the specified density not on the actual 

physics defining the map Q. Moreover, the posterior is treated typically as an “update” to 

prior information (e.g., see Fig. 9 in [29] and Figs. 14–16 in [30]). This is often done for the 

same purpose as regularization approaches, which is to identify a single parameter 

maximizing the density (corresponding to a minimization of a misfit functional). As with 

regularization, Bayesian approaches have proven extremely useful at identifying specific 

input parameters with desired characteristics that explain specific sets of observable output 

data. However, the contours of the posterior distribution have a completely different 

interpretation than the contours of the physical map on which we build a non-parametric 

probability distribution.
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We note one consequence of the set-valued nature of the inverse of the forward map is that 

there are an infinite number of probability structures that will give the same output [23]. 

Consequently, using the output to quantify the accuracy of a computed inverse solution is a 

relatively weak metric in comparing these different methods. Further complicating direct 

comparisons of solutions obtained by these approaches is the fact that the underlying 

mathematical formulations are fundamentally different leading to solutions with different 

interpretations.

4.6. Numerical approximation of the inverse probability distribution in Λ

We now adopt (4.8) in the iterated integral (4.7). Formally, this means that we compute 

PΛ(A) for any event A in Λ by evaluating (4.7). In this section, we review the numerical 

aspects of this computation and refer to [23, 24, 25, 26] for more details. We finish with an 

interpretation of the computational algorithm in the context of the Manning’s n problem.

There are two key aspects to approximating an iterated integral over a set, namely dealing 

with the geometry of the set and evaluating the integrand. We can handle both 

simultaneously using the standard measure theoretic technique of simple function 

approximations which are defined as piecewise constant functions on a specified collection 

of measurable sets.

Generally, evaluating any iterated integral over a set with a non-Cartesian geometry is 

difficult. Evaluating (4.7) is made more complicated by the generally complex geometries of 

the TP representing ℒ and the generalized contours, even assuming those structures have 

been approximated. Moreover, a number of applications involving use of an inverse 

probability distribution require computing the probability of a large number of events. A 

way to deal with these issues is to use the fact that an integral of a function f over Λ can be 

written as a sum of integrals,

over a (discretization) partition of Λ consisting of a collection of subdomains 

that form a nonoverlapping partition of Λ, i.e. Λ = ∪j j and i ∩ j = ∅ for i ≠ j. We note 

that each j is a measurable set.

With a partition of Λ in hand, we can formally evaluate (4.7) for any event A as a sum of 

integrals over . We can deal with complicated geometries by approximating 

(4.7) using either the (outer) sum over the collection of subdomains { j : A ∩ j ≠ ∅} or 

the (inner) sum over the collection { j : j ⊂ A}, provided that the integrals over the 

subdomains are easier to evaluate and the differences between A and these collections have 

small measure.

The second aspect of computing (4.7) is evaluating the integrand, which entails evaluating 

the inverse density function ρℒ on ℒ defined through the inverse and the uniform probability 

density function ρ  along each generalized contour . Since these functions are complicated 
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in general, we use piecewise constant approximations defined with respect to partitions of 

small cells over which the densities are not expected to vary much.

These observations suggest that it might be necessary to construct a number of partitions, 

namely for Λ, ℒ, and each of the generalized contours. Fortunately, we can construct 

partitions of Λ that can be used to approximate sets in Λ, ℒ, and each generalized contour 

event simultaneously. This is based on the fact that any open set in ℝn can be approximated 

arbitrarily well (in measure) by a collection of generalized rectangles defining “boxes” [40] 

(see Fig. 8).

Further considerations are required for the numerical evaluation of ρℒ in the part of the 

integral (4.7) along ℒ and the uniform probability density function ρ  along each 

generalized contour . Recall that ρℒ is defined as the density induced by the map Q 

through (4.3), so that evaluating ρℒ formally involves computing integrals ∫Q(A) ρ (y) dy for 

events A ⊂ ℒ. To do this numerically, we also construct a discretization partition 

of  and compute approximations of the associated probabilities pk = ∫Dk ρ (y) dy. This 

yields the approximations such as,

We approximate ∫ ∩A dx on a given generalized contour  by using the ratio of the measure 

of the cells j that intersect  ∩ A to the measure of the cells that intersect .

Finally, we touch on an important computational point. The approximation of open sets by 

collections of boxes is theoretically important in any finite dimension, but is 

computationally important only in low dimensions. The reason is that the number of cells 

required to partition the unit cell in ℝn increases exponentially with the dimension n, which 

is a form of the well known “curse of dimensionality”.

The classic way to deal with this dimension dependence is to use a Monte Carlo 

approximation since the choice of the random sample points is not tied to a Cartesian 

geometry. However, for the solution of the stochastic inverse problem, it is essential to tie 

Monte Carlo approximations of integrals to the approximation of events in Λ. This 

connection is provided in stochastic geometry [43, 44], which studies the properties of 

stochastic partitions of a domain based on collections of randomly chosen points in Λ. A 

collection of points  in Λ determines a Voronoi tessellation [43] . This is 

the collection of cells whose sides are, roughly speaking, determined as segments that lie 

equidistant between neighboring points λ(j) and λ(i) (see Fig. 9). A fundamental 

approximation result is that we can approximate events in Λ using such collections.

However, constructing Voronoi tesselations in high dimensions is also prohibitively 

expensive. So the key for practical numerical computations is to construct approximations 

that exploit the approximation properties of the tesselations implicitly but do not require 

explicit construction of the cells.
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We summarize the numerical approximation for the inverse probabilities in Algorithm 1. 

