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ABSTRACT

Inhibitory leukocyte immunoglobulin-like receptors (LIL RBs 1–5) transduce signals via intracellular
immunoreceptor tyrosine-based inhibitory motifs that rec ruit phosphatases to negatively regulate immune
activation. The activation of LILRB signaling in immune cel ls may contribute to immune evasion. In addition,
the expression and signaling of LILRBs in cancer cells espec ially in certain hematologic malignant cells
directly support cancer development. Certain LILRBs thus h ave dual roles in cancer biology —as immune
checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and
functions of LILRBs, as well as therapeutic development tar geting them. LILRBs may represent attractive
targets for cancer treatment, and antagonizing LILRB signa ling may prove to be effective anti-cancer
strategies.

Statement of Significance: Activation of LILRB signaling ma y contribute to immune evasion and support
cancer development. The dual roles of certain LILRBs in canc er biology —as immune checkpoint
molecules and as tumor-supporting factors —suggest that LILRBs may represent attractive targets for
cancer treatment.

KEYWORDS: immunoreceptor tyrosine-based inhibitory moti f; ITIM; immunoglobulin-like domain; immune
inhibitory receptor; leukocyte immunoglobulin-like rece ptor subfamily B; LILRB; signal transduction; cancer

INTRODUCTION

Immunotherapy holds great promise for achieving long-
lasting anti-cancer effects. In particular, immune check-
point Programmed cell death protein 1 and ligand 1 (PD-
1/PD-L1) blockade therapies have been successful for treat-
ing a small portion of cancers [1]. Developing approaches
to identify more effective immune checkpoint targets is
essential for successful application of immunotherapy to
a broader range of cancers. Two features of PD-1 may
hint us in these endeavors. First, activation of PD-1 as an
immune inhibitory receptor involves the immunoreceptor
tyrosine-based inhibitory motif (ITIM) and a related
immunoreceptor tyrosine-based switch motif (ITSM) in
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its signaling domains [2]. ITIM consists of six amino
acids (S/I/V/LxYxxI/V/L) [3], and ITSM is defined as
TxYxx(V/I) [4]. The activation of ITIMs typically leads to
the recruitment of tyrosine phosphatases SHP-1 and SHP-
2 or the inositol phosphatase SHIP and the consequent
inhibition of immune cell activation [5–7]. Therefore,
ITIM-containing receptors represent a rich source of
candidates for the next generation of immune checkpoint
proteins. Second, PD-1 is expressed on exhausted T cells
within the tumormicroenvironment (TME).While ongoing
efforts to scrutinize all inhibitory receptors on T cells
are intensive, it is known that some other populations of
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immune cells, such as myeloid cells, are present in the TME
in even larger numbers than T cells and can contribute
to tumor immune evasion. For example, macrophages
are the most abundant immune cell population in tumor
tissues [8]. These immune cells possess the capacity to kill
tumor cells and to prime or reactivate T cells. However,
they become dysfunctional in the TME, turning into
immunosuppressive cells that can support tumor develop-
ment and suppress immune surveillance and attack. These
immunosuppressive cells may include monocytic myeloid-
derived suppressor cells (M-MDSCs), polymorphonuclear
MDSCs, tumor-associated macrophages (TAMs), and
immunosuppressive populations of dendritic cells (DCs),
neutrophils, eosinophils, and B cells [9–14]. Immune
inhibitory receptors on these cellsmay play key roles in their
immunosuppressive functions. Reprogramming, removing,
or blocking trafficking of these immunosuppressive cells
is becoming an attractive anti-cancer therapeutic strategy
[10]. To identify the next generation of immune checkpoint
molecules, it is important to study the biology of ITIM-
containing receptors that are expressed by immune cells in
the TME.
There are more than 100 ITIM-containing receptors

[15], including receptor families [3] such as leukocyte
immunoglobulin-like receptor subfamily B (LILRB),
certain killer cell immunoglobulin-like receptors (KIRs),
and several sialic acid-binding immunoglobulin-like lectins
(Siglecs). These receptors contain extracellular immunoglob-
ulin (Ig)-like domains for ligand binding and intracellular
ITIM domains to negatively regulate activation signaling
in immune cells.
The LILRBs are a group of type I transmembrane

glycoproteins with extracellular Ig-like domains that bind
ligands and intracellular ITIMs that can recruit tyrosine
phosphatases SHP-1, SHP-2, and the inositol phosphatase
SHIP. The LILRB family contains five members LILRB1–
LILRB5 (Fig. 1A), all of which were cloned in 1997
[16–19]. Historically, this family of receptors was also
named as members of CD85, ILT, or LIR family (Table 1).
In 2001, the name LILRB was officially assigned [20].
Because of their immunosuppressive functions, LILRBs
are considered to be immune checkpoint factors [21] and
may play significant roles in human immunity and cancer
development.
LILRBs are primate-specific. The human LILRBs are

encoded in a region called the leukocyte receptor complex
(LRC) at chromosomal region 19q13.4 [16,20,22]. Like
the inhibitory receptor PD-1 [23], the relatives of LILRBs
exist in birds and mammals [24,25], although by phyloge-
netic definition these relatives are not considered LILRB
homologs [26,27]. Paired immunoglobulin-like receptor B
(PirB) [28] and gp49B1 [29] are the mouse relatives of
LILRBs (Fig. 1B). Due to rapid evolution, the expression
pattern and, in some cases, the ligands of these LILRB rel-
atives are different from those of their human counterparts.
Therefore, the PirB or gp49B1 knockout mouse models
are of limited value for building and understanding of the
biology of human LILRBs.
LILRBs are predominantly expressed by cells of the

hematopoietic system. LILRBs may also be expressed by
certain non-hematopoietic cells. For instance, LILRB2

is expressed on neurons, which has been implicated to
regulate axon regeneration and is involved in the pathology
of Alzheimer’s disease [30,31]. LILRBs and a related
ITIM-containing receptor LAIR1 [32–35] are abnormally
expressed by certain cancer cells [36–53]. Overall, the
immune cell-expressing LILRBs have immune inhibitory
functions and thus are indirectly tumor-supportive, and
the cancer cell-expressing LILRBs may directly regulate
cancer development [54].

Similar to regulation of PD-L1 levels by external cues
from TME, the expression of LILRBs can be regulated
by both immunosuppressive and proinflammatory signals.
The expression of LILRB1-4 can be upregulated by
the immunoinhibitory cytokine IL-10 [55–57], and the
LILRB4 level can also be elevated by the immuno-
suppressive hormone vitamin D3 [58,59]. On the other
hand, LILRB2 and LILRB4 are also upregulated by the
proinflammatory cytokines interferon (IFN)-α [60] and
IFN-β [61], analogous to upregulation of PD-L1 by IFN-
γ . Together, such induced increase of LILRB levels may
enhance the immunosuppressive and tumor-promoting
capacities of TME.
We hypothesize that the immunosuppressive myeloid

cells is a key component of TME that inhibits tumor-
specific immune responses and supports tumor devel-
opment, and LILRBs are a major group of inhibitory
receptors that regulate the immunosuppressive function of
these tumor-supportive myeloid cells. Here, we review the
signaling and functions of LILRBs in cancer development.