With the approximate probabilities {ρ̂
Λ,j}, we can construct approximate density plots for 

the inverse density and compute approximations, for example the inner sum,

We can also search for regions of highest probability.

Algorithm 1

Numerical Approximation of the Inverse Density

Choose points  implicitly defining the partition  of Λ.

Assign values Qj = Q(λ(j)) for points λ(j), j = 1, … N.

Choose a discretization partition  of .

Compute approximations pi ≈ ∫Ii ρ (y) dy, i = 1, …, M.

Let i = {j : Qj ∈ Ii}, i = 1, …, M.

Let j = {i : Qj ∈ Ii}, j = 1, … N.

Let Vj be an approximate measure of j, j = 1, …, N.

for j = 1, …, N do

Set ρ̂
Λ,j = (Vj/∑k∈ j

 Vk) p j.

end

In the context of the Manning’s n problem, the first step of Algorithm 1 corresponds to 

choosing a set of possible Manning’s n fields. The second step involves solving the model to 

determine the maximum water heights associated with each of these Manning’s n fields. The 

third and fourth steps involve computing an approximation to a prescribed probability 

density on the maximum water height data. The specification of i and j corresponds to 

determining the approximating set of all Manning’s n fields that map to the same set of 

water height data. The for-loop uses these approximations to compute the probability 

associated to each sample of a Manning’s n field and its implicitly defined Voronoi cell.

5. Defining the parameter domain Λ

We stress the importance of precisely defining the relevant parameter domain Λ. This is 

generally more complicated than it might first appear, since it involves consideration of 

physical properties of the system. After presenting an example to illustrate the importance, 

we discuss the choice of domain for the Manning’s n parameter field.

We first consider the simple model (4.1) plotted in Fig. 2. The model is valid on all of ℝ2, 

and on ℝ2, the model has the property that the lengths of the contours increases 

monotonically as the distance from a fixed set  containing (.5, .5) and (1.5, 1.5) increases. 
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However, when we restrict the model to Λ = [0, 2] × [0, 2], the effect is to “cut off” parts of 

the longer contours, and after some critical distance away from , the length of the contours 

contained in Λ actually decreases as the distance from  increases. This leads to the 

increase in the probability density in Λ near the corners (0, 2) and (2, 0) evident in Fig. 7.

This is an example of the complicated effect that the specification of Λ can have on the 

inverse probability distribution PΛ. In general, defining the appropriate domain Λ is a 

critical part of formulating the stochastic inverse problem4.

5.1. A mesoscale representation of Manning’s n

Manning’s n is a field that varies spatially with the land type and physical conditions. High 

resolution images, see Fig. 10, show the fine scale changes of land type in a typical coastal 

region.

Since the changes in land type are discrete at a sufficiently fine scale, Manning’s n can be 

represented in terms of coefficients with respect to a basis for a finite dimensional space of 

functions. Upon substitution of a chosen representation for Manning’s n into a 

hydrodynamic model (Eq. 2), the coefficients in the representation define the finite 

dimensional set of parameters input into the model. In this formulation of the forward model 

(Eq. 2.2) Manning’s n is time-invariant and constant with respect to the flow characteristics 

within a particular simulation.

However, a pointwise accurate representation of Manning’s n generally requires a very high 

number of degrees of freedom. In fact, Manning’s n typically varies on a spatial scale that is 

much finer than the scale of the cells that can be used for numerical discretization of a 

hydrodynamic model. In other words, a typical discretization cell for a numerical solution of 

the model contains a variety of land types. Consequently, representations of Manning’s n 

typically are defined using an upscaling procedure that employs local averaging.

We employ a standard representation. We construct a triangulation of the spatial domain for 

the model, consisting of a collection of triangles  that form a nonoverlapping 

partition of Ω, i.e. Ω = ∪jTj and Ti ∩ Tj = ∅ for i ≠ j, and represent Manning’s n as a 

continuous piecewise linear function on Ω that is linear on each triangle Tj. If we employ the 

nodal basis ϕj for the continuous piecewise linear functions on the triangulation, we may 

then define Manning’s n in terms of the set of M nodal values  or equivalently as the 

vector n ∈ ℝM.

It is quite common to encounter computations in which the triangulation used to represent 

Manning’s n is the same triangulation used to discretize the hydrodynamic model. However, 

this choice introduces both significant theoretical and computational issues with respect to 

formulating and solving the hydrodynamic model. Roughly speaking, unless the spatial 

discretization is sufficiently fine so as to resolve the variation in Manning’s n pointwise, we 

significantly change the hydrodynamic model being solved with each change of the spatial 

4A related point arises in the choice of parameterized distributions. For example, it is inherently inconsistent to assume a Gaussian 
distribution for parameters confined to a bounded set by physical considerations
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discretization mesh. One consequence is that it is impossible to carry out convergence 

studies. We illustrate with a numerical example below in Sec. 8.

Hence, we fix the mesocale triangulation used to represent the Manning’s n field. Moreover, 

we refine the mesoscale triangulation to construct the discretization triangulation used to 

compute numerical solutions of the hydrodynamic model. This provides both computational 

efficiency in evaluating the Manning’s n parameter in solving the hydrodynamic model and 

predictable numerical behavior in the computed hydrodynamic solutions.

5.2. Defining the parameter domain Λ

The available data for Manning’s n consists of empirically determined intervals of values for 

common land (bottom type) classifications, e.g., see Table 1. The ranges are assigned to 

individual cells in a pixelated version of a high resolution image such as Fig. 10. Ranges for 

values at pixel cells corresponding to underwater locations cannot be observed by such 

images and may be determined by expert opinion.

A typical mesoscale cell in the Manning’s n representation encompasses several pixel cells. 

To obtain a range for the nodal value of the representation at a mesoscale grid point, a 

convex average is employed, see [47, 46]. At each node in the mesoscale mesh, we define a 

rectangle using the maximum and minimum planar coordinates of the centroids of the 

mesoscale triangles sharing that node, see Fig. 11.

We compute the nodal Manning’s n value as the average Manning’s n value within the grid 

scale based on the land classification pixels. Hence, the Manning’s n value at the jth node in 

the mesh is

(5.1)

where ai is the number of pixels (outlined in green in Fig. 11) within the grid scale at the jth 

node for the ith land classification, λi is the Manning’s n value associated with land type i, m 

is the number of land types, and . This spatial averaging process is a convex 

linear map from the Manning n values  associated with each of the m land 

classification types to the mesoscale Manning’s n field. Given bounds for each λi, we obtain 

the domain Λ. We describe a computationally useful parameterization of the mesoscale 

Manning’s n field over Λ in Sec. 7.

6. Characterizing the condition of the stochastic inverse problem

In this section, we investigate characteristics of the quantities of interest for the stochastic 

inverse problem that impact the accuracy of numerical solutions. Recall that in the solution 

of a linear square system of equations, there is a unique solution when the matrix is 

invertible. However, the accuracy of a numerical solution generally depends on the 

condition number of the matrix. Analogously, the difficulty in computing accurate numerical 

solutions of the stochastic inverse problem depends on a “skewness” property of Jacobian of 

Q that plays the role of a condition number for the stochastic inverse problem.
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6.1. Geometrically distinct quantities of interest

We first consider the abstract stochastic inverse problem. Recall that the generalized 

contours exist as manifolds of dimension m − d in Λ under suitable conditions on the map 

Q : Λ ⊂ ℝm →  ⊂ ℝd. These conditions are discussed in more detail below.

To explain the idea, we first consider an example of a linear map Q represented by a d × m 

matrix. If Q has full rank d, so the rows of Q are linearly independent, then the generalized 

contours exist as m − d dimensional hyperplanes in Λ ⊂ ℝm. On the other hand, suppose Q 

does not have full rank, say the last row is a linear combination of the other rows. Then, 

each generalized contour is a hyperplane of dimension m − d + 1 and we may as well 

consider the map Q̃ obtained by deleting the QoI defined by the last row of Q. Thus, we 

assume that the chosen QoI form a linearly independent set of functionals.

Extending this idea to nonlinear maps is based on local linearization:

Definition 6.1—The component maps of the d dimensional map Q are geometrically 

distinct (GD) if the Jacobian of Q has full rank at every point in Λ.

This implies that the map obtained by linearizing Q at a point has linearly independent rows. 

Under this assumption, we can prove that the generalized contours exist as m − d 

dimensional manifolds and the TP exists as a d dimensional manifolds [26].

6.2. Condition of the numerical solution of the stochastic inverse problem

As with the property of geometrically distinct, the condition of the inverse problem with 

respect to Q is an issue involving the dependencies among the d vectors comprising Q. In 

this section, we fix a TP for ℒ and restrict Q to ℒ to get the invertible map Qℒ from ℒ to .

We begin by reviewing the relation between determinant and measure (volume). Assume 

that a set of d-dimensional vectors υ1, ⋯, υd is given. If we consider the linear 

transformation from ℝd to ℝd defined by the matrix V whose columns are the vectors {υ1, 

⋯, υd}, then

(6.1)

for any cube A ⊂ ℝd, where V A denotes the image of A under V and μ is the Lebesgue 

measure (volume) in ℝd.

We relate this to the degree of skewness introduced by the map V. For i ≤ d, let Pa(υ1, υ2, 

⋯, υi) denote the parallelepiped determined by m-dimensional vectors υ1, ⋯, υi,

We use μ(Pa(υ1, υ2, ⋯, υi)) to denote the measure (volume) of the parallelepiped as an i-

dimensional object. Then, det V = μ(Pa(υ1, υ2, ⋯, υd)). Below, we use | · | to denote the 

standard Euclidean norm. A fundamental decomposition is
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Theorem 6.1—[48] Given m-dimensional vectors υ1, ⋯, υd, there exist vectors 

such that

(6.2)

(6.3)

We note that if , then the image of a generalized cube is a parallelepiped that is 

significantly skewed in a direction perpendicular to , see Fig. 12.

Returning to (6.1), the map V can decrease volumes both by simple scaling and by inducing 

skewness. Scaling does not affect the numerical solution of the inverse problem, but 

skewness does. For this reason, we define a measure of skewness.

Definition 6.2—For vector υi, we define

where the definition is independent of the particular representation (6.2). Then we define

By induction, we can find vectors  and  such that

The interpretation is that there exists a generalized rectangle with orthogonal sides of length 

, |υd| having the same measure as Pa(υ1, υ2, ⋯, υd), see Fig. 12. We can 

order the vectors so

For simplicity of exposition, we consider the situation in which the quantities of interest 

almost fails the assumption of geometrically distinct in the sense q1 is almost linearly 

dependent on q2, ⋯, qd. To be precise,

Assumption 1—We assume skew (Qℒ) = skew (Qℒ, q1) ≫ skew (Qℒ, q2) and μ(Pa(q2, ⋯, 

qd))/|q1|d−1 = O(1).
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Roughly speaking, the image of a generalized cube under V is a parallelepiped with a 

relatively “fat” base and a small height caused by severe skewness. We set ε = (skew (Qℒ, 

q1))−1 and Vd−1 = μ(Pa(q2, ⋯, qd)).