Leukocyte immunoglobulin-like receptor B 1
(LILRB1)

LILRB1, also known as CD85J, ILT2, LIR1, and MIR7,
contains four extracellular immunoglobulin domains and
four intracellular ITIMs [16,19]. LILRB1 is expressed on
monocytes, macrophages, DCs, eosinophils and basophils,
B cells, T cells, and natural killer (NK) cells, as well as on
in vitro cultured cord blood-derived progenitor mast cells
and osteoclasts [7,16,17,19,54,62–64]. It is themost broadly
expressed member of the LILRB family.

Polymorphic expression of LILRB1

The expression of LILRB1 differs among cell types and
individuals. LILRB1 is expressed uniformly on monocytes,
macrophages, DCs, and B cells. In contrast, LILRB1
expression levels vary significantly on subsets of NK cells
and T cells among individuals [54]. Moreover, LILRB1
can be upregulated on immune cells from individuals with
cytomegalovirus (CMV) [65,66], renal transplant with
CMV infection [67,68], rheumatoid arthritis [69], and late-
stage solid tumors or hematologic malignancies [70–74].
Several mechanisms may explain the polymorphism of
LILRB1 expression: (1) Myeloid cells and lymphoid cells
use distinct promoters to drive the expression of LILRB1.
Myeloid cells use the promoter proximal to the coding
region, whereas lymphoid cells use the 5′ distal promoter
with a sequence that represses protein translation [75,76].
A polymorphic enhancer that interacts with transcription
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Table 1. Summary of ligands and expression of human LILRBs and mouse relatives, and clinical trials of antibodies targeting human
LILRBs

Receptor Alias Ligands Expression Clinical trial

LILRB1 CD85J

ILT2

LIR1

MIR7

MHC-I

UL18

S100A8/9

NK cells

Monocytes

Macrophages

Eosinophils

Basophils

DCs

T cells

B cells

Mast cell progenitors

Osteoclasts

LILRB2 CD85D

ILT4

LIR2

MIR10

MHC-I

Angptls

Nogo66

MAG

OMgp

β-amyloid

SEMA4A

CD1c/d

CSPs

HSCs

Monocytes

Macrophages

DCs

Basophils

Mast cell progenitors

Endothelial cells

Osteoclasts

MK-4830 (Merck) in

phase 1/2 trial

(NCT03564691)

JTX-8064 (Jounce

Therapeutics) in phase

1 trial (NCT04669899)

LILRB3 CD85A

ILT5

LIR3

HL9

Monocytes

Neutrophils

Eosinophils

Basophils

Osteoclasts

Mast cell progenitors

LILRB4 CD85K

ILT3

LIR5

HM18

ApoE

CD166

CNTFR

Monocytes

Macrophages

DCs

Mast cell progenitors

Plasmablasts

Treg cells

Endothelial cells

Osteoclasts

IO-202 (Immune-Onc

Therapeutics) in phase

1 trial (NCT04372433)

Merck announced

phase 1 trial in solid

tumors at an investor

event, although no

listing at clinicaltrials.

gov is disclosed

LILRB5 CD85C

LIR8

MHC-I Monocytes

NK cells

T cells

Osteoclasts

Mast cell granules

PirB MHC-I

Angptls

Nogo66

MAG

OMgp

β-amyloid

HSCs

DCs

Macrophages

Neutrophils

Eosinophils

B cells

T cells

Osteoclasts

Neuronal cells

gp49B1 Integrin αvβ3 Macrophages

Mast cells

DCs

Neutrophils

NK cells

T cells

Microglia

Cardiomyocytes

clinicaltrials.gov
clinicaltrials.gov
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Figure 1. Domain structure of (A) human LILRBs and (B) mouse relatives. Extracellular Ig domains are depicted as circles and intracellular ITIMs are
depicted as boxes.

factor Yin Yang 1 (YY1) [77], and several SNPs located
in the regulatory region and coding region may play roles
in the expression of LILRB1 on NK cells [76]. (2) Among
NK cells, LILRB1 is mainly expressed on CD56dim NK
cells [71,78], especially on terminally differentiated NK
cells that express CD57 or multiple KIRs [79,80]. Adaptive
NK cells, produced in response to viral infection, such as
CMV or HIV infection, also highly express both CD57 and
LILRB1 [81–83]. Similarly, LILRB1 is highly expressed on
CD8 effector memory T cells that re-express CD45RA
[65,69,75,84], a terminally differentiated effector T-cell
subset that expresses CD57 [85]. The percentage of CD57
expressing T cells increases with age and CMV infection
[65]. Differences in the abundance of these LILRB1
expressing NK and T-cell subsets among individuals
may contribute to the differences in LILRB1 expression
levels. (3) The expression of LILRB1 may be induced by
extracellular stimuli. HLA-G is capable of upregulating
LILRB1 expression on NK cells, T cells, and antigen-
presenting cells [86]. Cancer cells [72] andM2macrophages
[87] also can upregulate the expression of LILRB1 on NK
cells when co-cultured in vitro.

LILRB1 ligands

Multiple types of ligands have been identified to interact
with LILRB1, including classical (HLA-A, HLA-B, and
HLA-C) and non-classical (HLA-E, HLA-F, and HLA-G)
major histocompatibility complex class I molecules (MHC-
Is), UL18 (a CMVMHC-I homolog), calcium-binding pro-
teins S100A8/9 andRIFINproteins (parasite gene products
that are expressed on the surface of infected erythrocytes)
[16,88–96]. Antibody-opsonized dengue virus also can co-

ligate LILRB1, which may contribute to the pathogenesis
of dengue infections by inhibiting immune cell responses
[97–99]. Thus, LILRB1 not only regulates the immune cell
functions in response to MHC-I levels but may also be a
target for immune evasion by viral and parasitic infections.
LILRB1 binds to MHC-Is with fast association and

dissociation rates without a large reduction in confor-
mational flexibility at the binding interface. This enables
fast monitoring of the expression level of MHC-Is on
target cells [100]. In competition against CD8, the first
and second Ig-like domains of LILRB1 (D1-D2) interact
with the α3 domain and β2-microglobulin of MHC-Is
and the analogous region of UL18 [88,90,101]. However,
they do not bind β2-microglobulin-free MHC-Is [102,103].
LILRB1 binds flexibly to the α3 domain and binds tightly
to β2-microglobulin [103]. The third and fourth Ig-like
domains (D3–D4) may act as a scaffold [104].