Note that the dimension of the sides of the generalized cube cells in a discretization of 

must be much smaller than  to avoid a poor set approximation of , see Fig. 13. 

Thus, we assume that the cells in a discretization of  have size γε|q1|, where 0 < γ ≪ 1. 

The measures of such cells is γdεd|q1|d.

Next, we consider the discretization of ℒ. To avoid errors in computation of the inverse 

images of cells in , we assume that each cell in a discretization of ℒ is associated to only 

one cell in the discretization of . Applying the fundamental decomposition to the image of 

a generalized cube cell of measure σd under Q, we obtain a skew parallelepiped with 

measure σdε |q1| Vd−1. Thus,

and the measure of the cells in the discretization of ℒ satisfies,

This implies that the number of sample values required to compute the inverse distribution is 

proportional to

(6.4)

We conclude that the number of samples required increases dramatically as the skewness of 

the map Qℒ increases.

In the nonlinear case, we first partition ℒ into a cover of nonoverlapping cells { i} such that 

on i, Qℒ(λ) ≈ JQℒ (xi)λ, for some point xi ∈ i. We then apply the linear result to JQℒ (xi) 

to find that a discretization of i requires the number of cells to be proportional to

The conclusion is that the number of samples implicitly defining the cells partitioning Λ in 

Algorithm 1 is proportional to

This arises entirely from the skewness induced by the map Qℒ.
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We illustrate this argument with a simple example. Consider the linear map Q with matrix

(6.5)

where 0 < ε ≤ 2, applied on the domain Λ = [0, 1] × [0, 1] × [0, 1]. The map Q is full rank, 

but it becomes closer to being deficient as ε approaches zero. The range  of Q is the 

parallelepiped in ℝ2 defined by the nodes {(0, 0), (1, 1), (0, ε), (−1,−1 + ε)}, see Fig. 14. As 

ε decreases, the map Q increasingly skews the image of a cube.

The inverse problem Qλ = q has solutions consisting of line segments in Λ that are 

perpendicular to the coordinate plane (λ1, λ2). We can take ℒ = [0, 1]×[0, 1] in the 

coordinate plane (λ1, λ2). On ℒ, Q reduces to the matrix

Evaluating (6.4), we conclude that the number of samples required in Algorithm 1 of the 

stochastic inverse problem is proportional to γ−2ε−1.

6.3. Condition of the forw ard prediction problem

The measure of the range of the output of the forward prediction model depends on the 

measure of the domain of possible input values. In general, a range with larger measure 

corresponds to a large range of possible outcomes, and hence less precision in predictions of 

the outcome. In the scientific inference problem, the measure of the domain of possible 

input values, determined by the stochastic inverse problem, also depends on the skewness of 

the model. If the model for the stochastic inverse problem has large skewness, then det JQℒ 

is small. This implies that

is large, for any small cell B in , where the Jacobian is evaluated at a point in B. Thus, even 

if the observed values for the output of the model are confined to a range of small measure, 

the corresponding set of inverse values has large measure. This in turn implies that the 

measure of the corresponding range of the predication may be large.

7. Computational issues

We fix the mesoscale representation of Manning’s n field with M nodes in the mesh and 

assume there are m land classification types. We use n to denote the values of the mesoscale 

representation at the nodes. We define m linear ℝm maps  from a value associated 

with each land classification type in the domain to the mesoscale Manning’s n field, so that
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(7.1)

Thus, bi defines the relative contribution of the Manning’s n value associated to land 

classification i at each node in the mesoscale mesh. Eq. (5.1) implies that the jth component 

of bi is equal to ai/N, where ai is the number of pixels for the ith land classification type 

within the grid scale of the jth node, and N is the total number of pixels within the grid scale 

of the jth node. This implies that  defines a parameterization of the mesoscale 

Manning’s n field n in (5.1). Fig. 15 shows an example of the parameterization vectors for 

three land types with λ1 = 0.142, λ2 = 0.161, and λ3 = 0.012 for an inlet domain.

We construct the parameterization vectors with a Python wrapped version of GridData [47]. 

We developed the Python packages PolyADCIRC [49] and BET [50] to sample Λ efficiently 

either on regular grids, with uniform random sampling, or adaptively. Specifically, 

PolyADCIRC runs batches of P(arallel)ADCIRC simulations, where the number of 

simulations per batch and number of processors is user determined. Load balancing is 

handled automatically. The BET package then processes the results using Algorithm 1 to 

compute the approximation to PΛ and provide visualizations of results. See Appendix 

Appendix A for more details.

8. Numerical experiments

In the following set of experiments, we investigate the selection of “effective” quantities of 

interest for determining the Manning’s n parameters in a hydrodynamic model based on 

observations of maximum water elevations from a number of possible observation stations.

8.1. The physical domain

We consider an idealized inlet with sloped bathymetry, see Fig. 16. The left boundary is an 

open ocean boundary with a M2 tidal amplitude of 1.2 [m2/s] entering the domain normal to 

the boundary. The remainder of the boundary is a land boundary (u · n = 0 and no slip). An 

earthen jetty acting as an obstacle to tidal flow extends from y = 1500 [m] along the y-

coordinate into the domain between x = 1420 [m] and 1580 [m].

8.2. Input parameters

We consider two cases. We first fix the length of the earthen jetty to be y = −1050 [m]. 

Therefore, Λ = [0.07, 0.15] × [0.1, 0.2] is defined by λ1 and λ2 for the parameterization 

vectors of the Manning’s n field shown in Fig. 15. In the second case, we also allow the 

length of the earthen jetty in the y-direction to vary in [−1500, 1500] (m), giving Λ = 

[−1500, 1500] × [0.07, 0.15]× [0.1, 0.2], where we let λ1 denote the length in the y-direction 

of the earthen jetty and λ2 and λ3 denote the Manning’s n values for land classification types 

1 and 2, respectively.
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8.3. The potential quantities of interest

We construct the QoI vector with components given by the maximum elevation recorded at 

a selection of 2 from 12 possible observation stations shown in Fig. 16. The condition of the 

resulting QoI depends strongly on the physical locations of the stations in the pair and the 

purpose of the experiment is to investigate the condition of the QoI for various choices. For 

simplicity, we always fix the first component of the various QoI to be the maximum 

elevation q1 at station 1 and allow the second component to vary among stations 2 – 12.

8.4. Resolution of the Manning’s n representation and numerical solution

As mentioned, a mesoscale representation of Manning’s n is often defined on the finite 

element mesh. Since we are modeling the flows at a scale where both the assumptions 

justifying the validity of the SWE and the finite element mesh has adequately resolved 

variability in parameters, significant numerical errors can arise with this choice. In our 

approach, we use a finite element mesh obtained by refinement of the mesoscale mesh, see 

Fig. 16. The resulting QoI maps are noticeably smoother than those obtained using the 

common choice, see Fig. 17. Using the refined finite element mesh results in QoI values 

shifted by approximately 0.5 [m] throughout the entire parameter domain, and the slopes of 

the contours are substantially different. The unrefined finite element mesh does not 

sufficiently resolve the earthen jetty nor the varaiblity in the parameters which is on a 

similar physical scale as the earthen jetty. Refining the finite element mesh aqdeuately 

resolves these features.

In the first case where Λ = [0.07, 0.15]×[0.1, 0.2], we compute the QoI values on a regular 

21 × 21 grid of Λ. For the second case where Λ = [−1500, 1500] × [0.07, 0.15] × [0.1, 0.2], 

we compute the QoI values on a regular 21 × 21 × 21 grid of Λ. Both sets of these 

simulations were run on Lonestar Linux Cluster at the Texas Advanced Computering Center 

(TACC) at The University of Texas at Austin. Each compute node of Lonestar contains two 

processors for a total of 12 cores and 24GB of memory per node [51]. A PADCIRC 

simulation of a single sample λ ∈ Λ running on a single node with four MPI tasks takes 

about 90 seconds to run to completion.

8.5. Results for a fixed jetty length

Inverse problem—In Fig. 18, we show representative plots of  ≔ Q(Λ) = (q1(Λ), qk(Λ)) 

for k = 2 and k = 6. Recalling Fig. 14, the left plot shows an example of a badly conditioned 

QoI map relative to the well-conditioned QoI shown in the right plot. The QoI for k = 1 and 

3 are similarly ill-conditioned while the QoI for the rest are more or less well-conditioned.

We define and solve a total of 6 stochastic inverse problems for different ρ  determined 

from the three choices of reference QoI values and the two QoI maps shown in Fig. 18. For 

each problem, we choose ρ  to be a piecewise constant function with support on small 

rectangles centered at the reference QoI values. We solve the inverse problem to obtain p̂Λ,j 

for the Voronoi cells defined by regular sampling of the QoI map. We use kernel density 

estimation to smooth the resulting density approximation.
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Figures 19–21 show the resulting approximate probability densities ρΛ and marginals for 

each of the stochastic inverse problems. We see that using the better conditioned QoI map 

results in densities with smaller support in Λ, which can have a large effect on the precision 

of predictions. We note the similarities in the contours of the densities resulting from 

inverting ρ  for Q = (q1, q2) to the contours of the map defined only by q1 seen in the 

righthand plot of Fig. 17. Since q2 coincides very closely with q1, the resulting inverse 

densities appear as if the geometric information contained in the generalized contours of 

only q1 (or q2) exclusively was used to construct the inverse density. In Fig. 22, we show the 

inverse density and marginals resulting from an inversion using only Q = (q1) where the 

density ρ  was defined by the projection of the density used for the map Q = (q1, q2) with 

reference parameter λ = (0.107, 0.106). Comparing Fig. 22 to Fig. 19, we observe that the 

addition of QoI q2 fails to significantly change the inverse density obtained by inverting q1.

Predictions—The water entering the inlet flows around the bottom of the earthen jetty 

located at y = −1050 [m] and extending from x = 1420 [m] to 1580 [m] (see Fig. 16). An 

interesting and important forecasting problem is to determine the time of inundation of 

critical physical locations within the domain, e.g. the time of inundation near or on physical 

barriers. With the same model setup, we consider the goal of predicting the time of 

inundation of points near the bottom of the earthen jetty. Specifically, we consider 

predicting the time of inundation at two points located at (x1, y1) = (1593.75, −1087.5) and 

(x2, y2) = (1593.75, −1012.5) corresponding to the nearest nodal points of the finite element 

mesh to the right of the earthen jetty and equally spaced below and above the bottom of the 

jetty.

We consider the predicted times of inundation for the Manning’s n parameters defining the 

regions in Λ containing the largest density values accounting for 95% of all the probability. 