LILRB1 signaling

Upon activation by its ligands, the ITIM tyrosine residues
of the ITIMs of LILRB1 are phosphorylated and recruit
the tyrosine phosphatase SHP-1. SHP-1 inhibits early
signaling events triggered by activating receptors and
subsequently suppresses the functions of immune cells, such
as NK cells [16,17,86,105–111], monocytes, macrophages
[17,112–114], DCs [114–119], T cells [16,17,90,120–129],
and B cells [17,130,131], as reviewed previously [54].
For example, the co-ligation of LILRB1 and activating
receptors such as TCR inhibits TCR signaling and actin
cytoskeleton reorganization [126]. Lck, an Src tyrosine
kinase, is required for ITIM phosphorylation and LILRB1
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activation [126]. Notably, C-terminal Src kinase (Csk) may
also be recruited by the phosphorylation of ITIM tyrosines
of LILRB1 [132] (similar to LAIR1 [36]), whichmay inhibit
the activity of Lck.
On the other hand, activating effects of LILRB1 were

reported in some scenarios [54,93,133–136]. Although
UL18 protein on target cells was able to inhibit the cytolysis
function of NK cells [137], UL18 expressed on CMV-
infected cells showed net activating effects on the IFN-γ
production from NK and T cells [136]. The interaction of
UL18 on CMV-infected cells with LILRB1 on CD8 T cells
enhanced the cytotoxic activities of T cells in a non-MHC-
restricted fashion [135]. Compared to LILRB1− NK cells,
LILRB1+ NK cells showed a greater potency in controlling
of HIV-1 replication in monocyte-derived dendritic cells
(MDDCs) in vitro, which is dependent on NK-DC contact
but not on the cytotoxic activities of NK cells [133]. S100A9
expressed on HIV-1-infected MDDCs is a potential ligand
for the activating function of LILRB1 on NK cells in
controlling of HIV-1 replication [93]. Myeloid DCs from
elite HIV-1 controllers, a small group of HIV-1-infected
individuals being able to maintain undetectable HIV-1 viral
loads without antiretroviral therapy, exhibit higher level of
antigen-presenting activities and expression of LILRB1
and LILRB3 [134]. Inhibition of LILRB1 on MDDCs
attenuated their activities in stimulating allogeneic T cells
and secreting inflammatory cytokines [134]. LILRB1
expressed on certain types of hematologic malignant cells
may also activate immune responses [42,138]. We will
discuss this part in the next section. The mechanism
underlying the activating effects of LILRB1 is unclear.
It was suggested that the activating signaling of LILRB1
derives from a possible ITSM in its intracellular domain
[139]. In certain cases, LILRB1 expressed on target cells
can also induce an immune response [42,138].

LILRB1 in cancer

The cancer-related functions of LILRBs were noted on
both LILRBs expressed on immune cells and on tumor cells
per se. Accumulating evidence suggests that LILRB1 may
be a molecular target for immunotherapy in patients with
cancer. LILRB1 is upregulated on NK cells from certain
cancer patients [70–74]. Furthermore, there is a strong
association between the percentage of circulating LILRB1+

CD8 T cells and the recurrence risk of non-muscle invasive
bladder cancer [140]. Lastly, LILRB1 is also upregulated on
the surface of TAMs [141].
LILRB1 blockade on immune cells can improve their

functions against both solid tumors [73,84,141] and hema-
tologic malignancies [71,74,142]. In particular, LILRB1
blockade enhances the immune responses of NK cells
against solid tumor cells (breast cancers and melanomas)
and cells of blood cancers such as acute myeloid leukemia
(AML), acute lymphocytic leukemia (ALL), chronic
lymphocytic leukemia (CLL), andmultiplemyeloma (MM)
in vitro [71,73,74,142]. Furthermore, LILRB1 blockade
can synergistically promote the functions of immune
cells in combination with other treatments in vitro. For
example, LILRB1 blockade enhances tumoricidal activity
of NK cells in combination with blockade of NKG2A

and KIR [142], activation of NKG2D and CD16 [71,73],
or lenalidomide, an immunomodulatory drug used for
treating MM, MDS, and certain types of lymphoma.
LILRB1 blockade can also improve cytolytic activity
of effector CD8 T cells induced by bispecific T-cell
engagers [84]. Notably, single-cell RNAseq data have
shown that LILRB1 and PD1 receptors are expressed
by distinct CD8+ T-cell subsets in tumors. This result
suggests that the combination of LILRB1 and PD-1
blockade may be required to fully promote the tumoricidal
activity CD8+ T cells [84]. Importantly, Chen et al. [71]
reported that LILRB1 blockade by a specific antagonistic
monoclonal antibody can improve the function of NK
cells against leukemia and MM in vivo as assessed in
xenograft murine models. Besides lymphocytes, LILRB1
blockade has been reported to enhance the anti-CD47-
induced phagocytosis by macrophages against cancer
cells [141].

In addition to immune cells, LILRB1 is also directly
expressed on certain cancer and pre-cancer cells, such as
AML cells (especially monocytic AML cells) [36,143], T-
cell lymphoma cells [43], and neoplastic B cells, includ-
ing B-cell leukemia, B-cell lymphoma, and monoclonal
gammopathy of undetermined significance [41,42,138].
LILRB1 blockade can enhance immune cell responses
against LILRB1-positive cancer cells [71,74,142]. By
contrast, it was also reported that LILRB1 expression
on certain types of hematologic malignant cells increased
their susceptibility to immune cells. LILRB1 expression on
transformedB lymphoid cancer cells improved the cytolytic
function of Vδ2− γ δ T cells in vitro, by interacting with the
MHC-Is on γ δ T cells [42,138]. Lozano et al. [138] reported
that the expression of LILRB1 was lost on activeMM cells,
while remained at higher levels on asymptomatic MUGS
and MM cells in complete remission (CR). Overexpression
of LILRB1 on MM cell lines improved cytolytic functions
of T cells and NK cells in vitro, by interacting with S100A9
[138]. These results suggest that LILRB1 on tumor cells
stimulates immune responses in certain situations. More
studies are needed to determine which cancer patients may
benefit from LILRB1 blockade.

Leukocyte immunoglobulin-like receptor B 2
(LILRB2)

LILRB2, also known as CD85D, ILT4, LIR2, and
MIR10, contains four extracellular immunoglobulin
domains, a transmembrane domain, and three cytoplasmic
ITIMs. It is expressed on hematopoietic stem cells,
monocytes, macrophages, DCs, neutrophils [144,145],
basophils [37,112,146], platelets [147], and activated CD4+

T cells [148], as well as in vitro cultured endothelial cells
[149], mast cell progenitors [63], and osteoclasts [64].

LILRB2 ligands

Known ligands of LILRB2 include classical (HLA-A,
HLA-B, and HLA-C) and non-classical (HLA-E, HLA-F,
and HLA-G) HLA class I molecules [16,104,146,150,151],
class-I like proteins CD1c and CD1d [152,153], comple-
ment split products (including C3b, iC3b, C4b, and C4d)
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[154], Angiopoietin-like proteins (Angptls) [37,155], myelin
inhibitors (including Nogo66, MAG, and OMgp) [30],
β-amyloid [31,156,157], and SEMA4A [148]. LILRB2
binds to HLA class I molecules with kinetics and affinities
in the micromolar range. Unlike LILRB1, the bind-
ing of LILRB2 to HLA ligands does not require β2-
microglobulin [102]. TheD1 andD2 regions of LILRB2 are
responsible for binding to HLA-I [102,104] and β-amyloid
oligomers [156,157]. LILRB2 can bind to HLA ligands
through cis interaction on the same cell [158] or trans
interaction on a different cell. Multimeric Angptls may
be superior to HLA-G in terms of binding and activating
LILRB2 [155]. In contrast to theHLA-LILRB2 interaction
[155], Angptls binding to the D1 and D4 regions of
LILRB2.