We also forecast the time of inundation using the reference parameter value. We summarize 

the results in Table 2 where the time is written as hours:minutes:seconds referenced to the 

initial model run time. We see that using the better conditioned QoI map for determining an 

inverse density results in prediction intervals substantially smaller than the poorly 

conditioned QoI map. At (x1, y1) and (x2, y2) the prediction intervals from the poorly 

conditioned QoI map are approximately 126% and 794% larger, respectively, than for the 

better conditioned QoI map.

8.6. Results for varying jetty length

We let Q = (q1, q5). As before, we define ρD as a uniform density on a small rectangular box 

centered at a reference QoI value associated with the reference parameter λ = (−600.0, 

0.073, 0.119). The marginal density plots are shown in Fig. 23. All of the QoI maps are 

poorly conditioned, yielding density plots almost identical to those shown in Fig. 23. For 

example, using Q = (q1, q5, q2) produces what appears to be a 2-D manifold embedded in 

the set defined by q1(Λ) × q5(Λ) × q2(Λ). In other words, it appears that q2 can be written as 

a function of q1 and q5 implying it adds almost no useful information for the inverse 

problem.
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Since the QoI map is 2-D while Λ is 3-D, the generalized contours are now 1-D curves 

embedded in the 3-D parameter space. We observe the affects of the generalized contour 

geometry on the density plots where any increase in the support of a marginal density is a 

consequence of the increased dimension for the parameters. The QoI map appears to be most 

sensitive to the length of the earthen jetty given the shape of the marginal densities (i.e., the 

normalized tangent vectors of the 1-D generalized contour curves have smallest component 

in the λ1 direction). This is not surprising since the length of this jetty has the greatest affect 

on restricting the flow of water that reaches station 5 (and thus the value of q5, see Fig. 16).

9. Conclusions

We formulated and numerically solved a stochastic inverse problem involving spatially 

heterogeneous Manning’s n fields using maximum water elevation data obtained from the 

ADCIRC model. A novel measure-theoretic framework and computational algorithm was 

used based on the author’s previous work [23, 24, 25, 26]. However, this previous work did 

not address the condition of the inverse problem defined in terms of the skewness of contour 

events. This issue was explored thoroughly in this work. In Section 6, a numerical analysis 

demonstrated how poor conditioning leads to more samples in Algorithm 1 in order to 

accurately estimate events in the parameter space. In the numerical experiments, the 

condition of the inverse problem was explored in the context of the effect on the scientific 

inference problem. Specifically, poorly chosen quantities of interest lead to a solution of the 

inverse problem such that predictions based on this solution have reduced precision.

10. Future work

We have demonstrated the utility and highlighted some of the challenges of solving the 

stochastic inverse problem for quantifying uncertainty in Manning’s n coefficients with 

ADCIRC within a measure-theoretic framework. We plan to develop goal-oriented adaptive 

sampling techniques to obtain reasonable estimates of PΛ as we progress to higher 

dimensional probability spaces. Since many computational models are also computationally 

expensive another goal of the adaptive sampling is the produce reasonable estimates of PΛ 

for specific events of physical importance given limited samples. This will require sampling 

strategies that utilize computed estimates of skewness to optimally place samples within 

specified events. We also are investigating algorithms for determining the optimal sets of 

QoI from large data sets (e.g. as results from time series data) using skewness metrics. We 

plan to apply these mesure-theoretic parameter estimation techniques to a hurricane 

simulation using a subdomain implementation of ADCIRC on a complex physical domain. 

We will focus on coastal areas vulnerable to hurricanes (e.g. Southern Louisiana, 

Southeastern Texas, or the New York and New Jersey coasts). Hurricane simulations on 

meshes fine enough to resolve inundation are computationally expensive. Thus, we plan to 

employ a recently available subdomain implementation of ADCIRC [52, 53, 54] to reduce 

simulation time and allow us to focus on specific areas of interest rather than on the 

significantly larger domain required for hurricane simulations.
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Appendix A. Software Packages for Numerical Solution

We developed the Python package BET [50] to solve stochastic inverse problems 

formulated in the measure-theoretic framework described in this paper. We developed the 

Python package PolyADCIRC [49] to be interfaced with BET in order to solve the 

stochastic inverse problem for general ADCIRC parameter fields. Both Python packages 

utilize a number of Numpy, Scipy, and various packages from the Python Package Index. 

The BET package is designed to handle every step of Algorithm 1 with a variety of 

subpackages, modules, and methods that are called using simple Python scripts to (1) define 

and sample Λ efficiently, (2) query the computational model to obtain the associated QoI, 

(3) compute the approximate probability measure, and (4) visualize results. The 

PolyADCIRC package is designed to efficiently interface between the BET package and the 

P(arallel)ADCIRC simulations in an HPC environment in order to obtain the QoI associated 

with each input sample, see Figure A.24 for a flowchart describing the basic functionality 

and interfacing of these packages. We provide some more specific details about these 

packages and functionality below.

Butler et al. Page 25

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The basic flowchart for the BET and polyADCIRC packages. The BET package handles 

every step in Algorithm 1 while using the polyADCIRC package to efficiently interface to 

the ADCIRC computational model.