LILRB2 physiological functions

LILRB2 plays physiological roles in multiple tissues.
LILRB2 is involved in immunotolerance in pregnancy and
transplantation [159]. HLA-G/LILRB2 interactions pro-
mote accumulation and the suppressive activity of MDSCs
during human pregnancies [159]. LILRB1 and LILRB2
can also mediate graft tolerance by binding to HLA-
G. Elevated HLA-G levels are positively correlated with
better graft acceptance in patients with renal transplants
[160]. Crosslinking of LILRB2 with FcγR in vitro led to
inhibition of FcγR-mediated signaling in monocytes [112]
and serotonin release in basophilic cells [146]. Upregulation
of LILRB2 induced the tolerance of DCs [161]. Interaction
of LILRB2 with HLA class I molecules is positively
associated with viral replication in HIV, suggesting that
this interaction leads to a blunted immune response [162].
HLA-F can bind to LILRB1 and LILRB2 expressed on
antigen-presenting cells and influence susceptibility to and
disease progression of endometriosis [163]. Upregulation
of LILRB2 and LILRB4 in antigen-presenting cells in
response to Salmonella infection suggests a role for these
receptors in balancing the inflammatory response against
bacterial infection [164]. Lu et al. demonstrated that
LILRB2 is expressed on activated CD4+ T cells, and the
binding of SEMA4A to LILRB2 co-stimulates CD4+ T
cells and regulates Th2 differentiation [148]. LILRB2 is
localized in neutrophil lipid rafts and rapidly moves to the
cell surface upon neutrophil stimulation. This upregulated
LILRB2 then enhances the inhibitory signals of HLA-
G on the phagocytic function of neutrophils [144,165].
Our lab has shown that Angptl2 binding to LILRB2
on HSCs supports ex vivo expansion of HSCs, likely
by inhibiting their differentiation [37]. LILRB2 and a
mouse relative receptor PirB are expressed on human
and mouse platelets, respectively. Angptl2, released from
platelet α-granules, binds LILRB2 to inhibit agonist-
induced platelet aggregation and spreading on fibrinogen
[147]. During osteoclastogenesis, LILRB2 is expressed
and activated on immature osteoclasts in vitro [64]. In
neurologic tissues, LILRB2 inhibits axonal regeneration
by interacting with myelin inhibitors [30] and accelerates
the development of Alzheimer’s disease via binding to
β-amyloid [31].

LILRB2 in cancer

LILRB2 on immune cells regulates cancer development
through interaction with its ligands. HLA class I molecules
that are aberrantly expressed in a variety of human
malignant cells interact with LILRB2 expressed on immune
cells. This interaction is involved in tumor immune evasion.
In non-small cell lung carcinoma (NSCLC) and colorectal
cancer (CRC), the feedback loop for HLA-G/LILRB2
expression increases migration and metastasis of tumor
cells [166,167]. In NSCLC cell lines, recombinant human
HLA-G up-regulates LILRB2 expression in a dose-
dependent manner and also activates ERK1/2 [166,167].
HLA-G/LILRB2 promotes CRC progression through
AKT and ERK activation [166,167]. Of note, LILRB2
is also expressed on MDSCs and DCs in the TME of
certain cancers. LILRB2 blockade reprograms TAMs
into a proinflammatory phenotype, suppresses Treg
infiltration, and promotes the efficacy of an immune
checkpoint inhibitor [168]. Antibody blockade of LILRB2
inhibits receptor-mediated activation of SHP-1/SHP-
2 and enhances proinflammatory responses. During
macrophage maturation, LILRB2 antagonism inhibits
AKT and STAT6 activation in response to the treatment of
macrophage colony-stimulating factor (M-CSF) and IL-4
and enhances NFκB and STAT1 activation in response
to LPS/IFN-γ stimuli. Transcriptome analysis revealed
that LILRB2 antagonism alters genes involved in cell
cytoskeleton remodeling, lipid/cholesterol metabolism, and
endosomal sorting pathways and changes differentiation
gene networks to polarize TAMs toward an inflammatory
phenotype [168]. High expression of LILRB2 in DCs pro-
motes DC tolerance, inhibits Th1 and CTL differentiation,
and enhances the generation of type 2 cytokine-secreting
Th2 and Tc2 cells [169,170]. LILRB2 on DCs diminishes
the killing ability of CTLs by competitively binding to
MHC-class I against CD8 or upregulatingHLA-G inCTLs
[171]. These findings suggest that LILRB2 is a promising
myeloid immune checkpoint target.
LILRB2 is also expressed on various types of cancer cells,

including AML (especially the monocytic subtype) [36,37],
some cases of CLL [46], primary ductal and lobular breast
cancer [47], NSCLC [38–40,48], esophageal cancer [172],
CRC [166,173], endometrial cancer [174], and pancreatic
cancer [175]. The expression of LILRB2 in AML cells
[36,37] may directly regulate the cell fates of AML cells
and also inhibit anti-cancer immunity (as LILRB4). In
NSCLC, LILRB2 supports cancer cell development and
survival [38]. LILRB2 is significantly higher expressed in
earlier tumor stages (pT1-2) of both histological subtypes
of squamous cell carcinoma and esophageal adenocarci-
noma [172]. Angptl2/LILRB2 engagement has also been
implicated in sustaining epithelial–mesenchymal transition
during pancreatic ductal carcinogenesis [175]. However,
much further investigation of LILRB2’s roles in cancer is
still needed.

Leukocyte immunoglobulin-like receptor B 3
(LILRB3)

LILRB3, also known as CD85A, ILT5, LIR3, HL9,
contains four extracellular immunoglobulin domains, a
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transmembrane domain, and four cytoplasmic ITIMs.
It is restrictively expressed in myeloid cells, such as
monocytes, granulocytes [176] (neutrophils, eosinophils
[177], and basophils [178]), and DCs, as well as in
vitro differentiated osteoclasts [64] and progenitor mast
cells [63]. There is significant polymorphism in the
gene encoding LILRB3 [179,180]. Polymorphism of
LILRB3 led to development of LILRB3-specific anti-
bodies in 5.4% of hematopoietic stem cell transplant
patients who had different LILRB3 sequences from donors
[17,49].

LILRB3 ligand

No ligand for LILRB3 has yet been identified. The
commonly occurring LILRB3 allele binds to cytokeratin-
8-associated ligand on necrotic glandular epithelial cells.
This result suggests that cytokeratin-8-associated protein
might act like damage-associated molecular patterns
and be recognized by macrophages through LILRB3
[180].

LILRB3 physiological functions

LILRB3 may contribute to the negative regulation of
immune responses. For example, crosslinking of LILRB3
suppresses FcαR-mediated neutrophil activation [12]
and crosslinking of LILRB3 with LILRA2 or FcεRI
in human basophils leads to inhibition of cell activa-
tion [178]. LILRB3 may also inhibit allergic inflamma-
tion and autoimmunity in Takayasu arteritis [181–184],
and LILRB3 acts as an immunosuppressive regulator
during sepsis [185]. The knockdown of LILRB3 in
macrophages increases phagocytosis and antigen pre-
sentation [185], while blockage of LILRB3 facilitates
proliferation and differentiation of T helper cells [185].
LILRB3, together with LILRB2, may mediate the inhi-
bition of monocyte activation by glatiramer acetate
[186].

LILRB3 in cancer

LILRB3 ligation on primary monocytes by antibodies
led to inhibition of immune responses. Effects included
polarization of immunosuppressive M2 macrophages,
inhibition of T-cell proliferation, and suppressed allogeneic
immune response in humanized mice that was engrafted
with allogeneic human B-cell lymphoma cells [187]. In
addition, the polymorphism of LILRB3 may influence
the immune response to tumors [179,180]. LILRB3 is
also expressed on certain myeloid leukemia, B lymphoid
leukemia, and myeloma cells [49]. Inhibition of LILRB3
expression in human leukemia cell lines suppresses cell
proliferation [36]. LILRB3 is co-expressed with stem cell
marker CD34 and myeloma marker CD138. Specific
allogeneic antibodies from hematopoietic stem cell trans-
plant patients against LILRB3 may induce complement-
dependent cytotoxicity and antibody-dependent cell-
mediated cytotoxicity of LILRB3-expressing cancer cells,
which suggests that LILRB3 is a potential therapeutic
target [49].

Leukocyte immunoglobulin-like receptor B 4
(LILRB4)

LILRB4 is also known asCD85K, ILT3, LIR5, andHM18.
This receptor contains only two extracellular immunoglob-
ulin domains, a transmembrane domain, and three ITIMs.
The gene encoding LILRB4 is one of themost polymorphic
receptors with at least 15 known single-nucleotide poly-
morphisms [188]. LILRB4 is expressed on monocytes and
macrophages [16,18,189,190], DCs, plasmablasts [191], and
Treg cells [192], as well as in vitro cultured progenitor mast
cells [63], endothelial cells [193], and osteoclasts [64].

LILRB4 ligands

Unlike LILRB1/2, LILRB4 is conformationally and elec-
trostatically unsuitable for MHC binding [194]. CD166
[195], ApoE [196], and CNTFR [197] were reported to bind
LILRB4.

LILRB4 functions in monocytes

Expression of LILRB4 on monocytes can be upregu-
lated by vitamin D3 [61]. Crosslinking of LILRB4 to
HLA-DR, CD11b, or FcγRIII leads to recruitment of
SHP-1 to LILRB4 and inhibits tyrosine phosphoryla-
tion of downstream cellular signaling, which in turn
inhibits Ca2+ mobilization in monocytes [18]. Crosslinking
of LILRB4 to FcγRI leads to recruitment of phos-
phatases other than SHP-1. This recruitment signifi-
cantly reduces FcγRI-induced TNFα production and
phosphorylation of Lck, Syk, LAT, ERK, and c-Cbl
[198]. These effects are associated with suppression of
FcγRI-dependent endocytosis and phagocytosis [199].
Overall, the inhibitory function of LILRB4 depends on
its ITIMs [200]. In addition, LILRB4 is expressed on
macrophages in atherosclerotic plaques of patients with
coronary heart disease [201]. LILRB4 is also upregulated
in the peripheral blood mononuclear cells of patients with
pulmonary embolisms [202] or pulmonary tuberculosis
[203]. Lastly, LILRB4 can be induced in tolerogenic
MDDCs with a combination of TNFα and poly(I:C)
[204].

LILRB4 functions related to T cells

LILRB4 expression in Treg cells can be negatively regulated
by casein kinase 2, andLILRB4+ Treg cells show attenuated
T-cell receptor-mediated signaling [192]. On the other hand,
LILRB4 from other cell types is capable of inhibiting
activation of T cells. DCs that express high levels of
LILRB4 and LILRB2 promote conversion of alloreactive
CD4+CD45RO+CD25+ T cells to Treg [161]. Increased
expression of LILRB4 and LILRB2 on DCs in kidney
transplant patients promotes allograft survival [205]. In
addition, LILRB4 was reported to inhibit T-cell prolif-
eration [206], protect allogeneic human pancreatic islet
transplantation [207], and prevent graft-versus-host disease
[208]. The inhibition of T cells by LILRB4 is regulated by
secretion of cytokines, such as IL-1α, IL-1β, IL-6, IFN-γ ,
and IL-17A, fromDCs [209], and the transcriptional factor
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BCL6 [210]. Furthermore, LILRB4-expressing monocytic
AML cells suppress T-cell proliferation and activation
[196].

LILRB4 in cancer

LILRB4 is expressed on MDSCs [211], tolerogenic DCs
[212], and TAMs [50] in the TME, which may contribute
to tumor immune evasion. LILRB4 is expressed on both
monocytic and polymorphonuclear MDSCs in human
NSCLC patients. The shorter survival of patients is
associated with a higher percentage of polymorphonuclear
MDSCs with high LILRB4 expression [211]. Expression
of LILRB4 is also inversely associated with survival of
colon cancer patients and T-cell infiltration in the TME
[213]. LILRB2 and LILRB4 are upregulated on tolerogenic
DCs, and anti-LILRB4 antibodies reversed the T-cell
inhibitory effect of these tolerogenic DCs [212]. LILRB4
was found to be expressed on CD103− colonic DCs that
exhibit an enhanced ability to generate T regulatory cells
[214]. LILRB4 is expressed on TAMs in human colon
carcinoma, melanoma, and pancreatic cancer patients.
LILRB4, mainly produced by TAMs, supports cancer cell
escape from immune suppression in humanized mouse
experiments [50].
LILRB4 is also expressed on the surface of several

types of cancer cells. LILRB4 is expressed on monocytic
AML cells and is co-expressed with leukemia stem cell
markers CD34 and CD117 [215]. LILRB4 is also expressed
on CMML and MDS cells [216]. However, it is not
expressed on normal hematopoietic progenitor and stem
cells [143,196,217]. Based on its unique expression and
functions, LILRB4 is the best molecular target among
LILRB members for treatment of monocytic AML.
Antagonistic antibodies targeting LILRB4 [196,218], and
antibody-derived biologics, such as anti-LILRB4 chimeric
antigen receptor (CAR) T cells [217] and anti-LILRB4
antibody–drug conjugates (ADC) [219], may be attractive
therapeutic candidates against AML and other hemato-
logic malignancies. Although LILRB4 is not expressed by
normal B cells, it was detected on plasmablasts and plasma
cells from patients with systemic lupus erythematosus
[60,191] and on antibody-secreting cells in patients with
acute Kawasaki disease [220]. Importantly, LILRB4 is
expressed on chronic lymphoblastic leukemia (CLL)
cells with more lymphoid tissue involvement [46], MLL-
rearranged B-ALL cells [221] and some MM cells [222]. In
addition, LILRB4 is expressed at moderate levels in some
gastric cancer cells and tissues. Together with LILRB1, it
may inhibit NK cell-mediated cytotoxicity against gastric
cancer cells [44]. Moreover, increased expression of a
chicken receptor that is a relative of human LILRB4 on
chicken spontaneous ovarian cancer cells is associated with
tumor development and progression [223].