The BET package (on the right-hand side in Figure A.24) is divided into four subpackages 

(1) sampling, (2) loadBalance, (3) calculateP, and (4) vis. The sampling 

subpackage provides the tools to sample the parameter space uniformly, adaptively, or at a 

set of user-defined samples. The sampling subpackage provides modules to efficiently 

sample the forward model and can take into account the most recent QoI values to 

adaptively choose new batches of input parameters. The loadBalance class allows the user 

the option to create an interface that is specific to the model and/or HPC infrastructure in 

order to implicitly construct the maps from parameter samples to the associated QoI, e.g. as 

we do with PADCIRC using the PolyADCIRC package described below and illustrated on 

the left-hand side of Figure A.24. Once the data sets containing parameter and QoI values 

are obtained, they are post-processed using the calculateP subpackage to obtain the 

approximate probability measure using Algorithm 1. Within calculateP is a module 

named simpleFun used to create simple function approximations to P  that are inverted 

according to Algorithm 1. The calculateP subpackage provides several options for 

approximating the volume of the Voronoi cells { i} associated with each parameter sample 

including using various Monte Carlo approximations or more accurate approximations based 

on triangulations of the Voronoi cells. The vis subpackage can be used to visualize the 

approximate probability measure; the approximate data domain, , as in Fig. 18; and the 

parameter domain.

The PolyADCIRC package is divided into three subpackages (1) run_framework, (2) 

pyGriddata, and (3) pyADCIRC. The run_framework subpackage is a prototype of the 

lb_ADCIRC class and will inherit from the loadBalance class. The run_framework 
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subpackage provides the framework to simultaneously run PADCIRC simulations with 

varying Manning’s n and bathymetry fields. The pyGriddata subpackage provides various 

methods and classes to create the parametrization vectors shown in Fig 15 using a slightly 

modified version of GridData (Griddata_v1.32.F90) to map the land classification 

contributions to the computational mesh. GridData is a FORTRAN program originally 

developed by Seizo Tanaka and C.H.Lab at the University of Notre Dame [47]. The 

pyADCIRC subpackage provides the methods and data structures used to interact with and 

alter PADCIRC formatted files. In the numerical examples shown, pyADCIRC creates the 

necessary formatted input files for ADCIRC based on the mesh parameter values returned 

by pyGriddata. Following completion of the model simulations for each batch of 

parameter samples, pyADCIRC reads in the formatted output files and returns the requested 

QoI values. The PolyADCIRC package was originally developed to execute parameter 

sweeps of Manning’s n fields and simple bathymetry alterations; however, it can easily be 

adapted to handle other ADCIRC input parameters such as the location of a canopy or eddy 

viscosity. The PolyADCIRC package was originally developed for TACC HPC systems, but 

it can be easily adapted to run on other Linux based HPC systems.
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Highlights

• A physically relevant inverse problem is solved using a measure-theoretic 

framework.

• Uncertainties in Manning’s n field for a shallow water equation model are 

quantified.

• A new notion of “condition” for the inverse problem is defined and analyzed.

• We use the condition in the determination of effective output quantities of 

interest.
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Figure 1. 
The input space of data and parameters are mapped by the physics-based model to the 

solution space. Generally, different sets of functionals map solutions to quantities we can 

observe and to the quantities we wish to predict. Parameters and data for the model are 

obtained from observable data by solving an inverse problem for the model+observable 

functionals. Information on parameter space is then used to make predictions by “forward” 

computation.
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Figure 2. 
The left plot shows a map from Λ ⊂ ℝ2 to an interval  and corresponding contour curves 

in Λ corresponding to unique points in . The right plot shows the decomposition of Λ into 

a set of contour curves.
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Figure 3. 
The left plot shows a standard indexing of the set of generalized contours by the 

corresponding output values of the map. The middle plot shows the contours indexed by 

distance along a TP representing ℒ. The profile of the map along the TP is shown in Fig. 4. 

The right plot shows the nonlinear coordinate system induced by the contours and TP, where 

xℒ is the distance along the TP and x  is the distance along the contour corresponding to λ.
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Figure 4. 
The left plot is of the profile of the map along the TP from Fig. 3. The right plot shows the 

inverse density along the TP corresponding to a uniform density on .
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Figure 5. 
The left plot shows the inverse density along the TP corresponding to a uniform density on 

. The probability of the contour event shown in red is the integral of the inverse density 

over the event on the TP determining the contour event shown in a darker shade. The right 

plot shows four events in Λ defining the same contour event and hence are assigned the 

same probability by the density on the TP.
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Figure 6. 
The left plot shows the variables used to decompose the integral (4.4). The right plot shows 

the densities along different contours determined using the standard assumption of a uniform 

density. Note the decreased height of the density for the generalized contours that are 

apparently longer.
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Figure 7. 
Plots of the inverse density in Λ corresponding to the example shown in Figures 2, 3, 4, and 

5 under the standard assumption of uniform probabilities along generalized contours.
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Figure 8. 
Events in Λ are discretized using a Cartesian set of cells. This collection simultaneously 

approximates events in Λ, ℒ, and the generalized contours . We show approximations of 

an event A, π(A) in ℒ, and the intersection of a contour with A.
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Figure 9. 
We compare approximations of an event A constructed using a Cartesian set of cells and a 

Voronoi tessellation corresponding to a set of randomly chosen points.
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Figure 10. 
NOAA C-CAP land coverage (http://www.csc.noaa.gov/crs/lca/gulfcoast.html)[45].
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Figure 11. 
The mesoscale triangles sharing the common node (drawn in red) are displayed with black 

lines. The corresponding rectangle used for averaging is displayed as a red dashed rectangle. 

The centroids of the triangles are shown in blue. The pixel cells holding the intervals for the 

land types are outlined in gray and green.
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Figure 12. 
Illustration of Theorem 6.1.

Butler et al. Page 42

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
Skewness affects the size of the cells that can be used to discretize . An enlargement shows 

the part of  not covered by the set approximation.
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Figure 14. 
We plot the image of Λ = [0, 1] × [0, 1] × [0, 1] under the map (6.5) for two values of ε.
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Figure 15. 
Parameterization vectors b1 (top left), b2 (top right) and b3 (bottom left) for a mesoscale 

representation of the Manning’s n field for an inlet domain. The bottom right plot shows the 

representation defined by 0.142b1 + 0.161b2 + 0.012b3. Note that the inlet area (right-hand 

side) is considered a shallow area and two land classification types are heavily mixed 

whereas the deeper (left-hand side) region assigns a single land classification type with a 

lower Manning’s n value as is common.

Butler et al. Page 45

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 16. 
Left: Bathymetry (top plot) of the physical domain Ω (with finite element mesh shown on 

the bottom plot) in Eq. (2) with observation stations marked by circles. Right: The x, y-

coordinates of observation stations in Ω for observing QoI. Observations of a QoI from the 

ith observation station are denoted qi(λ). We examine particular subsets of all the possible 

QoI maps, e.g., Q(λ) = (q1(λ), q5(λ), q12(λ)) or Q(λ) = (q1(λ), q7(λ)).
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Figure 17. 
The map Q(λ) = q1(λ) of the maximum elevation measured at station 1 computed on a finite 

element mesh defined by the mesh used for the mesoscale representation of Manning’s n 

(left) and on the refined finite element mesh shown in Fig. 16 (right). Note that scales, 

smoother response, and change in geometry of the contours resulting from using the refined 

finite element mesh.
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Figure 18. 
The estimated output domain : = Q(Λ) = (q1(Λ), qk(Λ)) for k = 2 (left) and k = 6 (right). 

Comparing to Fig. 14, we see that the left plot indicates a “bad” condition for the inverse 

problem and the right plot indicates a “good” condition for the inverse problem. Three 

reference QoI values associated with (λ1, λ2) = (0.107, 0.106), (0.075, 0.121), and (0.0781, 

0.168) are marked on each plot.
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Figure 19. 
Plots of ρΛ (left) and marginals ρλ1 (middle) and ρλ2 (right) inverting ρ  using Q = (q1, q2) 

(top) and Q = (q1, q6) (bottom). Here, ρ  is defined as a uniform density on a small 

rectangular box centered at the reference QoI values associated with λ = (0.107, 0.106). The 

reference value and its components are illustrated by a black circle in the ρΛ plots and 

vertical lines in the marginal plots.
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Figure 20. 
Plots of ρΛ (left) and marginals ρλ1 (middle) and ρλ2 (right) inverting ρ  using Q = (q1, q2) 

(top) and Q = (q1, q6) (bottom). Here, ρ  is defined as a uniform density on a small 

rectangular box centered at the reference QoI values associated with λ = (0.075, 0.121). The 

reference value and its components are illustrated by a black circle in the ρΛ plots and 

vertical lines in the marginal plots.
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Figure 21. 
Plots of ρΛ (left) and marginals ρλ1 (middle) and ρλ2 (right) inverting ρ  using Q = (q1, q2) 

(top) and Q = (q1, q6) (bottom). Here, ρ  is defined as a uniform density on a small 

rectangular box centered at the reference QoI values associated with λ = (0.0781, 0.168). 

The reference value and its components are illustrated by a black circle in the ρΛ plots and 

vertical lines in the marginal plots.
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Figure 22. 
Plots of ρΛ (left) and marginals ρλ1 (middle) and ρλ2 (right) inverting ρ  using Q = (q1). 

Here, ρ  is defined as a uniform density on a small interval defined by projecting the 

rectangular box used to ρ  for Q = (q1, q2) centered at the reference QoI values associated 

with λ = (0.107, 0.106). The reference value and its components are illustrated by a black 

circle in the ρΛ plots and vertical lines in the marginal plots.
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Figure 23. 
Top: Plots of 2-D marginals ρλ1,λ2 (left), ρλ1,λ3 (middle), and ρλ2,λ3 (right). Bottom: Plots of 

1-D marginals ρλ1 (left), ρλ2 (middle), and ρλ3 (right). Here, ρ  is defined as a uniform 

density on a small rectangular box centered at the reference QoI values associated with λ = 

(−600.0, 0.073, 0.119). The reference value and its components are illustrated by a black 

circle in the top plots and vertical lines in the bottom plots.

Butler et al. Page 53

Adv Water Resour. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Butler et al. Page 54

Table 1

Example ranges of values of LA-GAP Manning’s n coefficient [46].

Class Description Min Max

23 Water 0.015 0.030

4 Saline Marsh 0.020 0.065

3 Brackish Marsh 0.020 0.070

2 Intermediate Marsh 0.025 0.080

1 Fresh Marsh 0.030 0.085

5 Wetland Forest 0.080 0.160
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Table 2

The intervals of prediction for the time of inundation (shown as hours:minutes:seconds) at locations (x1, y1) = 

(1593.75, −1087.5) (first row) and (x2, y2) = (1593.75, −1012.5) (second row). The interval of prediction was 

computed by propagating a 95% probability region determined from the densities in Fig. 19. The intervals of 

prediction are distinguished by different probability regions determined by inverting a density of Q = (q1, q2) 

(second column) and Q = (q1, q6) (third column). The last column shows the reference time corresponding to 

the reference parameter that was used in determining the densities on Q.

(x, y) prediction interval 1 prediction interval 2 Reference time

(x1, y1) [16:36:50, 19:08:56] [18:01:36, 19:08:56] 18:36:58

(x2, y2) [26:35:38, 27:18:52] [27:14:24, 27:19:14] 27:17:08
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