Signaling pathways of LILRB4 in cancer cells

Other than recruiting SHP-1 in normal monocytes,
LILRB4 expressed onmonocyticAMLcells recruits SHP-2
upon activation by ApoE. LILRB4 further activates NFκB
signaling and promotes its downstream gene expression,

such as uPAR and Arginase-1, to inhibit T cells and
support AML infiltration [196]. Interruption of the ApoE-
LILRB4 interaction with LILRB4-blocking antibodies
promotes T-cell activation and inhibits leukemia cell
migration, suggesting therapeutic applications of anti-
LILRB4 blocking antibodies in monocytic AML patients
[218]. Furthermore, in vitro and in vivo evidence have
shown that intracellular ITIMs of LILRB4 are critical
for leukemia cell infiltration and T-cell suppression [224].
LILRB4 is subject to transcriptional regulation by Vitamin
D [225] and IL-10 [55–57]. In addition, the expression
of LILRB4 on monocytic AML cells is regulated by
RNA m6A methylation [226]. Inhibition of RNA m6A
demethylase sensitizes leukemia cells to T-cell cytotoxicity
and overcomes hypomethylating agent-induced immune
evasion [226]. In addition,monocyticAML, especiallyM5b
AML expressing high level of LILRB4, is more resistant to
the BCL-2 inhibitor [227]. Concordantly, genetic mutation
of SHP-2, which mediates LILRB4 functions in monocytic
AML, is highly associated with the resistance of leukemia
cells to the BCL-2 inhibitor venetoclax [228]. In CLL cells,
interferon gamma response and CTLA-4 signaling genes
are positively correlated with LILRB4 expression [216].
Furthermore, in CLL cells, the expression of LILRB4 is
driven by Deltex1 and LILRB4 inhibits AKT activation
upon B-cell receptor stimulation [229]. Overall, LILRB4
signaling is context-dependent in different types of cancer
cells and appears to be different from that in normal
monocytic cells.

Leukocyte immunoglobulin-like receptor B 5
(LILRB5)

LILRB5, also known as CD85C and LIR8, contains four
extracellular immunoglobulin domains, a transmembrane
domain, and two ITIMs. The expression of LILRB5 has
been reported in subpopulations of monocytes, NK cells,
and T cells, as well as in vitro cultured osteoclasts and
mast cell granules [16,63,230–232]. A recent study showed
that LILRB5 specifically binds to HLA-B7 and HLA-B27
heavy chains [230]. Due to a relative paucity of studies
on LILRB5, the functional role of this receptor is not
clear. Several genome-wide association studies have high-
lighted LILRB5 variants whose expression is correlated
with serum creatine kinase and lactate dehydrogenase lev-
els. This correlation suggests an as yet unknown role for
LILRB5 in muscle repair [233–235]. Mycobacteria expo-
sure has been shown to upregulate LILRB5 expression
in APCs derived from BCG vaccinated donors, indicating
a possible role for LILRB5 in bacterial infection [231].
Within mature cord blood-derived mast cells, LILRB5 is
expressed in cytoplasmic granules that are released after
crosslinking of high-affinity IgE receptors. This hints at
a possible role in mast cell inflammatory response [63].
LILRB5 is unique among LILRBs in that it is the only
LILRB that is not highly expressed by M5 AML cells,
and its expression level does not correlate with the over-
all survival of AML patients based on the analysis of
TCGA data for AML patients (https://tcga-data.nci.nih.go
v/tcga/).

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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Paired immunoglobulin-like receptor B (PirB)

There are two mouse genes encoding proteins resem-
bling LILRBs in human, PirB and gp49B1. Due to the
expression patterns and, in some cases, the ligands they
recognize, there is no clear 1:1 counterpart relationship
between human LILRBs to mouse PirB and gp49B1. PirB,
considered the mouse relative of LILRB2/3, contains six
extracellular immunoglobulin domains, a transmembrane
domain, and four ITIMs. It is expressed on HSCs [34],
DCs [236–238], macrophages [239], neutrophils [240],
eosinophils [241], B cells [240], T cells [242,243], osteoclasts
[54], and neuronal cells [30].

PirB ligands

PirB ligands includeMHC-I [233], Angptls [37,64,244,245],
β-amyloid [31], and myelin inhibitory molecules (MAG,
Nogo, andOMgp) [30]. PirB can interact in ciswithMHC-I
expressed on the same cell [158]. The extended conforma-
tion of extracellular domains of PirB enables trans-cellular
interaction with ligands, such as MAG and MHC-I [246].

PirB in the hematopoietic system

PirB is expressed on mouse HSCs and multiple hematopoi-
etic lineages [37]. On DCs, PirB regulates cytokine-
mediated signaling [236–238], inhibits type I interferon
secretion [237], induces peripheral tolerance within an
allograft graft-versus-host disease model by suppression
of alloreactive T cells [238], facilitates maturation of DCs
with a hypothesized alteration of cell signaling involving
granulocyte-macrophage colony-stimulating factor [247],
and produces IL-27 to suppress CD4+ T cells [248]. PirB
is also a negative regulator of intestinal macrophages to
prevent the progression of inflammatory diseases such as
Crohn’s disease and ulcerative colitis [239]. PirB inhibits
alveolar macrophages and suppresses IL-4 induction of
pulmonary fibrosis [249]. Moreover, the high expression
of PirB in eosinophils contributes to both inhibitory and
activating pathways [241], such as inhibition of IL-13-
mediated eosinophil activation [250]. Differentiation of
myeloid lineage cells and B cells leads to upregulation
of PirB [240]. Ectopic expression of PirB in peripheral T
cells contributes to the suppression of type 1 helper T-cell
immune response [251]. Expression of PirB on T cells may
be associated with chronic autoimmunity [242,243].

PirB in the nervous system

PirB is expressed in cortical and hippocampal neurons and
regulates visual cortical plasticity [252–254]. Interaction of
PirB on neurons with β-amyloid oligomer leads to recruit-
ment of cofilin to facilitate actin depolymerization and
results in synaptic loss and cognitive deficits [31]. Inter-
action of PirB with myelin inhibitor molecules suppresses
axonal outgrowth and regeneration via activation of SHP-
1/SHP-2 signaling [255], PI3K/Akt/mTOR signaling [256],
and Trk signaling pathways [257]. In addition, the binding
of PirB to MHC-I molecules contributes to suppression of
synaptogenesis [258,259].

PirB in cancer

PirB is upregulated on DCs during cancer progression;
knockdown of PirB on DCs increases Th17 response and
decreases Treg differentiation to suppress tumor growth in
a mouse lung cancer model [260]. PirB highly expressed on
DCs competes with CD8 for MHC-I binding and inhibits
tumor antigen-specific CD8+ T-cell proliferation and cyto-
toxic activity to support tumor immune escape in a syn-
geneic mouse lymphoma model [261]. The upregulation of
PirB on tumor-infiltrating DCs can be inhibited by PD-L1
blockade [262]. It was also reported that Angptl2 binds to
PirB and activates Notch signaling for activation and mat-
uration of DCs and subsequent CD8+ T-cell cross-priming
in mouse melanoma and kidney cancer models [263]. PirB
expressed onMDSCs suppresses differentiation ofMDSCs
into M1 macrophages, which in turn inhibits regulatory
T-cell activities and tumor development [53]. Interaction
of glatiramer acetate with PirB on MDSCs suppresses T
cell by promoting IL-10 and TGFβ release [186]. On the
other hand, PirB is expressed onmouse AML cells and sup-
ports AML development by maintaining self-renewal and
inhibiting differentiation of leukemia stem cells [37]. Defec-
tive PirB signaling diminishes phosphorylation of SHP-1
and SHP-2 in AML cells [37]. By recruiting SHP-1/SHP-2,
PirB further activates CAMKs and the downstream CREB
signaling pathway to support leukemia progression [264].

Glycoprotein 49B1(gp49B1)

gp49B1 is a mouse protein resembling human LILRB4. It
contains two extracellular Ig-like domains. Unlike human
LILRB4, it contains two cytoplasmic ITIMs instead of
three. It is expressed on macrophages, mast cells, DCs, neu-
trophils, NK cells, T cells, microglia, and cardiomyocytes
[265–272].

gp49B1 ligand and functions

Unlike mouse PirB and human LILRB4, gp49B1 cannot
be activated by ApoE [196]. Integrin αvβ3 is the only
known ligand of gp49B1, and the integrin αvβ3/gp49B1
interaction inhibits mast cell activation [273]. Co-ligation
of gp49B1 and FcγRI also blocks IgE-mediated mast
cell activation [29]. The gp49B1-mediated inhibition
of mast cell activation requires recruitment of SHP-
1 by ITIMs [274], which may also interact with SHIP
and SHP-2 [274–276]. Although gp49B1-deficient mice
[277,278] exhibit no developmental abnormalities, mast
cells in these mice exhibit hypersensitivity to ovalbumin-
challenged anaphylaxis [277], elevated SCF-induced mast
cell activation [279], and increased neutrophil-dependent
vascular injury induced by LPS [267,280]. In addition,
gp49B1 deficiency induces significant T helper cell type
2 immune responses and pulmonary inflammation [281].
These result from elevated expression of chemokine (C-
C motif) receptor 7 (CCR7) on DCs and increased
secretion of CCL21 by lung lymphatic vessels [282]. The
decrease of gp49B1 on tolerogenic uterine DCs or decidual
macrophages contributes to abnormal pregnancy outcomes
by changing M1/M2 functional molecular expression,
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synthesis of arginine metabolic enzymes, and cytokine
secretions [264,283]. Moreover, gp49B1 is upregulated
on macrophages in atherosclerotic lesions from mouse
aortic roots. Deficiency of gp49B1 significantly accelerates
the development of atherosclerotic lesions and increased
the instability of plaques [201]. Deficiency of gp49B1 in
bone marrow-derived macrophages in the lung exacerbates
acute lung injuries via promotion of NFκB signaling
[284]. Downregulation of gp49B1 with other Treg-related
genes, including Ikzf2, Ikzf4, Tigit, and Il10, is found in
atherosclerosis-driven Treg plasticity [285]. Furthermore,
deficiency of gp49B1 promotes cardiac hypertrophy
via elevated NFκB signaling and TGFβ expression in
cardiomyocytes [272]. On the other hand, overexpres-
sion of gp49B1 in cardiomyocytes inhibits angiotensin
II-induced cardiomyocyte hypertrophy via interaction
between gp49B1 and SHP-2 and inhibition of NFκB
signaling [286]. gp49B1 also recruits SHP-1, which inhibits
TRAF6 ubiquitination and subsequently inactivates NFκB
signaling and MAPK cascades in nonalcoholic fatty liver
disease [287]. Finally, gp49B1 expression levels are elevated
in activated microglia in transgenic APP/PS1 Alzheimer’s
disease mice [288] and aged mice [271].

In addition to infection, gp49B1 is also expressed on acti-
vated CD4 and CD8 effector T cells after allogeneic tumor
challenge [269]. NK and T cells from gp49B1-deficient
mice exhibit enhanced cell cytotoxicity activities, which
suggests that gp49B1 is an inhibitory checkpoint on anti-
tumor immune cells in TME [269]. Moreover, gp49B1 is
increased on activated plasmacytoid DCs after toll-like
receptor activation, which is correlated to the reduction
of T-cell activity against leukemia cells [289]. In summary,
gp49B1 may play important roles in various inflammatory
diseases and cancer.

PERSPECTIVES AND FUTURE WORK

LILRBs inhibit anti-tumor immune activities and support
cancer cell survival, self-renewal, and migration in various
types of cancer, thus representing attractive therapeutic
targets. Several key questions need to be addressed in order
to better apply our knowledge to cancer diagnosis and
treatment.

Identification of ligands

Identification of ligands for LILRBs is a key step to under-
standing the biology and function of these receptors in
tumor immune evasion and cancer development. The study
of chicken relatives of LILRBs suggested that the ancient
ligands for these Ig-containing receptors were MHC class
I and β2-microglobulin [24,25]. However, human LILRBs
interact with both HLA and non-HLA ligands. Given the
fact that LILRB1 and LILRB2 each have multiple ligands,
it will not be surprising if individual LILRBs have multi-
ple binding partners. High-affinity ligands, co-ligands, or
binding proteins of LILRB1, 2, and 4 may have yet to be
identified. The ligand for LILRB3 is still unknown. HLA-
B27, a ligand of LILRB5, needs further functional vali-
dation. Several experimental techniques could be useful in

identification of LILRB ligands such as expression cloning,
crosslinking followed by co-immunoprecipitation andmass
spectroscopy, protein liquid chromatography fractionation
followed by reporter assays and mass spectrometry [196],
protein arrays, candidate screening, cell microarrays [290]
and ligand-based receptor capture technologies [291]. The
identification ofmultiple Ig-containing receptors that inter-
act with LILRBs [197] has new implications of signaling
and functions of LILRBs. If these ligand/receptor interac-
tions happen trans among different cells, our understanding
of how LILRBs act may significantly change.

Context-dependent signaling and functions

The signaling and functions of individual LILRBs may
share common features and also differ depending on
their expression in normal immune cells, immune cells in
diseased individuals (such as MDSCs, TAMs, and other
immunosuppressive cells), hematological malignant cells,
and solid cancer cells. A major question in the study of
LILRBs and other classical ITIM-containing receptors
is whether these inhibitory receptors have independent
signaling or whether their signaling needs to be associated
with those of activating receptors. It was proposed that
the activity of the ITIM-containing inhibitory receptors
requires ITAM-containing receptors [3,126]. In this model,
an ITIM-containing receptor cannot activate by itself
but needs to interact with an activating receptor. When
the ITAM-containing activating receptor is activated,
its ITAM recruits the Src tyrosine kinase [126], which
phosphorylates and thus activates the ITIMs of the
nearby inhibitory receptors. The recruitment of SHP-
1 may subsequently dephosphorylate the ITAM and/or
associated proteins, thus preventing further activation
of the activating receptors [126]. This model explains
TCR-, BCR-, and FcR-coupled LILRB signaling in T
and B cells. Nevertheless, in monocytic cells, LILRB4
clustering per se without crosslinking with an ITAM
receptor can induce SHP-1 recruitment [18]. In fact, the Src
kinase Lck can activate the ITIM- and ITSM-containing
receptor in the absence of ITAM receptors in an in vitro
reconstitution system [292]. Further investigations are
warranted to determine LILRB signaling and functions
in malignant cells, in which ITIM-containing receptors
may have acquired certain independent cancer-promoting
activities due to an altered signaling context [36,196].

The cell-context-dependent difference of LILRB signal-
ing and functions may result from a number of factors:
(1) different extrinsic cues. The diversity of ligands of each
receptor contributes to distinct function of each receptor
in different microenvironments. In addition, different lig-
and binding at different epitopes of LILRBs can lead to
different conformational changes of the receptors and con-
sequently different signaling. (2) The interaction between
LILRBs and other receptors. Most recently, it was demon-
strated that multiple Ig-domain receptors interact with var-
ious LILRBs [197]. Such cis or trans interactions may
regulate the signaling and functions of LILRBs differently
in different cells. In addition, extracellular factors that bind
to other receptors on the same immune cells could affect the
feedback signaling of LILRBs [5]. (3) Different signaling
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domains of different LILRBs. Due to variable sequences
and context, not all ITIMs are equivalent. For example, it
was suggested that a certain ITIM in LILRB1 was possibly
an ITSM [139]. Although all LILRBs contain ITIMs, we
found that certain ITIMs in different LILRBmemberswere
not interchangeable [224]. (4) Different levels of signaling
molecules in different types of cells. The large number
of substrates for SHP-1, SHP-2, and SHIP and divergent
downstream signaling may contribute to the complexity.
(5) Different transcriptional (such as LILRBs regulation
by IL-10 [55–57] and LILRB4 by vitamin D3 [58,59]),
perhaps translational, or post-transcriptional regulation
of individual LILRBs may lead to formation of different
interactomes.
The studies of LILRB biology in cancer cells may shed

new lights on better understanding of the functions of LIL-
RBs in immune cells in TME, and vice versa. For example,
monocytic AML cells and immunosuppressive monocytic
cells (including M-MDSCs and TAMs with monocytic ori-
gin) in cancer patients may share several characteristics:
(1) both are monocytic cells marked by LILRB4 expres-
sion [50,196,211,217], (2) STAT3/NFκB/Arginase-1 axis is
functionally active in both populations [293,294], and (3)
both have robust migration abilities [10]. It is therefore
possible that LILRB4 signaling in monocytic AML cells
and M-MDSCs is similar, and antagonizing LILRB4 sig-
naling by blocking antibodies may have anti-tumor effects
in different applications such as treatment of leukemia (by
directly targeting LILRB4 in leukemia cells) and treatment
of certain solid cancers (by targeting or reprogramming
LILRB4 in TME).
Overall, efforts to identify new ligands and study signal-

ing and downstream effectors could lead to further deter-
mination of exact functions of LILRBs (antigen presenta-
tion, priming, activation, trafficking, reprogramming, and
functions on cancer cells) in immune checkpoint biology.

Potential therapeutic approaches targeting LILRBs

Elucidation of underlying mechanism of LILRBs paves
the way for the development of therapeutics for human
malignances. LILRB1 expressed by macrophages mediate
the secondary anti-phagocytic ‘don’t eat me’ signals
independently but cooperatively with the CD47-SIRPα

pathway [141]. Anti-CD47 and anti-MHC class I or anti-
LILRB1 might act in synergy to induce phagocytosis
or immune system activation of macrophages. LILRB2
expressed by MDSCs or TAM suppresses anti-tumor
immune activities in TME. Anti-LILRB2 monotherapy
or combination with an anti-PD-1 antibody is in phase
1/2 clinical trial by Merck (MK-4830; Clinical Trial ID:
NCT03564691; Table 1). Preliminary clinical data have
shown that MK-4830 was well tolerated, and anti-cancer
responses were observed in 10 patients treated with the
anti-LILRB2 antibody MK-4830 in combination with
pembrolizumab, 5 of whom progressed on prior anti-PD-
1 therapies [295]. These data suggest that LILRB2 from
immunosuppressive myeloid cells may contribute to drug
resistance in the anti-PD-1 therapy. Other anti-LILRB2
therapeutics are also under preclinical development by
Immune-Onc Therapeutics (IO-108) and in phase 1 clinical

trial by Jounce Therapeutics (JTX-8064; Clinical Trial
ID: NCT04669899; Table 1), respectively, to reprogram
immune suppressive myeloid cells in solid cancers. Among
all LILRB members, LILRB4 is clearly the best target
for treating monocytic AML. It may also be a target for
treating some other hematologic malignancies and solid
cancers. By blocking ApoE-induced LILRB4 activation,
an anti-LILRB4 antibody developed by Immune-Onc
Therapeutics is in a phase 1 clinical trial as monotherapy
for AML and CMML patients (IO-202; Clinical Trial
ID: NCT04372433). An anti-LILRB4 antibody (h52B8)
by Merck inhibits the immunosuppressive activities of
monocytic MDSCs in vitro [296], and a phase 1 clinical
trial for cancer treatment was announced (Table 1). In
addition, based on the information that LILRB4 is specifi-
cally expressed by monocyte lineage but not hematopoi-
etic progenitor and stem cells, the CAR-engineered T
(CAR-T) cell and ADC therapeutics that directly target
LILRB4-expressing monocytic AML cells have been
generated [217,219]. Preclinical studies have shown that
both LILRB4-targeting CAR-T and ADC have anti-
leukemia efficacy but do not affect the stem cell activities
and differentiation of hematopoietic progenitor and stem
cells. Other potential approaches to inhibition of LILRB
signaling include targeting different segments of their
downstream signaling pathways, although the signaling of
ITIM-containing receptors is considered to be divergent.
In addition to cancer, these drugs may also benefit patients
affected by other diseases including infectious diseases,
autoimmune diseases, and neurodegenerative diseases.

CONCLUSION

The identification of LILRBs and their downstream sig-
naling as potential therapeutic targets has reshaped our
views of how cancer cells interact with the TME and the
immune system, how cancer cells differ from other cells,
and how to treat cancer. Numerous studies indicate that
LILRBs and their signaling in infiltrating immune cells
protect tumor cells from immune surveillance and attack.
In addition, LILRB signaling in cancer cells, particularly in
some leukemia cells, directly support cancer development
in cell autonomous and immune-related manners. Since
inhibition of the signaling of specific LILRBs unleashes
immune checkpoints and directly blocks cancer growth
with only mild toxicities, these receptors represent promis-
ing therapeutic targets for cancer treatment.
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